Chem. Pharm. Bull. 22(2) 459-464 (1974)

UDC 547.743.1'592.2.04:547.594.3.057

Stereochemical Studies. XXIX.¹⁾ Asymmetric Synthesis of 2-Alkylcyclo-hexanones *via* optically Active Lithioenamines²⁾

Mutsuyoshi Kitamoto, Kunio Hiroi, Shiro Terashima, and Shun-ichi Yamada

Faculty of Pharmaceutical Sciences, University of Tokyo3)

(Received June 27, 1973)

Recently, we undertook fundamental studies on the asymmetric alkylations of cyclo-hexanone 2-substituted pyrrolidine enamines (A: R₁=COOMe, COOEt and COOt-Bu), and explored an unique versatility of enamine alkylations in the field of asymmetric synthesis.⁴⁾

However, as it could be expected from the original studies on enamine alkylation conducted by Stork, et al.,⁵⁾ we also observed that the asymmetric alkylations of A ($R_1 \neq H$) afforded desired optically active 2-alkylcyclohexanones (B: $R_2 = \alpha$ -alkyl) (at most 59% optical yield) in moderate yields only when electrophilic olefins, i.e. acrylonitrile and methyl acrylate, or strongly electrophilic alkyl halides, i.e. allyl bromide and ethyl bromoacetate, were employed as an electrophile.⁶⁾

In order to circumvent these difficulties in the enamine reaction, Stork, et al.^{5c)} developed a new method in which the metalloenamines (C: $R_3=t$ -Bu, M=MgBr) prepared with the imine (D) ($R_3=t$ -Bu) and Grignard reagent, could be easily alkylated with primary and secondary alkyl halide to afford 2-alkylcyclohexanone (B: $R_2=n$ -Bu, etc.). This novel method was subsequently applied by Horeau, et al.⁷⁾ to the asymmetric synthesis of S(+)-2-methylcyclo-

¹⁾ Part XXVIII: T. Sone, K. Hiroi, and S. Yamada, Chem. Pharm. Bull. (Tokyo), 21, 2331 (1973).

²⁾ A part of this report was presented at the 92nd Annual Meeting of the Pharmaceutical Society of Japan, Osaka, April, 1972.

³⁾ Location: Hongo, Bunkyo-ku, Tokyo, 113, Japan.

⁴⁾ a) S. Yamada, K. Hiroi, and K. Achiwa, Tetrahedron Letters, 1969, 4233; b) K. Hiroi, K. Achiwa, and S. Yamada, Chem. Pharm. Bull. (Tokyo), 20, 246 (1972); c) K. Hiroi and S. Yamada, Chem. Pharm. Bull. (Tokyo), 21, 47 (1973).

a) G. Stork, R. Terrell, and J. Szmuszkovicz, J. Am. Chem. Soc., 76, 2029 (1954);
 b) G. Stork, A. Brizzolara, H. Landesman, J. Szmuszkovicz, and R. Terrell, J. Am. Chem. Soc., 85, 207 (1963);
 c) G. Stork and S.R. Dowd, J. Am. Chem. Soc., 85, 2178 (1963).

⁶⁾ Although $A(R_1=H)$ could be successfully alkylated with methyl iodide or *n*-butyl iodide according to ref. 5b), similar treatment of $A(R_1 = H)$ gave no trace amount of the desired $B(R_2 = \alpha$ -alkyl) (S. Yamada and K. Hiroi, unpublished results).

⁷⁾ D. Mea-Jacheet and A. Horeau, Bull. Soc. Chim. France, 1968, 4571.

hexanone (B: $R_2=\beta$ -Me) by using metalloenamine (C: R_3 =isobornyl, M=MgBr) and methyl iodide.

In this reaction, $C(R_3=isobornyl)$, M=MgBr) was derived from cyclohexanone and isobornylamine by way of the imine (D: $R_3=isobornyl$), and $B(R_2=\beta-Me)$ having 72% optical integrity, could be successfully obtained in 58% yield.^{7,8)} However, it was also stated by Horeau, et al.⁷⁾ that the same asymmetric reaction attempted with S(+)-amphetamine or R(+)- α -phenethylamine in place of isobornylamine afforded $B(R_2=Me)$ having less than 10% optical activity.

