Chem. Pharm. Bull. 21(6)1351—1356(1973) UDC 615.31.033.076.9 # Radioisotopic Studies on Percutaneous Absorption. II.¹⁾ Comparison of the Rate of Absorption through Mouse Skin of Several Water-soluble Substances from Emulsion-type Ointments SEIYU HIROSE, KAZUEI IGARASHI, KEIJIRO YAWATA, HISASHI FUKUZAWA, and AKIRA MINATO Faculty of Pharmaceutical Sciences, Chiba University2) (Received December 18, 1972) In a comparison of the percutaneous absorption of ²²Na⁺ with that of ³⁶Cl⁻, zinc-EDTA-⁵⁵Zn, ferric-EDTA-⁵⁹Fe, ferric-tiron-⁵⁹Fe or ferric-chromotropic acid-⁵⁹Fe by the "double isotopic method," it was demonstrated that water-soluble substances added simultaneously to absorption or hydrophilic ointment were absorbed at widely different rates through hair-clipped mouse skin. These results suggest that water-soluble substances added to an emulsion-type ointment may be absorbed through the skin into the body not as emulsified particles themselves but as solution or particles ultimately free of ointment base. It was also demonstrated that percutaneous absorbability of ferric-chromotropic acid-⁵⁹Fe was significantly lower than that of ferric-tiron-⁵⁹Fe when a comparison of the rates of absorption of these two radioactive compounds was made indirectly by using the absorption rate of ²²Na⁺ added simutlaneously with each ⁵⁹Fe-chelate compound to the absorption ointment as a standard. Thus, it was inferred that, when other conditions are similar, the percutaneous absorbability of water-soluble substances from emulsion-type ointment through mouse skin may be decreased with an increase in molecular size. Notwithstanding the wide acceptance of the "lipid theory"³⁾ to explain the absorption of medicaments through the skin, many articles in the medical and pharmaceutical literature have indicated the percutaneous absorbability of various water-soluble substances, e.g., heavy water,⁴⁾ sodium iodide-¹³¹I,⁵⁾ sodium phosphate-³²p,⁶⁾ sodium chloride-²²Na,⁷⁾ mercuric chloride-²⁰³Hg,⁷⁾ chromic chloride-⁵¹Cr,⁸⁾ sodium chromate-⁵¹Cr,⁸⁾ L-methionine-³⁵S,⁹⁾ and cyanocobalamin-⁵⁷Co.¹⁰⁾ In a previous paper,¹⁾ we have demonstrated that several predominantly water-soluble substances were absorbed with considerable rapidity from emulsion-type ointment through hair-clipped mouse skin as measured by the disappearance of radioactivity from the skin after topical application of either hydrophilic or absorption ointment containing sodium iodide-¹³¹I, ferric-EDTA-⁵⁹Fe, ferric-tiron-⁵⁹Fe or sodium chloride-²²Na. It was also observed in the previous paper¹⁾ that ferric-EDTA-⁵⁹Fe had a tendency to be absorbed faster than ferric-tiron-⁵⁹Fe from these ointment bases. However, an exact comparison could not be made since the rate of absorption of a substance might be influenced by various factors, among which is the viscosity of each applied ointment. ¹⁾ Part I: A. Minato, H. Fukuzawa, S. Hirose, and Y. Matsunaga, Chem. Pharm. Bull. (Tokyo), 15, 1470 (1967). ²⁾ Location: Yayoi-cho, Chiba. ³⁾ S. Rothman, "Physiology and Biochemistry of the Skin," the University of Chicago Press, 1954, p. 47. ⁴⁾ A.S. Szczesniak, H. Sherman, and R.S. Harris, Science, 113, 293 (1951). ⁵⁾ O.B. Miller and W.A. Selle, J. Invest. Dermatol., 12, 19 (1949). ⁶⁾ T. Takeuchi, Hoken Butsuri, 3, 327 (1968). ⁷⁾ J.E. Wahlberg, Acta Dermato-Venereol, 45, 335 (1965). ⁸⁾ J.E. Wahlberg and E. Skog, Arch. Dermatol., 92, 315 (1965). ⁹⁾ I.J. Edwards, Biochem. J., 57, 542 (1954). ¹⁰⁾ E.E. Howe, C.L. Dooley, R.F. Geoffroy, and C. Resenblum, J. Nutr., 92, 261 (1967). 