Chem. Pharm. Bull. 22(11)2546—2551(1974)

UDC 547.541'233.03:543.422.4

Infrared Spectra of Bisarylsulfonimide Derivatives

Yukiko Tawaka and Yoshimasa Tanaka

Faculty of Pharmaceutical Sciences, Okayama University')

(Received March 8, 1974)

The infrared (IR) spectra of bisbenzenesulfonimide, bistoluenesulfonimide and benzenetoluenesulfonimide are reported together with the spectra of the corresponding N-deuterated samples. The isotopic shifts of the bands near 3180 cm⁻¹ and 1400 cm⁻¹ of bisarylsulfonimide derivatives give the evidence of the assignment of these bands to the N-H group. The dichroic properties of these bands in bisbenzenesulfonimide suggest that the molecule has the C_s symmetry. On this ground, the symmetric and antisymmetric S-N-S stretching bands are clearly distinguished from each other in the polarized spectra.

The IR spectrum of bispentadeuterobenzenesulfonimide has been measured. The effects of the N-deuteration and the ring deuteration on the characteristic frequencies are discussed. The IR spectra of the corresponding N-alkyl-bisarylsulfonimide derivatives are also discussed.

Introduction:

In the course of study on the infrared spectra of sulfonamide derivatives,^{2,3)} the assignment of the band near 900 cm⁻¹ to the S-N stretching vibration has been confirmed by the comparison with related compounds and by the frequency shifts on N-deuteration. An analogous isotope effect was found for bisarylsulfonimide derivatives containing the S-N-S group.⁴⁾ Although this group is expected to give rise to the S-N-S symmetric and antisymmetric stretching vibrations, only one S-N-S stretching band was observed near 860 cm⁻¹ for the previously investigated compounds.

In the present work, in order to confirm the absorptions due to the S-N-S symmetric and antisymmetric stretching vibrations in the group of SO₂-N-SO₂, the infrared spectra of bisbenzenesulfonimide have been recorded for ordinary and polarized radiations. The other characteristic bands of bisarylsulfonimide derivatives were also examined.

Experimental

Materials—Bisbenzenesulfonimide (BBSI): Benzenesulfonamide (1.7 g) was completely dissolved into the aqueous solution (10 ml) of sodium hydroxide (0.4 g). The solution was dried up on the water bath and the residue was dried in a desiccator by P_2O_5 under reduced pressure. The dried residue and benzenesulfonyl chloride (2.0 g) was heated at about 220° for three hours. After cooling, the reaction mixture was washed by acetone, and was recrystallized several times from methanol and water. mp 140—141°. Anal. Calcd. for $C_{12}H_{11}O_4NS_2$: C, 48.45; H, 3.64; N, 4.71. Found: C, 48.76; H, 3.84; N, 4.60.

Bistoluenesulfonimide (TTSI) was prepared by the similar way with BBSI. mp 173°. Anal. Calcd. for $C_{14}H_{15}O_4NS_2$: C, 51.68; H, 4.65; N, 4.30. Found: C, 51.69; H, 4.69; N, 4.08.

Benzenetoluenesulfonimide (BTSI) was prepared by the similar way with BBSI. mp 160—161°. Anal. Calcd. for C₁₃ H₁₃O₄NS₂: C, 50.15; H, 4.21; N, 4.49. Found: C, 50.75; H, 4.29; N, 4.64.

N-alkyl-bisarylsulfonimide derivatives were prepared in the way described above. Experimental data are summarized in Table I.

Bisdeuterobenzenesulfonimide (BBSI- d_{10}) was prepared by a similar way with BBSI. Benzenesulfonyl chloride- d_5 was prepared by a method similar to that described by Uno, et al.⁵⁾ NaOD was obtained by usual exchange reaction with heavy water.

¹⁾ Location: Tsushima, Okayama.

²⁾ Yu. Tanaka and Yo. Tanaka, Chem. Pharm. Bull. (Tokyo), 13, 399 (1965).

³⁾ Yu. Tanaka and Yo. Tanaka, Chem. Pharm. Bull. (Tokyo), 13, 858 (1965).

⁴⁾ Yu. Tanaka, Chem. Pharm. Bull. (Tokyo), 18, 824 (1970).

