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Although a two-compartment model represents an ‘adequate model for a reasonably
sophisticated description of the time course of many drugs in the body, the still simpler
one-compartment model provides certain pharmacokinetic parameters which are useful,
particularly in clinical application. A single-compartment approximation may be made
under certain conditions by omitting blood level data in the period shortly after rapid
intravenous administration. Pharmacokinetic calculations utilizing the parameters from
this approximation were compared with those based on the true two-compartment model.
Simple equations were developed to test the validity of the single-compartment approxima-
tion. Errors in the calculated values based on the single-compartment approximation
were expressed in terms of the smaller exponent f and ratios (m=A|B and n=a/p) of the
coefficients and the exponents from biexponential fitting to blood level data after rapid
intravenous administration. It was shown that the single-compartment approximation
may or may not be satisfactorily used for clinical purposes depending upon size of m and »
or relative size of m and #. Using the formulas derived in this report and data from
intravenous administration on a few patients, it is possible to determine for a par-
ticular ‘drug whether the one-¢compartment model is an adequately approximate model
for clinical purposes, or whether the two-compartment model is really necessary.

A semilogarithmic plot of blood level (C,) versus time after intravenous administration
of a drug is frequently shown by the following biexponential equation:

Cy=Aet | Be Bt (D

This blood level-time relation may be interpreted in terms of a two-compartment model shown
in Chart 1 to describe the rate process of distribution and elimination of the drug in the body.?
On the other hand, in a one-compartment mod-
el the body is considered to exhibit the pro-
perties of a single compartment. If a drug is
eliminated from this compartment by first-order
biotransformation and excretion after intra-
venous administration, a semilogarithmic plot
of blood level versus time yields one straight
line, and the blood level may be described by
a monoexponential equation. When a blood

compart-
ment 1

GW

compart-
ment 2
G

Model 1

Chart 1. Schematic Representation of the

Body as the Two-Compartment Model level-time curve has a significant curvature
C, and C, are the drug levels in the two compartments O.I'l a Semllpgarlthmlc plOt ('iU:I‘lIlg the eaﬂy pe-
at time ¢ after administration of a drug into compartment riod after intravenous administration, the two-
1. V; and V, are the volumes of the two compartments. . .
The rate constants %, and k,, are the distribution rate Compartment model 1s prObably an appr Opmate
constants, and k43 and k,, are the elimination rate con- model. If the faster rate constant (cx), hOWBVEI',
stants from the two compartments. All the rate constants R .
are assumed to be first-order. is considerably larger than the slower rate con-

stant (§) in Eq. 1, the first term of Eq. 1 will

1) Location: a) Yayoi-cho, Chiba; b) Hongo, Bunkyo-ku, Tokyo.
2) W.]J. O'Reilly, Canad. . Pharm. Sci., 7, 66 (1972).
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make only a very small contribution to C;. When this term becomes negligible very rapidly
with small values of time, Eq. 1 may be approximated by the followmg monoexponential
equat1on

Ci = Be Bt (2)

In that case, the « phase, which is due primarily to the distribution of drug throughout the
body, is completed very early, and the approximation based on Eq. 2 is valid over nearly
all of the time course of the drug in the body. The one-compartment model is therefore
actually an approximation used to describe the two-compartment model when o343

The model and its model parameters, chosen based upon the adequacy in describing the
drug level data after rapid injection, are useful in pharmacokinetic calculations. ~For example,
prediction of steady-state blood levels after multiple doses of a drug may be made by kinetic
analysis of blood levels observed after single doses of the drug‘4 5 Absorption rates of a
drug into the general circulation may be evaluated by comparing kinetically blood levels
after intravenous administration of the drug and extravascular administration of the drug in
dosage forms.®-19 Visual and/or statistical examination of blood level data will indicate
whether the curve is monoexponential or biexponential so that the appropriate model can
be applied.® In practice, blood level data measured at frequent intervals commencing
shortly after rapid intravenous injection are necessary to decide whether the two-compartment
model or the one-compartment model is more appropriate. This is sometimes difficult in
routine clinical situation. For practical purposes, a monoexponential equation obtained.
from omitting blood level data in the period shortly after intravenous administration will
probably be satisfactory under certain conditions for its application to pharmacokinetic
calculations. i

It is the purpose of this report to show that the contribution of the first exponential term
of Eq. 1 to pharmacokinetic calculations may be expressed using relative magnitude (4/B
and o/f) of the exponents and the coefficients of the two exponential terms of Eq. 1. The
mathematical errors associated with pharmacokmetlc calculations using Eq. 2 were represented
in terms of the ratios A/B and «/f, and simple equations were developed to test the validity
of the single-compartment approximation.