1352 Vol. 21 (1973) The present work was undertaken to determine whether there are distinct differences in the rates of absorption of several water-soluble substances from emulsion-type ointments through hair-clipped mouse skin using the "double isotopic method." #### Material and Method Ointment Bases—Ointment bases used in this study were absorption ointment (W/O type) and hydrophilic ointment (O/W type), the compositions of which have been described in a previous paper. These ointment bases were kindly given by Mr. K. Shiizu of the Hospital Pharmacy, Chiba University. Radioisotopes— $-^{22}$ NaCl (specific activity: 51 mCi/mmole) was purchased from the Radiochemical Center, Amersham. H³⁶Cl (specific activity: 12 μ Ci/mmole), ⁵⁹FeCl₃ (specific activity: 48 mCi/mmole) were obtained from the Oak Ridge National Laboratory, Oak Ridge. Na³⁶Cl was prepared by neutralizing the above H³⁶Cl with sodium hydroxide solution. Chelating Agents and Other Chemicals—EDTA, tiron (4,5-dihydroxy-m-benzenedisulfonic acid disodium salt), chromotropic acid (4,5-dihydroxy-2,7-naphthalenedisulfonic acid), and cupferron (ammonium salt of N-nitrosophenylhydroxylamine) were purchased from Wako Pure Chemicals Industries, Ltd., Tokyo. Other chemicals used were of reagent grade from commercial sources. Preparation and Application of Radioactive Ointment—Two kinds of labeled water-soluble compounds (either Na³⁶Cl or a labeled chelate compound added to ²²NaCl) were mixed with an ointment base on a watch glass as specified in the legend of each table. About 50 mg of each radioactive ointment were weighed exactly and applied to a 5 cm² area of hair-clipped mouse skin (dd strain, male, weighing 20 to 25 g) in an animal room at 23° and 60—70 per cent humidity. During the application and the different holding periods for absorption, the mice were fixed on their backs in the same animal room. Determination of Per Cent Absorption of Radioisotopes—After the mice were sacrificed with ether, the area of skin where radioactive ointment had been applied was removed with scissors and the amount of the two radioisotopes contained in each skin sample was measured by the method described in the succeeding sections. To calculate the per cent absorption of radioisotopes, standards were prepared by applying about 50 mg of each radioactive ointment (weighed exactly) to a 5 cm²-piece of hair-clipped skin removed from a normal mouse. These control skin samples were treated the same as the experimental skin samples. Measurement of 22 Na and 36 Cl in a Skin Sample Containing 22 Na+ and 36 Cl——The excised skin was dissolved in a solution of 2 ml of 5% NaOH and 2 ml of 0.5% NaCl by gently boiling the preparation for 20 min in a Kjeldahl-flask. After the solution was cooled to room temperature, it was acidified with conc. HNO₃ using phenolphthalein as the indicator. An excess of one or two drops of acid was added. Immediately, 1.5 ml of 10% AgNO₃ were added to precipitate AgCl. The whole suspension was heated with gentle boiling for one hour after the further addition of 3 ml of conc. HNO₃. After this step, all operations were carried out under a tungsten lamp. The precipitate was collected by centrifugation at $2000 \times g$ and washed with 2 ml of water. The above supernatant fluid and washings were combined and diluted to 10 ml with water. A 5-ml aliquot of this solution was transferred to a test tube and the radioactivity