⁵⁾ T. Uno, K. Machida, and K. Hanai, Spectrochim. Acta, 24A, 1705 (1968).

N-Deuterated Compounds: All the corresponding N-deuterated compounds were prepared by the usual exchange reaction with heavy water.

Measurements of the Spectra—The infrared spectra were recorded on a JASCO DS-403G Spectrophotometer (4000-350 cm⁻¹). The spectra of the ordinary samples were recorded for KBr disks, Nujol or hexachlorobutadiene (H.C.B.) mulls and those of N-deuterated samples were recorded for Nujol or H.C.B. mulls.

For the measurement of infrared dichroism, the oriented sample of BBSI was obtained from the melt between two potassium bromide plates by crystal growth along the direction of an applied temperature gradi-

TABLE I.	Analytical Data	of N-Alkyl-bis-arylsulfonimide	Derivatives
----------	-----------------	--------------------------------	-------------

			Analysis (%)			
Compounds	mp (°C)	Formula	Calcd.		Found	
			C H	N	СН	N
(>-SO ₀)	₂ N-CH ₃ 111—112	$C_{13}H_{13}O_4NS_2$	50.15 4.21	4.49	49.93 4.42	4.84
	2 -C ₂ H ₅ 84— 85	$C_{14}H_{15}O_4NS_2$	51.68 4.65	4.30	51.60 4.54	4.25
	$-C_3H_7(n)$ 74— 75	$C_{15}H_{17}O_4NS_2$	53.08 5.05	4.13	53.25 5.09	3.87
	$-C_4H_9(n)$ 83	$C_{16}H_{19}O_4NS_2$	54.37 5.42	3.96	54.09 5.20	3.69
(CH_3-C_2)	₂ N-CH ₃ 111	$C_{15}H_{17}O_4NS_2$	53.08 5.05	4.13	52.02 4.61	4.47
(0113	$-C_{2}H_{5}$ 114—115	$C_{16}H_{19}O_4NS_2$	54.37 5.42	3.96	54.24 5.30	3.87
	$-C_3H_7(n)$ 79— 80	$C_{17}H_{21}O_4NS_2$	55.56 5.76	3.81	55.78 6.09	4.01
	$-C_4H_9(n)$ 87—88	$C_{18}H_{23}O_4NS_2$	56.67 6.08	3.67	56.81 5.96	3.55
CH ₃ -		4			1 L 1 late	
	N-CH ₂ 92— 93	$C_{14}H_{15}O_4NS_2$	51.68 4.65	4.30	52.02 4.61	4.47
/ >-so,/	$-C_2H_5$ 76— 78	$C_{15}H_{17}O_4NS_2$	53.08 5.50	4.13	53.25 5.37	4.40
	$-C_3H_7(n)$ 77— 78	$C_{16}H_{19}O_4NS_2$	54.37 5.42	3.96	54.82 5.36	3.58
	$-C_4H_9(n) \qquad 68$	$C_{17}H_{21}O_4NS_2$	55.56 5.76	3.81	55.78 6.09	4.01
					Acres Atra San Commercial	

Results and Discussion

The infrared spectra of BBSI and N-deuterated BBSI are shown in Fig. 1 and the observed frequencies of BBSI are listed in Table II. Benzenesulfonamide (BSA) shows a medium band at 901 cm⁻¹ due to the S-N stretching vibration,^{3,5)} while BBSI shows a very strong band at 875 cm⁻¹. In other respects, the infrared spectra between 1200 cm⁻¹ and 650 cm⁻¹ of BBSI and BSA are very similar to each other. The 875 cm⁻¹ band of BBSI can be assigned to the S-N-S stretching vibration by the comparison with that of BSA and by the shift to the 785 cm⁻¹ on N-deuteration. The observed shifts are quite characteristic of the N-S-N frequencies.6) In addition, the band at 1380 cm⁻¹ and 3165 cm⁻¹ of BBSI were assigned to the δNH and vNH mode from the shifts to the 1070 cm⁻¹ and 2145 cm⁻¹ respectively.^{7,8)}

