in pyridine to yield the corresponding diketone, 3,6-dioxo-5,10,16-trihydroxygrayanane. Colorless needles (from ethyl acetate), mp 254—259° (decomp.). Anal. Calcd. for $C_{20}H_{30}O_5$: C, 68.54; H, 8.63. Found: C, 68.15; H, 8.33. IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3480, 1735, 1705. Mass Spectrum: 350 (M⁺).

The final product was identified by IR and MS as VI, derived from lyoniol-A. Lyoniol-A, lyoniol-B and lyoniol-D were already correlated each other by chemical reactions.¹⁾ So this experiments also confirmed the stereostructures of lyoniol-B and lyoniol-D.

Faculty of Pharmaceutical Sciences, Nagoya City University Tanabe-dori, Mizuho-ku, Nagoya

Received March 12, 1973

Jinsaku Sakakibara Katsushige Ikai Masaiti Yasue

Chem. Pharm. Bull. 21(6)1396—1397(1973)

UDC 547.597.03.04

Application of Homonuclear INDOR Spectroscopy in Friedelin Type Triterpenes

The INDOR method in nuclear magnetic resonance (NMR) spectroscopy was first described by Baker¹⁾ and its usefulness in the structure analyses of complex organic molecules has recently been demonstrated by Sciacovelli, et al.²⁾ and Ayres, et al.³⁾ We were interested in the application of this method to the assignment of methyl resonances of triterpenes and examined the spectra of 16β -acetoxyfriedelane (IIIa), mp 216— 217° , and the 16α -epimer (IIIb), mp 182— 183° .⁴⁾ These compounds had been obtained via the mono-ketone (II) from both pachysandiol-B (Ia) and pachysonol (Ib), isolated from Pachysandra terminalis Sieb. et Zucc., and their structures were already established.⁴⁾

The NMR spectra of IIIa and IIIb (Fig. 1 and 2) showed a triplet (J=9 Hz) at δ 5.22 and a quartet (J=7.5 and 8.5 Hz) at δ 5.19, respectively, due to the hydrogen geminal to the acetoxyl group, indicating that the D-ring in IIIa is in boat form while that in IIIb is in chair form.⁵⁾

$$R = OH$$

$$Ib : R = O$$

$$CrO_3-pyridine$$

$$R = OH$$

$$II$$

$$IIIa : 16 \beta$$

$$IIIb : 16 \alpha$$

$$Chart 1$$

¹⁾ E.B. Baker, J. Chem. Phys. 37, 911 (1962).

²⁾ O. Sciacovelli, W. von Philipsborn, C. Amith, and D. Ginsburg, Tetrahedron, 26, 4589 (1970).

³⁾ D.C. Ayres, J.A. Harris, P.N. Jenkins, and L. Phillips, J. Chem. Soc. (Perkin I), 1972, 1343.

⁴⁾ T. Kikuchi, M. Takayama, T. Toyoda, M. Arimoto, and M. Niwa, Tetrahedron Letters, 1971, 1535; idem, Chem. Pharm. Bull. (Tokyo), in press.

⁵⁾ T. Kikuchi, M. Niwa, and N. Masaki, Tetrahedron Letters, 1972, 5249.

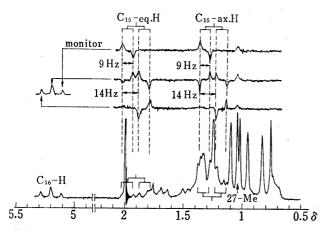


Fig. 1. 100 MHz Proton Spectrum of 16β -Acetoxyfriedelane (IIIa) in CDCl₃ and INDOR Spectra using Three Transitions of C₁₆-H as Monitor Lines (internal standard: TMS)

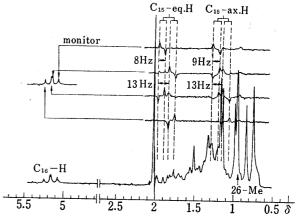


Fig. 2. 100 MHz Proton Spectrum of 16α-Acetoxyfriedelane (IIIb) in CDCl₃ and INDOR Spectra using Four Transitions of C₁₆-H as Monitor Lines (internal standard: TMS)

First we examined the INDOR spectra⁶⁾ of IIIa. As shown in Fig. 1, monitoring triplet lines for the 16-hydrogen at δ 5.22 gave two sets of INDOR signals around δ 1.90 and 1.24. The lower field signals may be ascribed to the 15-equatorial hydrogen and the higher field signals to the 15-axial one. In this experiment, there was observed a small peak at δ 1.04, which may be ascribed to the increment of signal intensity due to the so-called nuclear Overhauser effect (NOE). This was confirmed by irradiation at the methyl signal of δ 1.04, which gave 11% increment of signal intensity of the 16-hydrogen at δ 5.22. Accordingly, the signal at δ 1.04 could be assigned to the 27-methyl group.

Next the INDOR experiment was performed with the compound IIIb. Monitoring the quartet lines of 16-hydrogen geminal to the acetoxyl group revealed the INDOR signals for 15-hydrogens as illustrated in Fig. 2. There was also appeared a small peak at δ 0.96. Irradiation at this position, in turn, gave 13% NOE increment of the 16-hydrogen at δ 5.19. Thus the methyl signal at δ 0.96 was partly assigned to the 26-methyl group which is in 1,3-diaxial relation to the 16-hydrogen.

In conclusion, the INDOR method is very effective not only for the determination of signal position of hidden protons which are spin-coupled, but also for the qualitative detection of conventional NOE and therefore very useful in the stereochemical analyses of complex organic molecules.

Faculty of Pharmaceutical Sciences, Kyoto University Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto

Received March 15, 1973

Tohru Kikuchi Tetsuro Shingu Mineo Niwa Toshio Yokoi

⁶⁾ The proton NMR and INDOR spectra were measured in CDCl₃ solution using a Varian HA-100D Spectrometer which was modified for INDOR experiments according to the description by Jenkins and Phillips. See P.N. Jenkins and L. Phillips, J. Phys. (E), 4, 530 (1972).