: Calculation- and Result

Individual Rate Constants Expressed Using Ratios of Exponents and Coefficients of Biexponential Equa-
tion Ih the two-compartment model the body is simply assumed to be divided into two compartments,
compartments I and 2, as depicted schematically in Chart 1. Compartment 1 can be'assumed to be the
plasma and other fluids or tissue between which a drug rapidly equilibrates, and is sometimes referred to
as a central compartment. Compartment 2 is a compartment which has a significant barrier for the dis-
tribution of the drug from compartment 1, and is sometimes referred to as a peripheral compartment. C,
and C, are the concentrations of the drug in the two compartments at any time ¢ after administration, and
the volumes of distribution for the two compartments are designated V, and V,. Rate constants %,, and

3) J.G. Wagner, ‘“Biopharmaceutics and Relevant Pharmacokinetics,” 1st ed., Drug Intelligence Publica-
tions, Hamilton, I1l; 1971, a) p. 291; - ) p. 254+ --6) P+ 293.

4) J.G. Wagner, J.I. Northam C.D. Alway, and O.S. Carpenter, Nature,. 207 1301 (1965).

5) B. Alexanderson, Europ. J. Clin. Pharmacol., 4, 82 (1972).

.6) ““Guidelines for Blopharmaceutlcal Studies in Man,” ed. by APhA Academy Sciences, Washington,

. D.C, 1972, p.9. :

7) ]CK Lgo and S. Riegelman, ] Pharm. Sei., 57 918 (1968).

8) S.A. Kaplan, ‘M. Lewis, M.A. Schwartz, E Postma, S. Cotler, CW Abruzzo, T, L Lee, and R.E. Wem-
feld, J. Pharm. Sci., 59, 1569 (1970). '

- 9) H. E Barber and G.R. Bourne, Brit. J. Pharmacol., 41, 513 (1971).-

10) B.E. Cabana,; L.E. Whillhite, and M.E. Bierwagen, Antimicrob. Agents Chemother ., 1969, 35. .

11) H. Nogami, M. Hanano, S. Awazu, and H.H. Moon, Chem. Pharm. Bull. (Tokyo), 17, 2097 (1969).
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kyy are the distribution rate constants, and 4,5 and k44 are the elimination rate constants from the two com-
partments. All the rate constants are assumed to be first-order. _

A graphical analysis technique is usually employed to separate Eq. 1 plotted on a semilogarithmic
scale into two straight components, and gives slopes, which may be defined as —«/2.303 and —8/2.303, and
extrapolated intercepts of 4 and B at time zero.12® Ratios m and # of the parameters of the biexponential
equation are defined by Eq. 3 and 4, respectively.

A =mB 3
o= nf 4

Therefore,
A + B = B(m+1)

The sum 4+ B is the concentration of drug in compartment 1 at time zero. The rate constants « and B
are defined by Eq. 5 and 6 in the course of integration and solution of the differential equations for model
I shown in Chart 1 after instantaneous administration of a drug into compartment 1 (C;=4+B and C,=
0 at £=0).120

k12+k21+k13+k24=a+ﬁ (5)
kiskar - Riskas + Riskos = off (6)
The simulated first-order rate constants (yg, £qy, kyg, and kyy) for model I are related to 4, B, «, and § as

shown by Eq. 7 and 8, the first halves of which are derived in the Appendix. Furthermore, by substituting
mB and np for A and «, respectively, the equations are shown as follows:

Ap+Ba _ m+n

k ko = =
21 + Rae A+B .l

i ™

Ae+Bp  mn+1
A+B m+1

k12 + b1z = B 8)

Unless some additional relation between the individual rate constants in model I is given, the values

Of kyy, By, Ry3, and ky, can not be calculated with 4, B, «, and B. If a ratio of ky, to k,, is assumed to be
Q, all the individual rate constants are expressed in terms of m, %, B, and Q by substituting k,,Q for &, in Eq.
_6—38 and by solving the equations. The individual rate constants so obtained are shown in Table I. Once

TaBLe I. Individual Rate Constants of the Two-Compartment Model
Expressed in Terms of m, n, 8, and Q

Model kig By Fag Bog

I Q:(P J@(ﬂ—l)ﬁ Vm(n—1) mn+1-~/m—Q(%-1)ﬁ N Qm+n)—a/m(n—1) 5

m—+1 A/ Q (m+1) m+1 A/ Q (m+1)
m(n—1)2 m-+tn n(m-+1)
I Q:Q ot t) i) mril? min *
mn-t1 m(n—1)2 n(m-+1)
: O:Q “mil? 1) ot 1) i1 ?

Q is defined as a ratio of &y, to gy

a value for Q is arbitrarily chosen to determine all the rate constants in model I, the ratios of any two rate
constants such as £y to £y, and %y, to &3 will be fixed. Here, let R denotes a ratio of &y, to ky. The rela-
tionship between the ratios Q and R can be derived by eliminating the individual rate constants (125 221,
ki3, and ky,) from the five equations, Eq. 6—8, ky3=Rky,, and k1,=Qk,. The result is as follows:

12) D.S. Riggs, “The Mathematical Approach to Physiological Problems,” Williams & Wilkins Co., Baltimore,
Md., 1963, a) p.146; b) p.203.
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\F—Z—mqm-m + Ron-+n) = mn + 1 , ON

