Chem. Pharm. Bull. **21**(6)1291—1294(1973)

UDC 546.73.09:615.35.033.076.9

Metabolic Fate of ⁵⁷Co-Labeled Hydroxocobalamin and ⁵⁷Co-Labeled 5,6-Dimethylbenzimidazolylcobamide Coenzyme in Rats

Kensaku Kinoshita and Takeshi Fujita¹⁾

Department of Pharmacology, Eisai Research Laboratories1)

(Received November 14, 1972)

The metabolic fate of $^{57}\text{Co-hydroxocobalamin}$ ($^{57}\text{Co-OH-B}_{12}$) and $^{57}\text{Co-5},6\text{-dimethyl-benzimidazolylcobamide}$ coenzyme ($^{57}\text{Co-DBCC}$) has been studied after intraperitoneal administration at the dosage of 25 µg/kg in rats. About 60% of radioactivity administered was recovered in urine during the first 24 hr after administration of $^{57}\text{Co-OH-B}_{12}$ or $^{57}\text{Co-DBCC}$. The highest tissue uptake was found in kidney, especially after injection of $^{57}\text{Co-DBCC}$, followed by adrenal gland, pancreas, stomach and liver. The distribution in brain, muscle and adipose tissue was much lower. It is evident that $^{57}\text{Co-OH-B}_{12}$ was converted to $^{57}\text{Co-DBCC}$ and reverse conversion of $^{57}\text{Co-DBCC}$ occured in liver and kidney. Furthermore, $^{57}\text{Co-methylcobalamin}$ ($^{57}\text{Co-CH}_3\text{-B}_{12}$) was found to be yielded from both the cobamides. The biological interconversion among $^{57}\text{Co-CH}_3\text{-B}_{12}$, $^{57}\text{Co-OH-B}_{12}$ and $^{57}\text{Co-DBCC}$ was established.

The metabolism of hydroxocobalamin (OH- B_{12}) or 5,6-dimethylbenzimidazolylcobamide coenzyme (DBCC) at a large dose was not fully elucidated and especially the biological conversion of OH- B_{12} or DBCC into methylcobalamin (CH₃- B_{12}) has not been established. The authors have reported the metabolic fate of CH₃- B_{12} at a large dose in this Bulletin.²⁾ In the present study the metabolic fate of other cobamide analogues was examined so as to compare with that of CH₃- B_{12} . This paper describes tissue distribution, urinary excretion and biological interconversion of 57 Co-OH- B_{12} and 57 Co-DBCC after intraperitoneal administration at the dosage of 25 μ g/kg in rats.

Experimental

Chemicals—The specific radioactivity of $^{57}\text{Co-OH-B}_{12}$ and $^{57}\text{Co-DBCC}$ (The Radiochemical Center, Amersham, U.K.) was 1.5 $\mu\text{Ci}/\mu\text{g}$ and 0.7 $\mu\text{Ci}/\mu\text{g}$, respectively. The radiochemical purity of both the labeled cobamides was found to be above 90% on thin–layer chromatogram of MN cellulose (Machery, Nagel Co., Germany, 0.25 mm in thickness) using a mixture of sec-butanol, water and conc. NH₄OH (100: 36: 14) as a developing solvent.

Experimental Animals and Administration—Male albino rats of Wistar strain weighing about 200 g were maintained on commercial chow (Nihon Clea Co., Japan.). Twenty five $\mu g/kg$ of 57 Co-OH-B₁₂ or 57 Co-DBCC was injected intraperitoneally. Animals were killed by cervical dislocation at appropriate time after administration and organs were dissected out. These organs were rinsed with physiological saline and blotted with filter paper. The appropriate amounts of organs were subjected to digestion with 5 ml of 30% KOH in boiling water bath and their radioactivities were measured with Aloka JDC-207 type scintillation counter (Nihon Musen Irigaku Co., Japan).

Urinary Excretion—Each animal was kept in an individual metabolic cage and urine collected for every 24 hr was adjusted to 100 ml with distilled water and the radioactivity in 5 ml of the diluted urine was measured.

Analysis of Cobamide Analogues in Liver and Kidney—Extraction and fractionation of cobamide analogues from tissues were made by modification²⁾ of the method of Yagiri.³⁾ In order to identify CH_3 - B_{12} more precisely, reversed dilution analysis was carried out as follows. The 57 Co- CH_3 - B_{12} fraction isolated according to previous report²⁾ was evaporated to dryness. Six ml of acetone was added to a mixture of

¹⁾ Location: Bunkyo-ku, Tokyo.

²⁾ K. Kinoshita and T. Fujita, Chem. Pharm. Bull. (Tokyo), 20, 2561 (1972).