The nitrogen atom of BBSI is expected to be pyramidal from analogy with the X-ray crystallographic data for various sulfonamide derivatives.9-11) Accordingly, if the molecular symmetry of BBSI is that of the point group C_s with the planar skeleton C-S-N-S-C, (Fig. 2), the νNH mode should belong to the a' species and the δNH mode to the a" species.⁷⁾ The infrared spectra of the oriented sample recorded for the polarized incident radiations are shown in Fig. 3. The band at 3165 cm⁻¹ attains the maximum intensity when the electric vector of the incident radiation is parallel to the direction of crystal growth (a' species). On the other hand, the band at 1380 cm⁻¹ becomes strong for the incident radiation polarised per-

⁶⁾ T. Uno, K. Machida, and K. Hanai, Spectrochim. Acta, 22, 2065 (1966).

⁷⁾ G. Dellepin and G. Zerbi, J. Chem. Phys., 48, 3573 (1968).

⁸⁾ L.J. Bellamy, "The Infrared Spectra of Complex Molecules," Methuen & Co., Ltd. London, 1958, p. 207.

⁹⁾ H.P. Klug, Acta Cryst., B24, 792 (1968).

¹⁰⁾ T. Jordan, H.W. Smith, L.L. Lohr, Jr., and W.N. Lipscom, J. Am. Chem. Soc., 85, 846 (1963).

¹¹⁾ E. Shefter and P. Sackman, J. Pharm. Sci., 60, 282 (1971).

TABLE II. The Characteristic Frequencies of Bisarylsulfonimide Derivatives

Assignmen	$_{\mathrm{nt}^{a}}$ \sim $_{\mathrm{cm}^{-1}}$	$^{b)}$ (\sim SO ₂) ₂ NH cm ⁻¹	$(CH_3-C_2)_2NH_{cm^{-1}}$	()
				So.
vasNH ₂	3530 s			
$v s N H_2$	3365 s			
vNH		3160	3170	3190
ν CH	$3970 \mathrm{sh}$	$3060 \mathrm{sh}$	3060 sh	3060 sh
νCH_3		0000 212	2920 w	2890 w
73			2875 sh	2875 vw
			2826 vw	2910 w
	•		2020 V W	2880 w
vCC	1582 sh	1587 w	1595 m	2000 w 1597 w
αNH_2	1555 m	1367 W	1555 111	1397 W
β CH+ ν CC		$1480 \mathrm{m}$	1488 w	1493 w
β CH ₃	, 1400 W	1400 III		
ρ_{CH_3}	•		1455 vw	1482 w
	• Company of the comp	7.4	1450 sh	
β CH+ ν CC	1450 a	1445 -	1445 w	1110
α NH	1450 s	1445 s	1000	1448 m
		1380 s	1383 m	1395 s
αCH ₃	1224	10.00	1378 m	1377 m
$vasSO_2$	1334 vs	1365 s	1360 vs	1365 vs
OCTT	1010	1335 s	4000	1355 s
βCH	1310 s	1307 w	1308 w	1312 w
vCC	1289 sh	1297 w	1295 m	1295 w
βСН	1182 s	1185 w	1190 w	y *
$vsSO_2$	1158 s	1165 s	$1170 \mathrm{sh}$	1168 vs
000 . 0		1160 vs	$1165 \mathrm{vs}$	1162 vs
$\alpha CCC + \nu C$	X 1090 s	$1080\mathrm{s}$	1080 m	$1092 \mathrm{sh}$
				1080
β CH+ ν CC		1068 m		$1072 \mathrm{sh}$
	1024 w	$1025 \mathrm{m}$	1018 w	1015 m
$\gamma \mathrm{CH_3}$			1030 w	1038 w
Ring breat		998 w		996 w
γ CH	$980 \mathrm{sh}$	975 w	$970 \mathbf{w}$	975 w
	$928 \mathrm{sh}$			
ν SN	903 s	875 vs	858 s	$865\mathrm{s}$
				848 s
γ CH	850 w	844 w	$848 \mathrm{sh}$	$830\mathrm{sh}$
4			808 s	$830 \mathrm{sh}$
γ CH	754 vs	758 vs		765 m
$\alpha CCC + \gamma CC$	X	$725 \mathrm{vs}$	720 m	720 m
•		*	$703 \mathrm{sh}$	703 m
ψ CCC	687 s	683 s	$678 \mathrm{sh}$	680 s
αCCC	593 m	617		2000
αSO_2	536 m	583 s		
βSO_2		543 s		