As an example, the relationship between the ratios Q and R is given in Fig. 1 for m=0.713 and »=11.6 derived
from the data after intravenous administration of sulfisoxazole in man.!® The ratio-Q is given by values
between limits of approximately 1.07 to 0.53 against ’ :
the ratio R between zero and infinity in the two-
compartment model for sulfisoxazole, The ratio Q
becomes equal to m, if unity is substituted for R
in Eq. 9 (i.e. kByy=Fy,). Furthermore, substitution .
of m for Q in the formulas representing £,; and &,y 8r
of model I (Table I) results in kyz="Fq=4f. i - k=
The individual rate constants for models IT and (k= kas)
ITI, in which either elimination process can be neg- - e
lected, is expressed in terms of m, %, and g (Table I). '
The individual rate constants shown in Table I were - 4
applied to kinetic analysis based on Models I—I1I. '
Prediction of Drug Amount Remaining in the
Body——The total amount of drug (M) present in the
body for model I is given by the following equation,

M= D[(ﬂ;kli)‘e-«ﬂ + (3‘:-%2) e-lﬂ (10)

f—o o
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Fig. 1. Relationship between Q=Fq,/k, and -

which are derived in the Appendix. Here, the dose R=Fy,/ky as Calculated with Eq. 9 using
(D) is assumed to be put instantaneously into com- m=10.713 and %#=11.6 based on the Average
partment 1. By using Eq. 4 and kyy=[mnt+1— Values for Sulfisoxazole in Reference 13

VmQ(n—1)18/(m-+1), Eq. 10 may be rewritten in
the following way: '

D {Om—n/mQ)e B+ )+ e (1)

where, the amount of drug in the body as a function of time can not be calculated by only m, #, and 8 values,
if a @ value is not specified. Similar derivation yields Eq. 14 and 15 representing the amounts of drug in
the body for models IT and III, respectively (Table IT). The equations for the amounts of drug in special

“TaBLE II, Drug Amount in the Body wersus Time Expressed in Terms
of m, n, B,.and Q after a Single Intravenous Injection

Model I ’ Drug amount in the body

hrg=Qky L= Qe WG+ e (D)
I byy=Fky De~8t j | _, “.(‘12)‘

ha=hn e W e (19)
I . mli —(me=18"-}- ne=F") (14)
i L (e e @)

Q is defined as a ratio of ky5 to ky.

cases (ky3=Ry, and ky,=R,;) of model I are shown by Eq. 12 and 13 which are obtained by substituting »z
and unity for Q in Eq. 11, respectively.

13) S.A. Kaplan, R.E. Weinfeld, C.W. Abruzzo, and M. Lewis, J. Pharm. Sci., 61, 773 (1972).
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If the distribution rate constants (%,, and k,,;) are very much larger than the elimination rate constants
(k15 and k) in'the two-compartment model, the faster rate constant («) of the corresponding biexponential
equation will be very much larger than the slower rate constant (8). The term with the faster rate constant
may make only'a very small contribution to C,, since it beécomes negligible very rapidly. Neglecting the
blood level data in'the early period after rapid intravenous administration yields a monoexponential equa-
tion. In that case, the total amount of drug present in the body at any time may be approximated by Eq. 186.

M = VpBe Bt (16)

Here, Vi is the apparent volume of distribution (D/B) calculated from extrapolating the blood level to the
ordinate.l9 ' -

The curves representing Eq. 14 and 16 do not cross except at time zero. The amount of drug in the
body calculated with Eq. 14 based on model II is always less than that calculated with Eq. 16 derived from
the one-compartment model as an approximate. The contribution of the first terms, Dme~"8t|(m+-n), of
Eq. 14 to the amount of drug becomes negligibly small with time, since #)m in many cases and 7nyl, and
the amount of drug approaches #/(m--#) times that calculated with Eq. 16 as time becomes large. Therefore,
the ratio of the amount of drug calculated with Eq. 14 to that calculated with Eq. 16 rapidly approaches a
limiting value #/(m+#) with increasing #. The limiting ratio becomes progressively smaller with increasing
m and decreasing #. On the other hand, the total drug in the body calculated with Eq. 15 (model IIT) is
always larger than that calculated with Eq. 16. The former approaches #/(n—1) times the latter as time
becomes large. The total amount of drug at any time calculated with Eq. 11 based on Model I will be found
between the values calculated with Eq. 14 and 15 based on models IT and ITI. Typical values of nl(m-+n)
and #/(n—1) for various drugs are shown in Table ITI. The drug amounts of several for these drugs were
found to be predictable satisfactorily from the approximated equation.

Tasre ITI. Limiting Value (n/m-n» and n/n-1) of Ratio of Drug Amount Remaining in the
Body Calculated from the Biexponential Equation (Models IT and ITI)
to That Calculated with the Monoexponentical Approximation

Drug Species Dose n m nf(m+n) n/(n-1)
Diphenylhydantoin sodium® man 250 mg 79.0 1.62 0.980 1.01
Trimethoprim® _ dog 5.7 mg/kg 43.2 0.91 - 0.979 1.02
Lidocaine® , man 50 mg 18.3 3.29 0.847 1.06
Griseofulvin® ~dog © 50 mg 12.4 3.21 0.794 1.09
Nortriptyline® man 1 mg/kg 9.49 © 0.01 0.999 1.12
Dicloxacillinh man 250 mg 6.71 2.84 0.703 1.18
Ampicillin® man 250 mg 6.67 5.23 0.561 1.18
Ethoxybenzamide™ © rabbit 200 mg 6.58. 0.35 0.949 1.18
Acetysalicylic acid? man 325 mg 5.42 2.71 0.667 1.23
Chlordiazepoxide . dog 10 mg/kg 5.07 1.26 0.801 1.25
Oxacillin® man 250 mg 5.00 7.35 0.405 1.25