Since it was recently found⁹⁾ that the metallation of the imine (D) could be also accomplished by treating D with lithium diisopropylamide, we attempted the asymmetric alkylation of C(M=Li) which were obtainable from cyclohexanone and optically active primary amines (E) by way of D, as was done by Horeau, et al.⁷⁾

This report concerns with the preliminary results for these attempts, which were obtained using $S(-)-\alpha$ -phenethylamine (S(-)-1a), and S(+)-sec-butylamine (S(+)-1b) as an optically active primary amine counterpart.

O

$$R_5$$

 $R(-)-5a: R_5 = Me$
 $R(-)-5b: R_5 = Et$
 $R(-)-5c: R_5 = n-C_3H_7$
 $S(-)-5d: R_5 = iso-C_3H_7$
 $S(-)-5e: R_5 = CH_2 = CH-CH_2 - CH_3$

Chart 1

As shown in Chart 1, condensation of S(-)-la, $\alpha_D^{20} - 3.79^\circ$ (l=0.1, neat), $[\alpha]_D^{20} - 39.4^\circ$ (benzene), 100% optically pure¹⁰) and cyclohexanone in benzene under an azeotropic condition afforded the imine (S(-)-2a), $\alpha_D^{20} - 5.44^\circ$ (l=0.1, neat), in 90% yield. No racemization during the preparation of S(-)-2a from S(-)-la, was clearly established by reconverting S(-)-2a to S(-)-1a, $[\alpha]_D^{20} - 39.6^\circ$ (benzene) on treatment with water. S(-)-2a was converted to the lithioenamine (3a), in situ, by adding to a tetrahydrofuran solution of lithium diisopropylamide (1.2 eq.)⁹⁾ below -20° . Treatment of 3a with methyl iodide (1.3 eq.) at $-60 - 50^\circ$ for 0.75 hr gave the alkylated imine (4a), which without isolation, was hydrolyzed after the reaction was neutralized (pH=7.0) with 1n hydrochloric acid, to give

⁸⁾ J.D. Morrison and H.S. Mosher, "Asymmetric Organic Reactions," Prentice-Hall Inc., New Jersey, 1971, p. 286.

a) D.A. Evans, J. Am. Chem. Soc., 92, 7593 (1970);
 b) G. Stork and J. Benaim, J. Am. Chem. Soc., 93, 5938 (1971).

¹⁰⁾ a) S. Terashima, M. Wagatsuma, and S. Yamada, Chem. Pharm. Bull. (Tokyo), 18, 1137 (1970); b) S. Terashima, K. Takashima, T. Sato, and S. Yamada, Chem. Pharm. Bull. (Tokyo), 21, 1135 (1973).

Asymmetric Synthesis of 2-Alkylcyclohexanone (5) Using Various Alkyl Halides^ ω) TABLE I.

Absolute confign.	R	R	R	R	S	Š
Optical yield (%)	261)	(b)	32v)	(49)	270	33^{ϕ}
$[a]_{\mathfrak{d}}$ (c, t, MeOH)	$\frac{-3.7^{\circ}}{(1.534, 25)}$	-16.0° (2.059, 20)	-10.0° (2.610, 20)	-1.7° (4.462, 20)	-20.2° (1.566, 23)	-4.5° (2.219, 20)
bp °C (mmHg)		-		130 (115)	124 - 125 (95)	110 (55)
Isolated yield $(\%)$ based on 2^{a}	42 (A)	44 (A and B)	48 (A)	47 (A and B)	26 (A and B)	51 (A)
$ m R_{ m s}$	Me	Et	n -C $_3$ H $_7$	n -C $_3$ H $_7$	$iso-C_3H_7$	$\mathrm{CH_2}\mathrm{=CH-CH_2}$
Compds	5a	5b	2 c	5c	2q	5e
Alkyl nalides used [®]	MeL	EtI	$n ext{-}\mathrm{C}_3\mathrm{H}_7\mathrm{I}$	n -C $_3$ H $_7$ I	$iso-C_3H_7I$	$\mathrm{CH_2}\mathrm{=CH-CH_2Br}$
	100	100	100	84	100	100
R4	C,Hs	C_6H_5	$C_{f 6}H_{f 5}$	Ēŧ	C_6H_5	C_6H_5
Compds	S(-)-2a	S(-)-2a	S(-)-2a	S(+)-2 b	S(-)-2a	S(-)-2a
Run		2	က	4	ည	9
	Compds R_4 purity R_5 Compds R_6 Compds R_6 R_6 R_6 R_7 $(mmHg)$ $(c, t, MeOH)$	Compds R_4 purity used $Optical^{bh}$ used $Optical^{bh}$ $Optical^{bh}$ $Optical$	Compds R_4 purity used $Optical^{b}$ used $Optical^{b}$ $Optical^{b}$ used $Optical^{b}$ $O(\sqrt{s})$ $Optical^{b}$ $O(\sqrt{s})$ $Optical^{b}$ O	Compds R_4 purity used $Optical^{bh}$ used	Compds R_4 purity $\frac{\text{Optical}^{\text{b}}}{(\%)}$ $\text{Opti$	Compds R_4 Depictable burity Compds R_5 R_5 Isolated $(\%)$ based on 2^a methy R_5 R_5 based on 2^a methy R_5 based on 2^a methy R_5 compds