³⁾ Y. Yagiri, J. Vitaminol., 13, 228 (1967).

the fraction and 10 mg of carrier CH_3 - B_{12} dissolved in 1 ml of distilled water. After standing overnight at 4°, the specific radioactivity of precipitate collected by filtration was determined by measurement of radioactivity against absorbancy at 522 m μ in aqueous solution. Recrystallization was repeated until specific radioactivity became constant.

Result and Discussion

Tissue Distribution

Tissue distribution of radioactivity at 24 hr, 72 hr and 2 weeks after intraperitoneal administration of ⁵⁷Co-OH-B₁₂ or ⁵⁷Co-DBCC is shown in Fig. 1. As shown in Fig. 1, the highest uptake of radioactivity was found in kidney, especially after injection of ⁵⁷Co-DBCC, followed by adrenal gland, pancreas, stomach and liver. The distribution of radioactivity in brain, muscle, adipose tissue and testis was much lower. The uptake of ⁵⁷Co-OH-B₁₂ by tissues with the exception of kidney appeared to be somewhat higher than that of ⁵⁷Co-DBCC.

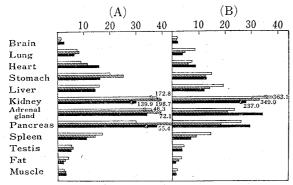


Fig. 1. Tissue Distribution of Radioactivity after Intraperitoneal Administration of ⁵⁷Co-OH-B₁₂ (A) or ⁵⁷Co-DBCC (B) to Rats

mean of 2 experiments Radioactivity is calculated as equivalent to 57 Co–OH–B₁₂ or 57 Co–DBCC m μ g/g wet weight of tissue.

: 24 hr after; // : 72 hr after; 2 weeks after

Table I. The Urinary Excretion of Radioactivity after Intraperitoneal Administration of $^{57}\text{Co-OH-B}_{12}$ or $^{57}\text{Co-DBCC}$ to Rats

Time (hr)	⁵⁷ Co-OH-B ₁₂	⁵⁷ Co-DBCC
0-24	61.5	57.4
24—48	1.0	0.04
4872	0.8	0.03

Values express the excretion % of dose.

Urinary Excretion

About 60% of radioactivity administered was recovered in urine during the first 24 hr after intraperitoneal administration of 57 Co-OH-B₁₂ or 57 Co-DBCC and a small amount of radioactivity was found thereafter (Table I). There was no difference between 57 Co-OH-B₁₂ and 57 Co-DBCC in urinary excretion profile.

Biological Conversion of ⁵⁷Co-OH-B₁₂ and ⁵⁷Co-DBCC into Other Cobamide Analogues

As shown in Fig. 2 and Fig. 3, it is evident that ⁵⁷Co-OH-B₁₂ was converted to ⁵⁷Co-DBCC and reverse conversion of ⁵⁷Co-DBCC occurred in liver and kidney. Furthermore, ⁵⁷Co-CH₃-B₁₂ was found to be yielded from both the cobamides.

No significant difference in total hepatic radioactivity was observed between intraperitoneal administration of ⁵⁷Co-OH-B₁₂ and that of ⁵⁷Co-DBCC but hepatic concentration of ⁵⁷Co-CH₃-B₁₂ converted from ⁵⁷Co-DBCC was somewhat higher than that from ⁵⁷Co-OH-B₁₂. In contrast, the renal concentration of total radioactivity after administration of ⁵⁷Co-DBCC was markedly higher than that of ⁵⁷Co-OH-B₁₂ on the whole and ⁵⁷Co-CH₃-B₁₂ converted from ⁵⁷Co-DBCC was much higher than from ⁵⁷Co-OH-B₁₂.

Cyanocobalamin is also eluted together with CH₃-B₁₂ in our chromatographic procedure. In order to confirm that the radioactivity in ⁵⁷Co-CH₃-B₁₂ fraction is originated from ⁵⁷Co-CH₃-B₁₂ itself, reversed dilution analysis was carried out and no decrease of specific radioactivity was found after repeated recrystallization in all cases.

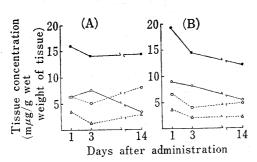


Fig. 2. Biological Conversion Rate of ⁵⁷Co-OH-B₁₂ or ⁵⁷Co-DBCC into Other Cobamide Analogues in Rat Liver after Intraperitoneal Administration

(A): after administration of $^{57}\text{Co-OH-B}_{12}$ (B): after administration of $^{57}\text{Co-DBCC}$

----: total radioactivity ----: CH₃-B₁₂

-----: OH-B₁₂

The urinary excretion profile of radioactivity after intraperitoneal administration of ⁵⁷Co-OH-B₁₂ in rats was almost similar to that of ⁵⁷Co-DBCC. As reported in our previous paper,²⁾ the urinary excretion of radioactivity after intraperitoneal administration of ⁵⁷Co- CH_{3} - B_{12} at the same dosage in rats was about 41% of dose during the first 24 hr and it is much lower as compared with the excretion in the injection of ⁵⁷Co-OH-B₁₂ and ⁵⁷Co-DBCC. Hiratsuka4) has reported that the urinary excretion of ⁵⁷Co-OH-B₁₂ after subcutaneous administration of 5 μg/rat was 52%. Although this value seems to be somewhat lower than our result, it might be attributable to difference in administration route.