Pharmacokinetic parameters of the above drugs (4 ug/ml, B pg/ml, a hr-2, and 8 hr-1) are taken as it is or as average values from
their references and are shown as follows:

a) 12.2,7.5,6.0,0.076*; b) 3.0,3.5,10.1,0.23419; () 1.38,0.42,7.38,0.40419; 4) 3.05,0.95,10.4,0.8419;

¢) 0.4,40.0,0.258,0.02729; f) 42.0,14.8,5.3,0.791; g) 20.0,6.2,4.6,0.691; k) 19.7, 56.8, 23.0, 3.4910);

i) 42.0,15.5,15.6, 2.8829; 4) 13.5,10.7,2.18,0.439; k) 25.0,3.4,5.0,1.01»

It was shown that if a two-compartment model (model II) is appropriate to be applied, a semilogarithmic
plot of the amount of drug (M) in the body versus time has a smaller curvature than that of blood levels
versus time after rapid intravenous administration and that the semilogarithmic M-plot gives a better esti-
mate of the parameter § than the terminal linear segment of the semilogarithmic plot of blood levels.3®

14) Vm=D|B=V,(m+1), since Vo=D[(m-+1)B.

15) T. Suzuki, Y. Saitoh, and K. Nishihara, Chem. Pharm. Bull. (Tokyo), 18, 405 (1970).

16) S.A. Kaplan, R.E. Weinfeld, S. Cotler, C.W. Abruzzo, and K. Alexander, J. Pharm. Sci., 59, 358 (1970).

17) M. Rowland, P.D. Thomson, A. Guichard, and K.L. Melmon, N.Y. Acad. Sci., 179, 383 (1971).

18) P.A. Harris and S. Riegelman, J. Pharm. Sci., 58, 93 (1969).

19) L.W. Dittert, W.O. Griffen, Jr., J.C. LaPiana, F.J. Shainfeld, and J.T. Doluisio, 4ntimicrob. Agents
Chemother., 1969, 42.

20) M. Rowland and S. Riegelman, J. Phaym. Sci., 57, 1313 (1968).
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However, this semilogarithmic JM-plot also deviates from the straight line representing Eq. 16 with increas-
ing » and decreasing #/(m-#%), and may have a significant curvature over a considerable period of time
depending upon » and relative size of m and =.

Estimation of Rate and Extent of Drug Absorption ‘Wagner and Nelson?V proposed an equation for
calculating absorption rates of a drug from an extravascular depot into the general circulation. This equa-
tion was derived on the assumption that the distribution and elimination of the drug can be described by a
-one-compartment model and a first-order rate for overall loss of drug from the blood. Loo and Riegelman?
reported that the Wagner-Nelson (W-N) absorption equation does not give an acceptable estimate for the
case where a drug is distributed according to a two-compartment model. In this section, an error in estima-
tion of the amount of drug absorbed using the one-compartment model as an approximate will be expressed
in terms of m, #, and .

If a blood level-time curve is represented by a biexponential equation after rapid intravenous injection,
the amount of drug absorbed after a single oral administration may be given by the following equation:

12 13
(4): = CiV1 + Ms + k13V1J0 Cidt + k24J0M2di 17)

where, M, is the amount of drug (C,V,) in compartment 2 at any time. The amount of drug absorbed up
to time £ is evaluated as being the sum of the drug amounts in the body plus the sum of the drug amounts
eliminated from both compartments. Since model I is a linear model, whose system is described by first-
order linear differential equations, the blood level function Eq. 2 after intravenous administration of a drug
is the weighting function between an input function showing the absorption rate of drug into compartment 1
and the resulting blood level function.?® Therefore, the rate and extent of drug absorption is independent
of the ratio R. The total drug absorbed into compartment 1 is calculated to be as follows:

A). = klsvlrcldt + B erdt = n—(miL)ﬂTflrcldt (18)
0 0 m+n 0

the latter half of which is derived in the Appendix. Kaplan reported that the estimates of the total coumer-
mycin A; absorbed were practically the same, when calculated using model IT or model III in this study
and also that the percent drug amount absorbed with time was calculated to be almost equal for both models.??
However, the calculated values based on both models should be identical theoretically as described above.

For the single-compartment approximation, the amount of drug absorbed up to time ¢ after oral admini-
stration may be approximated by the following W-N equation:

4
(Aapp)e = C1Vm + ﬂijocldt (19)

The ratio (4)«/(Aapp)» Of the total amounts of drug absorbed is given by Eq. 20. Since V=TV (m 1)1,
the ratio of the true amount of drug absorbed to the apparent amount of drug absorbed, which is calculated

4. Bis V1J:C1dt + k24f:M2dt _

(Aapp)w B ISVmeCIdt m+n
(1]

(20)

with the approximated model, is shown to be #/(m+#) and independent of the ratio R.