of 22 Na was assayed with a well-type scintillation counter. The above AgCl precipitate was washed successively with water, acetone, and ether on a suction funnel, and finally spread uniformly on a filter paper disc having a diameter of 2 cm (Toyo-roshi No. 5C). The paper disc was placed in a stainless steel planchet and the radioactivity of the ³⁶Cl was assayed with an end-window Geiger-Mueller counter. Recoveries of ²²Na and of ³⁶Cl from ²²NaCl-skin and Na³⁶Cl-skin control samples were more than 98 and 97%, respectively, when corrected for sample volume and self-absorption. Measurement of ²²Na and ⁶⁵Zn in a Skin Sample Containing ²²Na⁺ and Zinc-EDTA-⁶⁵Zn—The excised skin was dissolved in a solution of 3.5 ml of conc. HNO₃, 0.15 ml of 40% NaOH, 0.15 ml of 0.01m ZnCl₂, and 2 ml of water by gentle boiling in a Kjeldahl-flask. Subsequently, 2 ml of water were added and the preparation was evaporated. After this evaporation process was repeated three more times, the preparation was adjusted to a volume of 5 ml with water and cooled to room temperature. The solution was made weakly alkaline with the addition of 40% NaOH and again acidified with 50% acetic acid to a one-drop excess addition. At this stage, the pH was between 5 and 6. This solution was diluted to 10 ml with water and was extracted with 7 ml of 0.3% dithizone in xylol. 5-ml aliquots of the water layer and of the xylol layer were assayed in a well-type scintillation counter to measure the amounts of ²²Na and ⁶⁵Zn, respectively. Recoveries of ²²Na and ⁶⁵Zn from ²²NaCl-skin and zinc-EDTA-⁶⁵Zn-skin control samples were more than 98 and 97%, respectively, when corrected for sample volume. Measurement of ²²Na and ⁵⁹Fe in a Skin Sample Containing Ferric-EDTA-⁵⁹Fe, Ferric-tiron-⁵⁹Fe or Ferric-chromotropic acid-⁵⁹Fe in Addition to ²²Na⁺——The excised skin was dissolved in a solution of 3 ml of conc. HNO₃, 0.25 ml of 20% NaCl, and 0.1 ml of 0.1 m FeCl₃ by gentle boiling in a Kjeldahl-flask. After addition of 2 ml of conc. HNO₃, the mixture was evaporated to about 2 ml. The addition of conc. HNO₃ and the evaporation were repeated four more times. Subsequently, 2 ml of water were added and the preparation was again evaporated. After this evaporation process was repeated three more times, the preparation was adjusted to a volume of about 5 ml with water and cooled to room temperature. The solution was neutralized with 40% NaOH and again acidified by the addition of 0.5 ml of 50% acetic acid. At this stage, the pH was between 3 and 3.5. This solution was adjusted to 10 ml with water and then mixed with 6 ml of chloroform and 1 ml of 5% cupferron. The mixture was shaken vigorously for one minute and then allowed to separate over night at room temperature. The upper layer was transferred to another test tube, mixed with 0.05 ml of 0.1m FeCl₃ and shaken vigorously for one minute after the addition of 4 ml of chloroform and 1 ml of 5% cupferron. After separation of the two layers, a 5-ml aliquot was withdrawn from the upper layer and the amount of ²²Na was assayed in a well-type scintillation counter. Meanwhile, the two chloroform layers were combined, the volume was adjusted to 10 ml with fresh chloroform, a 5-ml aliquot was withdrawn to measure the amount of ⁵⁹Fe and this sample was assayed in the same counter. Recovery in the control skin samples of ²²Na from ²²NaCl-skin and of ⁵⁹Fe from ferric-EDTA-⁵⁹Fe-, ferric-tiron-⁵⁹Fe-, and ferric-chromotopic acid-⁵⁹Fe-skin was more than 