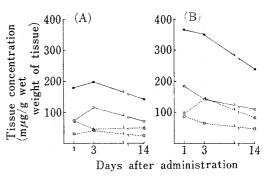


Fig. 3. Biological Conversion Rate of ⁵⁷Co-OH-B₁₂ or ⁵⁷Co-DBCC into Other Cobamide Analogues in Rat Kidney after Intraperitoneal Administration

(A): after administration of ⁵⁷Co-OH-B₁₂ (B): after administration of ⁵⁷Co-DBCC

----: total radioactivity ----: CH₃-B₁₂

---△---: OH-B₁₂ ---□--: DBCC

Muscle

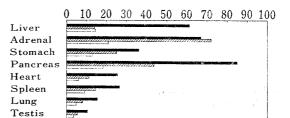


Fig. 4. Comparison of Tissue Radioactivity 72 hr after Intraperitoneal Administration of ⁵⁷Co-labeled B₁₂ Vitamers to Rats

Radioactivity is calculated as equivalent to each $^{57}\mathrm{Colabeled}$ B_{12} vitamer administered (mag/g wet tissue).

: ⁵⁷Co-CH₃-B₁₂; **ZZZZ**: ⁵⁷Co-OH-B₁₂; : ⁵⁷Co-DBCC

The tissue distribution of ⁵⁷Co-OH-B₁₂ except kidney seems to be somewhat higher than that of ⁵⁷Co-DBCC. Since the uptake of ⁵⁷Co-DBCC by kidney was markedly high in comparison with that of ⁵⁷Co-OH-B₁₂, the retention of ⁵⁷Co-OH-B₁₂ and ⁵⁷Co-DBCC in whole body appeared to be nearly equal. As compared with our previous paper, tissue uptake

of ⁵⁷Co-CH₃-B₁₂ was the highest among these three vitamers (Fig. 4).

Concerning the uptakes of the three vitamers by each organ, the highest uptake was observed in kidney followed by adrenal gland and pancreas and the lowest in brain, muscle and adipose tissue. The time courses in renal concentration of radioactivity were interestingly differed among these three vitamers. The renal content of radioactivity after administration of ⁵⁷Co-DBCC was the highest followed by ⁵⁷Co-CH₃-B₁₂²⁾ and ⁵⁷Co-OH-B₁₂. The radioactivity in kidney after administration of ⁵⁷Co-CH₃-B₁₂ decreased rapidly with time,²⁾ while that after administration of ⁵⁷Co-DBCC or ⁵⁷Co-OH-B₁₂ was changed gradually. Although Okuda, et al.⁵⁾ have reported that the kidney is a kind of storage organ of vitamin B₁₂ and the uptake of vitamin B₁₂ by kidney reflects the preceding intake of vitamin B₁₂,

⁴⁾ H. Hiratsuka, Bitamin, 33, 474 (1966).

⁵⁾ K. Okuda and H. Takedatsu, Proc. Soc. Exptl. Biol. Med., 123, 504 (1966).

1294 Vol. 21 (1973)

the difference in time course of renal content of B₁₂ vitamers might be attributed to differences in renal affinities of these vitamers, since in our experiments animals were maintained on the same conditions and administered with very large amount of vitamin B₁₂ and it is, therefore, expected that animals would be in saturated state with respect to vitamin B₁₂. Yagiri³⁾ reported that ⁵⁷Co-CN-B₁₂ and ⁵⁷Co-OH-B₁₂ were converted to ⁵⁷Co-DBCC in liver and kidney. The conversion of ⁵⁷Co-OH-B₁₂ to ⁵⁷Co-DBCC or ⁵⁷Co-CH₃-B₁₂ and that of ⁵⁷Co-DBCC to ⁵⁷Co-CH₃-B₁₂ or ⁵⁷Co-OH-B₁₂ were demonstrated in the present paper. The biological interconversion among ⁵⁷Co-CH₃-B₁₂, ⁵⁷Co-OH-B₁₂ and ⁵⁷Co-DBCC was established from our previous²⁾ and present reports.