A two-compartment model (model I) with first-order absorption into compartment 1 was used to examine
whether the amount of drug calculated with Eq. 19 is an adequate approximation. The drug level in
compartment 1 at time ¢ is given by Eq. 21, which is derived in the Appendix.

L= kaD [ (Raithos—ha) o, (Patku—o) o, (Butku—p) _g
“=y [(ka—zx)(ka—ﬂ)g (Fa—afo—B) . (hamBXo—B)*

Let p denote a ratio of the absorption rate constant k4 to f. Substituting o, ks +4-ks, and £q from Eq.
ko = PP _ (22)

4, 7, and 22 into Eq. 21 and rearranging give:

] v

21) J.G. Wagner and E. Nelson, J. Pharm. Sci., 52, 610 (1963).
922) G. Segre, Aun. N.Y. Acad. Sci., 96, 913 (1962).
23) S.A. Kaplan, J. Pharm. Sci., 59, 309 (1970).
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_ $D T
Vi(m+ 1) (p—n)(p—1) [(p—1)yme=nB - (p—mn)eB
+ {(m+n)— plm+ 1} e=287] -

Substitution of Eq. 23 and Vm="V,(m-}-1) into Eq. 17 results in:

(Aape = 2D [y [ IPO=D a2 DI mnP=D)girl] - (31

(n—pXm+n) (n—pYm+mn)

This means that the amount of drug remaining to be absorbed in the gastrointestinal tract is not represented
by the true monoexponential equation De~%af, but a biexponential equation.?d

Loo and Riegelman® reported that an analog computer was programmed for distribution and elimina-
tion of griseofulvin with selected half-lives for the first-order absorption and that the semilogarithmic simula-
ted plots based on the W-N equation resulted in concave descending curves to which it was usually difficult
to assign a half-life. When the half-lives for the absorption process was small relative to the disposition
half-life of griseofulvin set at 9.5 hr, then the W-N calculation yielded an apparent first-order. The relative
error in the estimated half-life, however, varied with each simulated situation. The simulated curves for
the absorption half-lives adjusted from 3.8 to 7 hr approached the theoretical half-lives near the end of the
absorption process. Using the W-N equation, the computed plot of the percent amount of drug remaining
to be absorbed was shown to be 0.45¢-9-77 - (0.55¢-0-183 for the theoretical absorption process with a half-life
of 3.8 hr.

The above results of the simulation by the computer are conveniently explained in terms of Eq. 24, which
is represented by the two exponential terms with the exponents « and k4. The equation showing the unab-
sorbed amount of drug consists of a sum or difference of the two exponential terms.?» Theoretical absorp-
tion half-lives can be estimated from the end of the absorption process, only when the equation is a sum of
the two exponential terms. It can be shown using Eq. 24 that the use of the single-compartment approxima-
tion results in an underestimation of the time, up to which any fraction of the administered drug is absorbed,
and an overestimation of the drug amount absorbed up to any time #. The percent amount of drug remain-
ing to be absorbed was calculated to be 0.44¢~9-688/1 (5620182 from Eq. 24 using the rate constants of the
‘two-compartment model for grlseofulvm %) and was in agreement with the simulated results of Loo and
Rlegelman 7

TaeLe IV, Time (hr) Required to Absorb Half the Administered Drug as Calculated with Eq. 24

Diphenylhydantoin Acetylsalicylic acid
nN\m 0.5 2.0 10.0 0.5 2.0 10.0
5 4.9 3.1 1.6 18.1 14.0 7.3
20 5.6 4.6 1.2 19.3 17.9 11.3
100 ' 5.9 4.7 4.7 19.7 19.4 17.8

Assignments made are $=0.076 hr~! 13> and k2=0.116 hr-1 (half-life: 6.0 hr)?? for diphenylhydantoin, and f=0.048 min~! and
ka=0.035 min=? (half-life: 19.8 min) based on data of Subject A and plain tablets of Fig.1 in References 20 and 28, respectively,
for acetylsalicylic acid.

24) If kg=oafi.e. p=n) and ke=/p(i.c. p=1), Eq. 24 becomes:

(Aapp)t _ D(im+n) [1_ m+%~mnﬂt(m—1)eﬁnpt] and
n m+n

(Aapp)t = D(m-+n) [1— 1 {me‘”ﬁ‘—i—%e*ﬁc}]
7 m+n

25) D(m+mn) — (Aapp): = [mp(% 1 _at+(n p)—m(p—1) -kat} = Teat 1 Se"kat
n (n—p) (n—2)
where, 750 and S)0 for «)ka and &y ke, T)0 and S0 for adkepk,,, and TK0 and SH0 for keda and kedkyy.
26) k,,=0.29 hr—1, £,,=0.31 hr~', and %£,,=0.16 hr-1.9
27) Y. Saitoh, Ph. D. thesis, Faculty of Pharmaceutical Smences Umversrty of Tokyo, 1971.
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The time #,/, required to absorb half the administered drug was calculated with Eq. 24. The results of
calculations were presented in Table IV using the data of diphenylhydantoin!52? and acetylsalicylic acid.20-2%
As true values for kg, 0.116 hr-! (half-life=6.0 hr, »=8.55) and 0.048 min—* (half-life=19.8 min, p=0.73)
were used for diphenylhydantoin and acetylsalicylic acid, respectively. The calculations were made by
means of a digital computer®® for several m and » values chosen arbitrarily. The results are shown to be in
underestimation for all the combinations of p, m, and # in Table IV. The calculated time /, of acetylsalicy-
lic acid (m=2.71 and #=>5.42) was 12.8 min for the true value of 19.8 min, while that of diphenylhydantoin
(m=1.62 and #=79.0) was 5.7 hr for the true value of 6.0 hr. The calculated time #,7, was 0.693/kq for
n=1 or oo and less than 0.693/kq for 1{n{co at constant m values, while the £/, decreased with increasing m
at constant » values. ,

Prediction of Blood Levels after Multiple Doses If N doses are given compartment 1 of the two-
compartment model in a first-order fashion with a rate constant of kg, the blood level Cf in the compart-
ment 1 at time # after the last dose is given by Eq. 25.

cr =

Dkg {{ 1—e Nkar }{ ko +hRou—Fka }e"kaf
720 A = § WS

-l e lasss ) @

Equation 25 is derived in the Appendix. Here, N doses of size D are given at uniform time intervals (7).
Since a sum of &y plus ky, in model I is equal to (m—n)B/(m+ 1), the drug level in compartment 1 after
the #-th dose remains independent of the R value. If the number of doses prior to time zero is assumed to
be infinite (i.e. equilibrium has been reached with periodic doses), and if Eq. 4, 7, and 22 are used, Eq. 25
can be reduced to the following form:

Cr = PD [{ - 1 }m(;b»—-l)e‘"ﬁﬂ

Vaim+1Xp—n)p—1) e~mPe
+ { 1_t_,5,}(;b—n>e'ﬁ‘ + {——‘“1_51-1»&} {m+n—p(m+1)} e—pﬁt] (26)

1

where, C,* is the steady-state blood level at time £ after dosing. On the other hand, if the one-compartment
model with the first-order rate constant kg for absorption and the first-order rate constant § for elimination
is used as an approximation, the estimated blood level (C3;,) at time Z after an infinite number of doses was
given by the following equation.’®

o kaD [( 1 ) _ ( 1 ) _ ] :
Cu = <12 - kot 27
w = Yoty N 1—e s /© T i) ) @7
Equation 27 may be rewritten by substituting pf and Vy(m+1) for kg and Vam, respectively, as follows:
5 = Tt 1mes) ™~ (e
Com = Bt — A /1 2
» = Vim0 \i—ep) T \i—ewae] (28)

“The ratio of C? to CZ,, at time ¢ after an infinite number of doses is given by Eq. 29. The ratio (CP)min/
(C2,)min of predicted minimum steady-state levels after an infinite number of doses is formed by replacing

& _ m(p—1)(1— &%) {181 — e~ PB7) — ¢~ PB(1 —o~"Br)}
Cow b (p—n)(1—e~B7){e=BI(1— e 2B7)— o~ PB 1 — e F")} (29)
£ by 7= in Eq. 29.
(CHmin m(p—1)(1—e(>=mB)(1—e~B7)
(C:;,p)min =1 + (p—%xl_g(p”l)ﬁTD(l_e—nﬁr) (30)

The average blood level (C?) over a time interval (z) after an infinite number of doses may be obtained
by integration of Cy over the interval and subsequent division by 7, as shown in the following equation:

28) G. Levy, J.R. Leonards, and J.A. Procknal, J. Pharm. Sci., 54, 1719 (1965).
929) Hitachi 5020E in The Computer Center of University of Tokyo.
30) R.G. Wiegand, J.D. Buddenhagen, and C.J. Endicott, J. Pharm. Sci., 52, 268 (1963).
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This equation is obtained by substituting ¥, and #(m--1)8/(m~+n) for V,, and 8 in the following equation:

T

OC;”dt D
T tVanf

Cop = J (32)

which represents the average blood level over a time interval (7) after an infinite number of doses based on
the one-compartment analysis.® If data are derived from Model I and analyzed by the single-compartment
approximation, then ‘

——=1+— (33)

TasLe V. Ratios (C)min/(Chp)min and C7/Cs,, as Calculated with Eq. 30 and 33

Drug # (CP)min/ (Cpp)min Co[Ct
Nortriptyline®- 21.69 1.002 1.001
Griseofulvin® 5.66 1.052 1.168
Dicloxacillin9:32 1.10 1.000 1.423
Diphenylhydantoin Sodium?? 1.53 1.012 1.021

Pharmacokinetic parameters of the above drugs (m and # values) are shown in the Table III, and those of griseofulvin (m=1.59
and n=9.49) were calculated with %;,=0.29 hr~1, ky;=0.81 hr1, k,,=0.16 hr~1, and f=0.0725 hr-.»