97%, when corrected for the sample volume. Measurement of ⁵⁹Fe and ⁶⁵Zn in a Skin Sample Containing Ferric-EDTA-⁵⁹Fe and Zinc EDTA-⁶⁵Zn—The excised skin was dissolved in a solution of 3.5 ml of conc. HNO₃, 0.15 ml of 0.01M FeCl₃, 0.05 ml of 0.01M ZnCl₂, 0.15 ml of 40% NaOH, and 2 ml of water by gentle boiling in a Kjeldahl-flask. Subsequently, 2 ml of water were added and the solution was evaporated. After this evaporation process was repeated three more times, the preparation was adjusted to a volume of about 5 ml with water and cooled to room temperature. The solution was transferred to a graduated test tube, neutralized with 40% NaOH and again acidified by the addition of 0.5 ml of 50% acetic acid. At this stage, the pH was between 3 and 3.5. After addition of 0.15 ml of 0.1M tiron, the preparation was adjusted to 10 ml with water and extracted with 10 ml of 0.2% dithizon in xylol. The amount of ⁵⁹Fe in 5 ml of the water layer and of ⁶⁵Zn in 5 ml of the xylol layer was assayed in a well-type scintillation counter. Recovery in the control experiments of ⁵⁹Fe from ferric-EDTA-⁵⁹Fe-skin and of ⁶⁵Zn from zinc-EDTA-⁶⁵Zn-skin was more than 97%, when corrected for the sample volume. ## Result and Discussion #### Comparison of ²²Na⁺ and ³⁶Cl⁻ Percutaneous Absorption In order to determine whether there are distinct differences in the rates of absorption of various water-soluble substances from emulsion-type ointments through hair-clipped mouse skin, we first compared the per cent absorption of ²²Na⁺ and ³⁶Cl⁻ which are both absolutely water-soluble simple monovalent ions. The sodium chloride added to each oitment was doubly labeled with ²²Na and ³⁶Cl. After application of the radioactive ointment to the animals, the remaining amount of ²²Na and of ³⁶Cl on each skin sample was measured as described in "Material and Method." As shown in Table I, the degree of absorption of chloride ions was slightly greater than that of sodium ions in both ointment bases. The difference was small but statistically significant on paired observations except in the case of the absorption ointment of 20 hr-duration in which both radioisotopes were almost completely absorbed through the skin. As for the subcutaneous absorption of Na⁺ and Cl⁻ in mice, Secher-Hausen¹¹⁾ reported that radioactive sodium ions were cleared significantly more slowly than radioactive chloride ions after the subcutaneous injection of labeled isotonic saline. In a comparison of the percutaneous absorption of several inorganic electrolytes from aqueous solutions through young (3—6 days old) rat skin, Vrignaud, *et al.*¹²⁾ reported that anions appeared to penetrate more easily than cations. ### Comparison of ²²Na⁺, Zinc-EDTA-⁶⁵Zn, and Ferric-EDTA-⁵⁹Fe Percutaneous Absorption As shown in Table II, the degree of absorption of zinc-EDTA-65Zn was very low in comparison to that of ²²Na⁺ under all conditions tested. These data show that water-soluble substances simultaneously added to an emulsion-type ointment could be absorbed at widely different rates. Therefore, it may be inferred that water-soluble substances added to each ¹¹⁾ E. Secher-Hausen, Acta Pharmacol. Toxicol., 28, 102 (1970). ¹²⁾ C. Vrignaud, P. Blanquet, and J.J. Dubarry, Bull. Soc. Pharm. Bordeaux, 105, 209 (1966). Table I. Percutaneous Absorption of ²²Na and ³⁶Cl after Application to Mouse Skin of Emulsion-type Ointments Containing ²²Na ³⁶Cl | Ointment base | of application | Amount of ointment applied to | Per cent absorption of radioisotopes | | $p^{a)}$ | |---------------|----------------|-------------------------------|--------------------------------------|---------------|----------| | | | each mouse (mg) | ²² Na | 36C1 | -