Optical purity of the starting amines was used since no racemization during preparation of S(-)-2a from S(-)-1a was clearly established. a) All alkylations were carried out under the same reaction condition as that for run 1 (see Experimental).

b) Optical purity of the starting amines was used since no racemization during preparation of S(-)-2a from S(-)-1a was clearly established.

c) 1.3 eq. of alkyl halides were used.

d) After purified by fractional distillation (A) and/or by silica gel column chromatography (Solvent: petr. ether: ether=4:1) (B). All samples are completely homogeneous by gasliquid chromatography (15% SE-30 on Diasolid L, 2.25 m, 60°) and/or thin-layer chromatography (TLC) analysis (silica gel petr. ether:ether=4:1).

e) Determined based on the octant rule. For ORD curves of these compounds, see Experimental.

f) (+)-5a showing [a] b +14° (c=0.23, MeOH) was assumed to be 100% optically pure (see ref. 11).

g) not determined

h) (-)-5c showing [a]²⁰ -27.9° (MeOH) was assumed to be 100% optically pure (see ref. 6b).

i) (+)-5d showing [a] (MeOH): +2126° (312 mµ), and amplitude 43 in the ORD measurement, was assumed to be 100% optically pure (see ref. 6b).

h) (-)5c showing [ω]²⁰ -27.9° (MeOH) was assumed to be 100% optically pure (see ref. 6b).
i) (+)-5d showing [ω] (MeOH): +2126° (312 mμ), -2126° (272 mμ), and amplitude 43 in the ORD measurement, was assumed to be 100% optically pure (see C. Djerassi, P.A. Haat and C. Beard, J. Am. Chem. Soc., 86, 85 (1964)). (-)-5d obtained here showed [ω] (c=1.566, MeOH): -575° (310 mμ), +575° (270 mμ), and amplitude -11.5°.
j) (-)-5e showing [ω]^{27.5} -13.7° (c=2.046, MeOH) was assumed to be 100% optically pure (see ref. 6b).

(—)-2-methylcyclohexanone ((—)-5a), $[\alpha]_D^{25}$ —3.7° (methanol), in 42% yield based on S(-)-2a. The absolute configuration of (—)-5a has been already established to be R-configuration by the studies on optical rotatory dispersion (ORD) undertaken by Djerassi, et al.¹¹⁾ Optical yield of R(-)-5a for this alkylation was elucidated to be 26%, based on the assumption that S(+)-5a reported to have $[\alpha]$ +14° (methanol)¹²⁾ was optically pure.

Similarly, as shown in Table I, alkylations of 3a with ethyl iodide, n-propyl iodide, isopropyl iodide, and allyl bromide afforded optically active 2-alkylcyclohexanones (R(-)-5b,

R(-)-5c, S(-)-5d, and S(-)-5e). The absolute configurations of these ketones were determined by measuring their ORD curves which showed a negative Cotton effect around $285-290 \text{ m}\mu$ in methanol as did R(-)-5a.¹³ Optical yields for these asymmetric alkylations could be calculated by the assumption described in the foot notes of Table I.¹⁴ Result obtained with S(+)-1b, α_D^{20} +0.459° (l=0.1, neat), 84% optically pure, ¹⁵ and n-propyl iodide was also shown in the Table.

From results summarized in the Table, it is evident that absolute configuration of the formed $\mathbf{5}$ can be cleanly correlated to that of $\mathbf{1}$ employed. That is, optically active amines $\mathbf{1}$ having S-configuration generally afford $\mathbf{5}$ possessing α -alkyl substituent even though sign of absolute configuration of $\mathbf{5}$ was variable.