a) ν : stretching, α and β : inplane deformation, γ and ϕ : out-of-plane deformation

c) measured for the unpolarized radiation

pendicularly to the crystal growth direction (a' or a" species). The 855 cm⁻¹ band shows parallel dichroism, whence it should be assigned to an a' mode. We have assigned it to the S-N-S symmetric stretching vibration. On the other hand, the band at 873 cm⁻¹ shows the perpendicular dichroism and can be assigned to the S-N-S antisymmetric stretching vibration. These two bands at 855 cm⁻¹ and at 873 cm⁻¹ were observed as a single absorption band at 875 cm⁻¹ on the measurement for the unpolarized radiation. The corresponding

b) T. Uno, K. Machida, and K. Hanai, Spectrochim. Acta, 24A, 1705 (1968)

Fig. 1(a). Infrared Spectta of Bisbenzenesulfonimide (——) and Its N-Deuterated Compound (-----) (1600 $\,\mathrm{cm^{-1}}-700\,\mathrm{cm^{-1}})$

Fig. 1(b). Infrared Spectra of Bisbenzenesulfonimide (——) and Its N-Deuterated Compound (-----) (3600 cm⁻¹ -2000 cm⁻¹ and 700 cm⁻¹ -200 cm⁻¹)

Fig. 2. Molecular Structure of Bisbenzenesulfonimide

Fig. 3. Polarized Infrared Spectra of Bisbenzene-sulfonimide

- ----: electric vector parallel to direction of crystal growth (a')
- ---: electric vector perpendicular to direction of crystal growth (a")

S-N-S stretching absorption bands in the polarized spectra of deuterated BBSI were identified at 777 cm⁻¹ and 770 cm⁻¹ from analogy with BBSI.

Four bands due to the SO₂ stretching vibrations are expected for BBSI. As a matter of fact, the antisymmetric stretching bands at 1360 cm⁻¹ and 1330 cm⁻¹, and the symmetric stretching bands at 1155 cm⁻¹ and 1148 cm⁻¹ were recognized. The band due to a mixed mode of the C-S stretching and ring skeletal vibrations⁵⁾ of BBSI is observed at 1083 cm⁻¹.

Undeuterated TTSI shows a strong band at 858 cm⁻¹, which shifts to 773 cm⁻¹ on deuteration. This band is resolved into a perpendicular component at 865 cm⁻¹ and a parallel component at 835 cm⁻¹ on the dichroic mea-

Fig. 4. Infrared Spectra of Benzenetoluenesulfonimide (——) and Its N-Deuterated Compound (———)

surement. Evidently, the high- and the low-frequency components arise from the S-N-S antisymmetric and symmetric stretching vibrations, respectively.

In case of asymmetrically substituted benzenetoluenesulfonimide (BTSI), two bands assignable to the S-N stretching vibrations appear at 865 and 848 cm⁻¹ in the unpolarized infrared spectrum (Fig. 4). These bands shift to 795 and 778 cm⁻¹ on N-deuteration. The absorption frequencies of BTSI and TTSI are listed in Table II together with the frequencies of reference compounds. In assigning the frequencies of TTSI and BTSI, the data on TSA and N-methyl-TSA by Radmacher, *et al.*, ¹²) have been a valuable guide and Goldstein's report on N-alkylarylsulfonamides have been referred, too.¹³)

The infrared spectra of twelve kinds of N-alkyl-bisarylsulfonimide derivatives were measured and the existence of characteristic infrared frequencies of the molecules which have the SO₂-NR-SO₂ groups were confirmed. The observed frequencies and assignments are summarized in Table III.