5r , : ) - Equations 30 and 33 show that the predicted
ratios (CF)min/(Cop)min and Cp[C, will always be

more than unity. An error of the calculated

asymptotic minimum level (C3,)min based on the

singlecompartment approximation increases with

increasing m and decreasing # and also decreases

‘ with increasing p (except 1{p<{n).?V) The ratios

ampicillin were calculated based on the reported data for

- 3 several drugs and a desirable time interval of ad-
5 i seofulvi ministering. The results of calculation are shown
~ griseotulvin in Table V. It can be seen that the minimum
S 2f - . blood levels at the steady-state condition predicted
lidocaine by the single-compartment approximation agrees
i acetylsalicylic acid satisfactorily with those calculated from the two-
compartment model.
1- Prediction of Blood Level during Constant-Rate
Intravenous Infusion——The blood level in compart-
i ment 1 of the two-compartment model (model I}
L L ! L j during constant-rate intravenous infusion of a drug
10 20 30 40 50 60 are given by the following equation:
Infusion time (min) :
Fig. 2. Ratios C,/Capp versus Infusion Time Ci= ko [1 L Blath—a}
as Calculated with Eq. 34 . Vl% (a—B)(ha1+ Ba)
Assignments made (m and # values) are shown in the Table 21+ fag
ziféuljtréi fx]rlizls)e k‘sz(t;.szeﬁil—vll,n kﬁ’,i o%éigh:ﬂ:i 1:3: o Rt , +we-ﬂt] (34)
- and $=0.0725 hr-1.» : , : (oe—B) (ka1 + kas)

31) If p=oofi.c. intravenous injection), p=u (i.e. ka=a), p=1 (i.e. ka=p), and p=0, the ratio becomes:
14+ m(1—e=Be)e=(=DBs[(1 —g=n7), 14 m(1—e=B7) (n— 1) fre=(*=DBe [(1 — g~Br) (] — e=(n-D)BF),
1+m(l—eF7) (1 —e= DB} (1 —e~mB7) (n— 1) f7, and 1-+-m/n, respectively.
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which is derived in the Appendix. Here, &, is the constant intravenous infusion rate. On the other hand,
the blood level in the body compartment based on the single-compartment approximation is given by Eq.
35.39 o ‘

ko
VB

Capp = (A—e8Y (35)

Equation 31 may be rewritten by substitution of Eq. 4 and 7 into Eq. 32 as follows:

ko -nBt gy .
Cy= W{(m+1¢)—-me Bl —pe Bt} (86)

Therefore, the ratio of C, to Capp at time # after the start of infusion is given by Eq. 37.

LS S m(l—e"8) 37

Ca,pp %(1—-6'35)

Equation 37 shows that this ratio of the blood levels is always more than unity, reaches to 14 with
approaching time zero, and decreases to 1+4-m/n with the increasing ¢ value. = Application of Eq. 37 were
presented in Fig. 2 using the data of am picillin,!® lidocaine, acetylsalicylic acid,*” and griseofulvin.”
‘An error of the calculated blood level based on the single-compartment approximation is predominantly
dependent on the # value in the early period and decrease rapidly after the start of infusion.

Notation

A, B=Intercepts of two resolvable exponential lines of blood level curve plotted on a semilogarithmic
scale at time zero. o, f=Slopes of the individual exponential lines («pf). C,;, C;=Drug levels in compart-
meuts 1 and 2 of the two-compartment model. = V,, V,=Volumes of distribution of compartments 1 and 2.
B9, koy=Tirst-order rate constants of drug transfer from compartment 1 to 2 and from compartment 2 to 1.
Fys, kog==First-order rate constants of drug elimination from compartments 1 and 2. m, n, p=Ratios of
A to B, a to B, and kg to B.  Q, R=Ratios of &y, to ky; and kg to kyy.  D=Dose. M =Total drug in the body
numerically equivalent to a sum of M, and M,. M,, M,=Drug amounts in compartments 1 and 2. TVn=
Apparent volume of distribution in the body compartment based on the single-compartment approximation
numerically equivalent to D/B. (4):, (4).=Drug amounts absorbed up to time ¢ and infinity due to the
method of calculation (Eq. 17) derived from the two-compartment model. (4app)ts (4app)e=Drug amounts
absorbed up to time ¢ and infinity due to the W-N equation (Eq. 19) based on the single-compartment approxi-
mation. kgq=TFirst-order rate constant of drug absorption (introduction of the dose D of drug into com-
partment 1 or the body compartment based on the single-compartment approximation at the rate kgDe—%at).
CY, Cr=Drug levels in compartment 1 after N doses and infinite number of doses. N=Number of doses.
r=Dosage interval. C%,=Drug level in the body compartment based on the single-compartment approxi-
mation after an infinite number of doses. (C{)min=Asymptotic minimum drug level in compartment 1.
(C%,p)min=Asymptotic minimum drug level in the body based on the single-compartment approximation.
ko=Constant intravenous infusion rate of drug. '