Many possible explanations might be anticipated for this asymmetric alkylation. However, as shown in Chart 2, four conformers, I, II, III, and IV could be drawn for 3a by assuming the coplanality in $N-C_1-C_2$ bond system due to stereoelectronic reason, $^{4b)}$ and the

cisoid coplanarity in Li-N- C_{α} - $C_{6}H_{5}$ bond system because of steric factor. Arrows in conformers I, II, III, and IV represent the direction of prefered attack by alkyl halide, which

¹¹⁾ C. Beard, C. Djerassi, T. Elliott, and R.C.C. Tao, J. Am. Chem. Soc., 84, 874 (1962).

¹²⁾ C. Beard, C. Djerassi, J. Sicher, F. Šipoš, and M. Tichy, Tetrahedron, 19, 919 (1963).

¹³⁾ See also ref. 4b).

¹⁴⁾ Optical yield of R (—)-5b could not be determined because of lack of the optical rotation for optically pure sample.

a) P. Bruck, I.N. Denton, and A.H. Labberton, J. Chem. Soc., 1956, 921;
 b) L. Verbit and P.J. Heffron, J. Org. Chem., 32, 3199 (1967).

¹⁶⁾ Transoid coplanality such as i or ii in Li-N-C α -C $_6$ H $_5$ bond system might be excluded due to the steric interaction between phenyl group and C $_6$ or C $_2$ -hydrogens.

is expected by comparing the steric bulkiness of C_{α} -methyl group and C_{α} -hydrogen. Considering the absolute configuration of S(-)-la and the formed 5, preferred alkylation in the conformers I and/or II should be responsible for this novel asymmetric synthesis.

Further exploitation of this asymmetric reaction to more complex system is under progress.

Experimental¹⁷)

Preparations of Schiff Bases (S(-)-2a, and S(+)-2b)—S(-)-2a: A benzene solution (30 ml) of cyclohexanone (4.66 g, 0.0384 mole) and S(-)-1a ($\alpha_D^{20}-3.79^\circ$ (l=0.1, neat), $[\alpha]_D^{20}-39.4^\circ$ (c=5.104, benzene), 100% optically pure¹⁰) (3.78 g, 0.0384 mole) was refluxed under an azeotropic condition for 3.5 hr, then was evaporated in vacuo to give an oily residue. The residue was distilled under reduced pressure to afford pure S(-)-2a (6.93 g, 90%) as a colorless oil, bp 119—120° (3 mmHg), $\alpha_D^{20}-5.44^\circ$ (l=0.1, neat). IR v_{\max}^{film} cm⁻¹: 1655 ($v_{\text{C=N}}$). NMR (in CDCl₃): 1.3—1.85 (9H, m, other protons), 2.3 (4H, m, CH₂-C=N), 4.68 (1H, q, J=6.7 cps, CH-N), 7.1—7.4 (5H, m, aromatic protons). This oil was immediately used for the next step. Treatment of S(-)-2a thus prepared, with water followed by extractive isolation and purification by fractional distillation afforded S(-)-1a, $[\alpha]_D^{20}-39.6^\circ$ (c=2.600, benzene), which was identified with the starting S(-)-1a by comparing their IR spectra.

S(+)-2b: A mixture of cyclohexanone (1.47 g, 0.015 mole), S(+)-1c ($\alpha_D^{\infty}+0.459^{\circ}$ (l=0.1, neat), 84% optically pure¹⁵) (1.10 g, 0.015 mole) and molecular sieves 4A (ca. 2 g) in ether (20 ml) was stirred at room temperature for 12 hr.¹⁸ Filtration and evaporation in vacuo gave an oily residue, which was submitted for fractional distillation to give pure S(+)-2b (1.67 g, 72%) as a colorless oil, bp 114—117° (91 mmHg), $\alpha_D^{\infty}+3.60^{\circ}$ (l=0.1, neat). IR r_{\max}^{flim} cm⁻¹: 1660 ($r_{\text{C=N}}$). NMR (in CDCl₃): 0.80 (3H, t, J=7.0 cps, CH₃CH₂), 1.05 (3H, d, J=7.6 cps, CH₃CH-), 1.30—2.00 (8H, m, other protons), 2.30 (4H, m, CH₂-C=N), 3.42 (1H, m, CH₃-CH-). This oil was directly used for the next step.