- | | Absorption | . 1 | 51.6 | 68.6 | 75.9 | < 0.005 | | ointment | | 54.2 | 66.1 | 71.6 | | | | | 54.6 | 56.1 | 62.8 | | | | | 54.1 | 63.8 | 68.4 | | | | 2 | 52. 0 | 74.2 | 81.3 | < 0.025 | | | | 52.3 | 81.7 | 85.2 | | | | | 53.1 | 77.9 | 84.9 | | | | | 53.1 | 76.9 | 88.7 | | | | 5 | 49.4 | 94.6 | 95.8 | < 0.1 | | | | 53.7 | 81.7 | 85.8 | | | | | 52.2 | 96.9 | 97.3 | | | | | 52.3 | 90.7 | 92.7 | | | | 20 | 43.4 | 98.6 | 98.5 | >0.1 | | | | 44.9 | 97.5 | 97.7 | | | | | 44.2 | 98.5 | 97.9 | - | | | | 51.1 | 97.9 | 98.2 | | | Hydrophilic | 7 | 53.6 | 46.0 | 52 . 7 | < 0.05 | | ointment | | 52.1 | 29.0 | 36.8 | | | | | 55.2 | 48.5 | 62.3 | | | | | 53.7 | 46.1 | 68.6 | | | | 20 | 51.6 | 54.1 | 80.3 | < 0.005 | | | | 53.5 | 41.7 | 65.7 | | | | | 53.6 | 52.4 | 82.6 | | | | | 53.5 | 41.0 | 66.7 | | An aqueous solution (0.15 ml) containing $0.05\,\mu\mathrm{mole}$ of 22 NaCl and $^{5}\,\mu\mathrm{mole}$ of Na³⁶Cl was mixed with $1.0\,\mathrm{g}$ of each ointment base. In the case of the hydrophilic ointment of 7 hr duration, $0.15\,\mathrm{ml}$ more water was added to the above solution before mixing with the ointment base. emulsion-type ointment are absorbed through the skin into the body not as emulsified particles but rather as solution or particles ultimately free of ointment base. The larger absorption of the water-soluble substances from absorption oitment (W/O type) than from hydrophilic ointment (O/W type) (Table I and II) might be due to the greater affinity for the skin of the former ointment than that of the latter ointment. The smaller absorption of ²²Na⁺ in experiments of Table II than in the experiments of Table I might be a reflection of the differences in the viscosity of the ointments. The data expressed in Table II also suggest the possible relationship between the molecular size and the percutaneous absorbability of water-soluble substances from emulsion-type ointments. In order to gain some insight into this problem, we compared the percutaneous absorption of ²²Na⁺ and of ferric-EDTA-⁵⁹Fe by a similar method. As shown in Table III, a large difference in the degree of absorption of the two radioactive compounds was observed again. Table IV summarizes the results of an experiment in which percutaneous absorbability of ferric-EDTA-⁵⁹Fe and of zinc-EDTA-⁶⁵Zn was compared. Since no significant difference was observed (Table IV), it appears that the slow absorption rate of metal-EDTA chelates as compared to the absorption rate of sodium ions is not due to the specificity of the metals but mainly due to the molecular size of the chelate compounds. # Comparison of Ferric-tiron-59Fe and Ferric-chromotropic Acid-59Fe Percutaneous Absorption For the purpose of gaining further insight into the relationship between molecular size and percutaneous absorbability of water-soluble substances from emulsion-type ointments, $[\]alpha$) The level of significance of difference between per cent absorption of ²²Na and that of ³⁶Cl calculated by t-test (paired observations). a comparison of the absorption of ferric-tiron-59Fe and of ferric-chromotropic acid-59Fe was performed. These compounds are similar in chemical properties but differ considerably in molecular size. Since it was impossible to compare the percutaneous absorption