Appendix

The appropriate differential equations for model I shown in Chart 1 after instantaneous injection of a
drug into compartment 1 are as follows: ’

dfl‘fl = kaMsz — (Bis+ ki) M1 (1A)
df;fz = k1eM1 — (ko +kae) Mo zA)

where, M, and M, are the amounts of drug in compartments 1 and 2 after administration of dose (D), res-
pectively, and all the the rate constants are as defined in Fig. 1. ~Applying Laplace transformation to Eq. 1A
and 2A for M,=D and M,=0 at =0, and combining give:’

32) J.T. Doluisio, J.C. La,Piana, G.R. Wilkinson, and L.W. Dittert, Antimicrobd. Agahts .Chemothe‘r.,;l%Q, 49.
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by : D(s+ka1+ ko) ‘
ma(s) =. .

s) [s®+ s(R1z+ ko1 + Bus+ kog) + Risker -+ kiskos + Bi2kos) (34)
ma(s) = Dk1z

[s?+ s(Frz+ ko1 ks + kos) + Riskar -+ Riskes + A1akod] S

The denominator of Eq. 3A may be simplified by Eq. 5 and 6 in the text. Rewriting Eq. 3A in terms of «
and f results in: .

D(s+ka1+kag)

mi(s) =
)= s et B (5A)
similarly,
DFkis
ma(s) = —————r
= ) (64)
The inverse transforms of Eq. 5A and 6A are:
‘ * f 7k2.1+k“24‘*“ —wi k21+ké4-13 N ‘ v
MI‘"P{(TF '”'“f(mf‘)e g | | (TA)
_ ki ks g4 '
MZ = D{F:Je wt‘}'o‘Tﬁ'B ﬁt} (8A)

The total drug (M) in the body is expressed by combining with Eq. 7A and 8A as follows:

M=M +M;= D{(—————‘;:k; )3““”‘_4—'(—*0;:];3 )e‘.ﬂt} (9A)

Which is Eq. 10 in the text. Dividing M, by the volume (V) of distribution of compartment 1 gives:

Equation 11A is obtained from Eq. 1 and 10A.

D(ka+kau—a) _ 4

Equation 12A is derived fromqu. 11A and V,=D|B(m-1)
_ Ap+Ba
ka + k= “A4B (12A)
Combining Eq. 12A and 5 yields:
_ Aew+Bg
ki 4+ Ris = A1B (13A)

Equations 12A and 13A are represented as Eq. 7 and 8 in the text, respectively. If the drug (dose=D)
is administered at the first-order rate (rate constant=*~g) and the constant rate (%,) instead of instantaneous
injection, the Laplace transform of the amount of drug in Compartment 1 is described for M 1=0and M,=0
at i=0 by Eq. 14A and 15A.3%®)

— — ko \ (s+ha+ha) ‘
mi(s) = ex(s)Vy = D(s+ka) s (144)

33) A.Rescigno and G. Segre, “Drug and Tracer Kinetics,” Blaisdell Publishing Co., Waltham, Mass., 1966,
a) p..102; 'b) p. 88. O '
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_ _ D sthatke '
mi(s) = a(s)V1 = —;{———(s+m) o ‘34) } (15A)

The inverse transforms of Eq. 14A and 15A are:

Cy = { (kar+keu—Ea) g — (kar+kas— o) ot
(ka—o)(ka—p) . (kaf‘“)(““ﬁ)
(k21+k24—-f3) gt
R (164)
. ko Bi(kn+ha)—a} ., aif—(ka4kau)} g
Gr= aB { + (a—B)( ko1 + Eag) et (a—PB)(har+ ko) f ﬁ] (7A)

Vi ko1 kos

which are given as Eq 21 and 34 in the text. The Laplace transform of the drug level in compartment 1
of model I with first-order absorption after N doses of size D admmlstered at uniform time mtervals (r) is
given by the following equation.33?)

M@=£{kwMM%0

V1 (s-*-k“)(s.{_“)(s_}_ﬁ) }(1+ ez‘s+ 327:‘8 ...... +6(N—1)rs) (18A)

Equation 18A is equal to:

o (s) = (1__3st)£{ ka(s+ ko Rag) }

1—ew ) Vil (s+ka)(s+a)(s+h) s

The inverse transform of Eq. 19A is:

GV = Dkq, [ (1 —e~Nkgr }{ kz;+kz4-—ka }e“ka,‘
Vi W 1—e2ar J | (Rg—a)ba—P)

e e e LS dntte) on

which is Eq. 25 in the text.
Equation 2A holds also after a single oral dose into compartment 1. Integrating Eq. 2A between time
zero and time £ after substitution of C,V, for M, gives:

¢ ¢
Mz = ks V1J0C1dt—(k21+ k24)J0M2df (21A)

The area under the curve of drug amount in compartment 2 between time zero and time infinity is given by
Eq. 22A.

uzL4 J'”Cldt (22A)

Moadt = 2L
J“ ? koi+Fkog JO

Substitution from 22A and the individual rate constants represented by m, #, f, and Q in Table I into the
first half of Eq. 18 in the text gives:

_ (k13+k12)V1J” _ n(m+1) o
(dr). = LI g,y = 2720 Vlﬂjo Cudt (23A)

which is the latter half of Eq. 18 in the text.
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