Alkylations of Schiff Bases with Alkyl Halides—Reaction procedure for the alkylation of S(-)-2awith methyl iodide (Table I, run 1) was described as an example. Other alkylations were conducted under the same condition as that described here. n-Butyl lithium (1.43 m solution in hexane) (8.40 ml, 0.012 mole) was added to a tetrahydrofuran solution (8 ml) of di-isopropylamine (1.21 g, 0.012 mole) with stirring under nitrogen atmosphere below -20° . The whole was stirred at the same temperature for 0.16 hr to afford a solution of lithium di-isopropylamide, 9) to which was added a tetrahydrofuran solution (3 ml) of S(-)-2a(2.10 g, 0.010 mole). After stirring for 1.0 hr in an ice bath, the reaction mixture was cooled to -60° in a dry ice-acetone bath. Then, a tetrahydrofuran solution (3 ml) of methyl iodide (1.84 g, 0.013 mole) was gradually added to a cooled solution of the lithioenamine (4a) over 0.25 hr at $ca. -60^{\circ}$. After stirred at -50° — -60° for 0.75 hr, the whole reaction mixture was neutralized to pH=7.0 with 1n hydrochloric acid, then was stirred at room temperature for 0.25 hr. The aqueous solution was diluted with benzene (150 ml), and was successively washed with 1n hydrochloric acid (2 ml × 2), 5% Na₂S₂O₃, satd. NaHCO₃, and satd. NaCl solution. After drying over anhyd. Na₂SO₄, filtration and evaporation in vacuo gave an oily residue, which was distilled under reduced pressure to give pure R(-)-5a (0.47 g, 42% based on S(-)-2a, bp 109° (150 mmHg). $\alpha_D^{20} - 0.407^{\circ}$ (l = 0.1, neat) $[\alpha]_D^{25} - 3.7^{\circ}$ (c = 1.534, MeOH). IR v_{max}^{film} cm⁻¹: 1715 ($v_{C=0}$). NMR (in CDCl₃): 1.00 (3H, d, J = 7.0 cps, CH₃), 1.10—2.60 (9H, m, other protons). ORD (c = 1.534, MeOH) [α]²⁵ $(m\mu): -2.3^{\circ} (700), -3.7^{\circ} (589), -4.7^{\circ} (550). -6.5^{\circ} (500), -10.7^{\circ} (450), -18.8^{\circ} (400), -49.4^{\circ} (350), -227^{\circ}$ (304) (trough), 0° (285), $+228^{\circ}$ (265) (peak).

Semicarbazone¹⁹: mp 195° (recrystallized from ethanol). Anal. Calcd. for $C_8H_{15}ON_3$: C, 56.78; H, 8.94; N, 24.83. Found: C, 56.71; H, 8.93; N, 24.85.

Physical Data of Optical Active 2-Alkylcyclohexanones (5), Other Than Those Shown in the Table I—R(-)-5b: IR v_{\max}^{flim} cm⁻¹: 1715 ($v_{\text{C=0}}$). NMR (in CDCl₃): 0.85 (3H, t, J=7.0 cps, CH₃CH₂), 1.1—2.5 (11H, m, other protons). ORD (c=2.059, MeOH) [α]²⁰(m μ): -10.7° (700), -16.0° (589), -19.4° (550), -27.2° (500), -41.8° (450), -72.4° (400), -203° (350), -816° (304) (trough), 0° (288), +893° (266) (peak). 2,4-

¹⁷⁾ All melting and boiling points are uncorrected. IR spectra measurements were performed with a Spectrometer, Model IR-S, Japan Spectroscopic Co., Ltd. NMR spectra were measured with a Spectrometer Model JNM-TS-100 (100 Mc), Japan Electron Optics Lab., and data are reported in parts per million (ppm) downfield from internal tetramethylsilane. Following abbreviations are used: singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m). Optical rotations were determined with a Yanaco OR-50 Automatic Polarimeter, and ORD curve measurements were carried out with a Spectrometer, Model ORD/UV-5, Japan Spectroscopic Co., Ltd. Gas chromatographic analyses were made with a Yanagimoto Gas chromatograph, Model GCG-550T.

¹⁸⁾ T. Taguchi and F.H. Westheimer, J. Org. Chem., 36, 1570 (1971).

¹⁹⁾ Measurement of optical rotation was not attempted for this sample.

Dinitrophenylhydrazone¹⁹: mp 162° (recrystallized from EtOH). Anal. Calcd. for $C_{14}H_{18}O_4N_4$: C, 54.89; H, 5.92; N, 18.29. Found: C, 54.90; H, 6.05; N, 18.06.