of these two radioactive compounds directly on the same ointment, an indirect method was employed as expressed in Table V. In this method, percutaneous absorption of ²²Na⁺ and of each ⁵⁹Fechelate compound was measured by the "double isotopic method." Those animals in which percutaneous absorption of 65 to 75% of the applied ²²Na occured were selected for comparison of absorption of the two different ⁵⁹Fe complexes. The relative absorption of ⁵⁹Fe to ²²Na was calculated on each of these animals, and these values in each group were compared. TABLE II. Percutaneous Absorption of ²²Na and ⁶⁵Zn after Application to Mouse Skin of Emulsion-type Ointments Containing both ²²NaCl and Zinc-EDTA-⁶⁵Zn | Ointment
base | Time of duration
of application
(hr) | Amount of ointment
applied to
each mouse (mg) | Per cent absorption of radioisotopes | | $p^{(a)}$ | | |------------------|--|---|--------------------------------------|------------------|-----------|--| | | | | ²² Na | ⁶⁵ Zn | | | | Absorption | 5 | 51.0 | 48.8 | 19.1 | < 0.005 | | | ointment | | 50.3 | 46.3 | 19.5 | | | | | | 50.0 | 34.2 | 12.5 | | | | | | 52.7 | 50.6 | 19.2 | | | | | 20 | 52,2 | 86.8 | 40.1 | < 0.005 | | | | | 50.6 | 92.3 | 56.2 | - | | | | | 50.0 | 85.9 | 40.8 | | | | | | 51.4 | 94.6 | 64.3 | | | | Hydrophilic | 5 | 51.8 | 17.1 | 15.2 | < 0.025 | | | ointment | • | 51.4 | 17.3 | 11.7 | | | | | | 50.3 | 13.9 | 8.7 | | | | | | 52. 0 | 12.2 | 5. 8 | | | | | . 20 | 51.8 | 39.5 | 16.4 | < 0.005 | | | | | 53.5 | 35.4 | 19.5 | - | | | | | 54.6 | 36.0 | 17.8 | | | | | | 54.4 | 28.2 | 16.3 | | | An aqueous solution (0.3 ml) containing 5 μ moles of \$2^{8}NaCl, 5 μ moles of \$6^{5}ZnCl_2\$, and 10 μ moles of EDTA was adjusted to a pH between 6 and 7 by spraying NH₃-containing air. This solution was mixed with 2.0 g of each ointment base. a) The level of significance of difference between per cent absorption of \$2^{9}Na\$ and that of \$6^{5}Zn\$ calculated by t-test (paired observations). TABLE III. Percutaneous Absorption of ²²Na and ⁵⁹Fe after Application to Mouse Skin of Absorption Ointment Containing both ²²NaCl and ferric-EDTA- ⁵⁹Fe | Time of duration
of application
(hr) | Amount of ointment applied to | Per cent absorption of radioisotopes | | b^{a} | |--|-------------------------------|--------------------------------------|------------------|---------| | | each mouse (mg) | ²² Na | ⁵⁹ Fe | 4 | | 5 | 50.2 | 67.4 | 36.0 | < 0.005 | | | 52.2 | 44.2 | 14.8 | • | | | 52. 8 | 65.4 | 26.8 | | | | 52.1 | 62.1 | 32.4 | | | 20 | 51.8 | 97.9 | 84.2 | < 0.005 | | | 51.0 | 97.6 | 75.1 | | | | 50.1 | 94.5 | 62.5 | | | | 51.7 | 91.9 | 49.2 | | An aqueous solution (0.3 ml) containing 5 μ moles of 22 NaCl, 5 μ moles of 59 FeCl₃, and 10 μ moles of EDTA was adjusted to a pH between 6 and 7 by spraying NH₂-containing air. This solution was mixed with 2.0 g of absorption ointment. a) The level of significance of difference between per cent absorption of 22 Na and that of 59 Fe calculated by *t*-test (paired observations). Table IV. Percutaneous Absorption of ⁵⁹Fe and ⁶⁵Zn after Application to Mouse Skin of Absorption Ointment Containing both Ferric-EDTA-⁵⁹Fe and Zinc-EDTA-⁶⁵Zn 1356 | Time of duration of application | Amount of ointment applied to | Per cent absorption of radioisotopes | | $p^{a)}$ | |---------------------------------|-------------------------------|--------------------------------------|------------------|--------------| | (hr) | each mouse (mg) | ⁵⁹ Fe | ⁶⁵ Zn | - | | 