 $\begin{array}{c} \operatorname{Aryl_1-SO_2-N-SO_2-Aryl_2\ (cm^{-1})} \\ \operatorname{R} \end{array}$ α CCC $+\nu$ CX $\nu S + N$ Aryl₁ Aryl₂ R $v_{as}SO_2$ v_sSO_2 1085 m 830 s CH_3 1323 s1170 s $1095 \mathrm{sh}$ 1166 s 1083 m 878 s C_2H_5 1378 s1158 s1375 s 1083 m 1161 s 820 s $n-C_3H_7$ 1093 m $1370 \mathrm{s}$ $1168 \mathrm{s}$ 1087 m 852 s 1175 s 1374 sn-C₄H₉ $1093 \, \mathrm{sh}$ 845 s1085 m 1378 s $1165 \mathrm{s}$ 830 s CH_3 CH₃ CH_3 1093 sh 1354 s1173 sh 1374 s1166 s1086 m 868 s CH_3 CH_3 C_2H_5 $1093 \mathrm{sh}$ 1355 s $1157 \, \mathrm{sh}$ 1084 m $1170 \, s$ 823 s CH_3 $n-C_3H_7$ 1372 s CH_3 $1160 \mathrm{s}$ $1093 \, \mathrm{sh}$ 1372 s1085 m852 s $1165 \mathrm{s}$ CH_3 $n-C_4H_9$ $1093 \, \mathrm{sh}$ 1356 s1373 s1165 s1085 m 820 s CH_3 CH_3 $1093 \, \mathrm{sh}$ 1172 s1355 s1372 s1175 s1085 m 874 s C_2H_5 CH_3 1352 s $1166 \mathrm{s}$ $1093 \, \mathrm{sh}$ 1085 m $1368 \mathrm{s}$ 825 s CH_3 $n-C_3H_7$ 1162 s1352 m 1093 sh 852 s 1374 s1165 s1085 m n-C₄H₉ 845 s1357 m $1093 \, \mathrm{sh}$ 1175 s

TABLE III. The Characteristic Frequencies of N-Alkyl-bisarylsulfonimide Derivatives

s: strong, m: medium, sh: shoulder

It is seen from Table II and III that the $v_{\rm as} \rm SO_2$ bands of bisarylsulfonimide derivatives are observed at higher wave number region (about $+30~\rm cm^{-1}$) than those of corresponding arylsulfonamide derivatives.^{12–15)}

The ν C-N mode has been identified in a study of N-methylmethanesulfonamides (1076—1062 cm⁻¹), ¹⁶⁾ and in N-methyl-p-toluenesulfonamide (1062 cm⁻¹), ¹⁴⁾ and it has been established

¹²⁾ P. Radmacher, W. Wiegrabe, and W. Lutthe, Chem. Ber., 100, 1213 (1967).

¹³⁾ M. Goldstein, M.A. Russell, and H.A. Willis, Spectrochim. Acta, 25A, 1295 (1969).

¹⁴⁾ D. Hadzi and M. Skrbijak, J. Chem. Soc., 1957, 847.

¹⁵⁾ E.A. Robinson, Can. J. Chem., 39, 247 (1961).

¹⁶⁾ M.J. Buttler and D.C. McKean, Spectrochim. Acta, 21, 465 (1965).

by Goldstein¹³⁾ that N-alkyl-arylsulfonamide show C-N stretching bands at 1074—1083 cm⁻¹. In the present work, a medium band at 1060±2 cm⁻¹ observed for bisarylsulfonimides is assigned to the C-N stretching vibration.

A particularly noticeable feature in all the spectra of the bisarylsulfonimides is a medium band at 1080±1 cm⁻¹ having a shoulder at 1093 cm⁻¹. These bands can satisfactorily be assigned to a mixed mode of the C-S stretching and ring skeletal vibrations. The shift of the characteristic band near 1090 cm⁻¹ of benzenesulfonyl com-

Fig. 5. Infrared Spectra of Bisbenzenesulfonimide d_{10} (——) and its N-Deuterated Compound (-----)

pounds on the ring deuteration has given an evidence of the assignment of this band to a mixed mode of the α CCC and ν C-X. Figure 5 shows the infrared spectra of bisdeuterobenzenesulfonimide and its N-deuterated compound. The 1080 cm^{-1} band of BBSI shifts to 1053 cm^{-1} on ring deuteration in this work. The effect of ring deuteration on ν_{as} SO₂, ν_{s} SO₂ and benzene ring frequencies of BBSI are quite similar to the case of benzene- and deuterobenzene-sulfonamide.⁵⁾

Acknowledgement The authors wish to express their sincere gratitude to Dr. Katsunosuke Machida of Kyoto University for many helpful discussions and suggestions during this work.