5 | 53.8 | 21.1 | 20.1 | >0.1 | | | 54.5 | 44.4 | 42.0 | | | | 52.7 | 16.5 | 17.9 | | | | 52.4 | 38.1 | 37.2 | | | | 53.8 | 38.1 | 37.0 | | An aqueous solution (0.3 ml) containing 0.5μ mole of 59 FeCl₃, $0.5\,\mu$ mole of 65 ZnCl₂ and $5\,\mu$ moles of EDTA was adjusted to a pH between 6 and 7 by spraying NH₃-containing air. This solution was mixed with 2.0 g of absorption ointment. a) The level of significance of difference between per cent absorption of 59 Fe and that of 65 Zn calculated by t-test (paired observations). As seen in Table V, ferric-chromotropic acid-⁵⁹Fe was absorbed from absorption ointment through hair-clipped mouse skin significantly more slowly than ferric-tiron-⁵⁹Fe. Since the chromotropic complex is larger, it may be inferred that percutaneous absorbability of water-soluble substances from emulsion-type ointments through mouse skin is decreased with an increase in molecular size when other conditions are similar. In this connection, it is of interest that Marzulli, et al. 13) demonstrated a decrease in penetrating capacity of trialkylphosphates through isolated human skin as the carbon chain length was increased. However, Wahlberg 14) observed no difference in absorption through excised human and guinea pig skin between $^{51}\text{Cr}^{3+}$ and $^{51}\text{Cr}\text{O}_4{}^{2-}$. Further studies are necessary to elucidate the factors determining the percutaneous absorbability of water-soluble substances from emulsion-type ointments. Table V. Comparison between Ferric-tiron-59Fe and Ferric-chromotropic acid-59Fe in the Rate of Absorption from Absorption Ointment through Mouse Skin | Form of ⁵⁹ Fe | Time of duration of application (hr) | Amount of ointment applied to each mouse (mg) | Per cent absorption of radioisotopes | | Relative absorption of | |--------------------------|--------------------------------------|---|--------------------------------------|------------------|----------------------------------| | | | | $^{22}\mathrm{Na}$ | ⁵⁹ Fe | 59 Fe to 22 Na $^{a)}$ | | Ferric-tiron | 4 | 53.6 | 65.9 | 10.6 | . 0.161 | | | | 52.9 | 73.8 | 9.6 | 0.130 | | | e e | 51.0 | 72.8 | 10.7 | 0.147 | | | | 53.2 | 71.9 | 10.0 | 0.141 | | | | me | ean 71.1^{b}) | | mean 0.145^{c} | | Ferric-chromotropic | 4 | 53.8 | 71.6 | 4.2 | 0.059 | | acid | | 54.3 | 70.8 | 4.7 | 0.066 | | | , | 54.9 | 65.8 | 5.7 | 0.087 | | | | 55.1 | 65.5 | 3.9 | 0.060 | | | | me | ean 68.4^{b}) | | mean 0.068^{c} | An aqueous solution (0.3 ml) containing 5 μ moles of ²²NaCl, 0.5 μ mole of ⁵⁶FeCl₃, and 2 μ moles of tiron (or chromotropic acid) was adjusted to a pH between 6 and 7 by spraying NH₃-containing air. This solution was mixed with 2.0 g of absorption ointment. Acknowledgement The authors would like to express their thanks to Drs. Y. Yamane and Y. Nakai of this Faculty for their valuable advice. Thanks are also due to Mr. K. Shiizu of Hospital Pharmacy, Chiba University for his generous gifts of absorption and hydrophilic ointments and to Dr. B. K. Joyce of Colorado State University for her help in preparing this manuscript. This work was supported in part by a Grant-in-Aid from the Ministry of Education. a) Ratio of per cent absorption of 59Fe to that of 22Na. b) No significant difference between the two means (p>1; F-test). c) Significant difference between the two means (p < 0.005; F-test). ¹³⁾ F.N. Marzulli, J.F. Callahan, and D.W.C. Brown, J. Invest. Dermatol., 44, 339 (1965). ¹⁴⁾ J.E. Wahlberg, Dermatologica, 141, 288 (1970).