R(-)-5c: IR v_{\max}^{film} cm⁻¹: 1710 ($v_{\text{C=0}}$). NMR (in CDCl₃): 0.90 (3H, t, J=6.0 cps, CH₃CH₂CH₂), 1.0—2.6 (13H, m, other protons). IR and NMR spectra of R(-)-5c prepared with S(-)-2a and S(+)-2b were identical when measured in the same states. ORD (c=2.610, MeOH) [α]²⁰(m μ)²⁰: -7.3° (700), -10.2° (589), -11.9° (550), -16.9° (500), -24.6° (450), -41.4° (400), -107° (350), -376° (305) (trough), 0° (289), $+346^{\circ}$ (274) (peak). Semicarbazone¹⁹: mp 130° (recrystallized from EtOH). Anal. Calcd. for $C_{10}H_{19}O_{2}N_{3}$: C, 60.88; H, 9.71; N, 21.30. Found: C, 60.80; H, 9.61: N, 21.48.

S(-)-5d: IR $\nu_{\rm max}^{\rm film}$ cm⁻¹: 1710 ($\nu_{\rm C=0}$). NMR (in CDCl₃): 0.90 (6H, d, J=7.0 cps, (CH₃)₂CH), 1.1—2.5 (10H, m, other protons). ORD (c=1.566, MeOH) [α]²³(m μ): -14.0° (700), -21.7° (589), -27.4° (550), -35.0° (500), -47.8° (450), -79.8° (400), -179° (350), -575° (310) (trough), 0° (290), +575° (270) (peak). Semicarbazone¹⁹): mp 185° (recrystallized from EtOH). *Anal.* Calcd. for C₁₀H₁₉ON₃: C, 60.88; H, 9.71; N, 21.30. Found: C, 60.89; H, 9.70; N, 21.54.

S(-)-5e: IR ν_{\max}^{film} cm⁻¹: 1716 ($\nu_{\text{C=0}}$), 1640 ($\nu_{\text{C=c}}$). NMR (in CDCl₃): 1.10—2.80 (11H, m, other protons), 4.91 (1H, d, J=1 cps HC=C $\frac{H}{H}$), 5.05 (1H, d, J=6 cps, HC=C $\frac{H}{H}$), 5.5—6.0 (1H, m, -CH=CH₂). ORD (c=2.219, MeOH) [α]²⁰(m μ): -3.6° (700), -4.5° (589), -6.3° (550), -9.0° (500), -14.9° (450), -27.0° (400), -76.5° (350), -302 (306) (trough), 0° (288), $+306^{\circ}$ (264) (peak). Semicarbazone¹⁹): mp 172° (recrystallized from EtOH). Anal. Calcd. for $C_{10}H_{17}ON_3$: C, 61.51; H, 8.78; N, 21.52. Found: C, 61.53; H, 8.63; N, 21.34.

Acknowledgement The authors are grateful to the members of the Central Analysis Room of this Faculty for elemental analyses and spectral data.

20) This ORD curve was measured for R(-)-5c prepared with S(-)-2a.

Chem. Pharm. Bull. 22(2) 464—467 (1974)

UDC 547.92.04:581.192

Conversion of Digitoxigenin to Uzarigenin

Masashi Okada and Takako Anjyo

Tokyo Biochemical Research Institute1)

(Received July 2, 1973)

A great number of cardenolide aglycones have been found in nature, the majority of which belong to cis- or trans-A/B steroids.²⁾ There are several instances where both type cardenolides isomeric only at the C-5 position are known. Between 5β - and 5α -cardenolide, however, the former far predominates over the latter. It is to be desired, therefore, to devise a simple, convenient method of converting 5β -cardenolide to 5α -cardenolide. This paper describes the conversion of digitoxigenin (I) to uzarigenin (IIa), which represent 5β - and 5α -cardenolide respectively.

Previously³⁾ it was reported that 3-hydroxy- 5β -steroids undergo epimerization at the C-5 position to provide 3-keto- 5α -compounds on heating under reflux with freshly prepared Raney nickel in a solvent such as p-cymene. This procedure has been successfully applied to 5β -cholanoates for the preparation of 5α -cholanoates.⁴⁻⁷⁾ The attempt⁸⁾ to prepare IIa,

¹⁾ Location: Takada 3-chome, Toshima-ku, Tokyo.

²⁾ T. Reichstein, Naturwiss., 54, 53 (1967).

³⁾ D. Chakravarti, R.N. Chakravarti, and M.N. Mitra, Nature, 193, 1071 (1962).

⁴⁾ H. Danielsson, A. Kallner, and J. Sjövall, J. Biol. Chem., 238, 3846 (1963).

⁵⁾ S.A. Ziller, Jr., M.N. Mitra, and W.H. Elliott, Chem. Ind. (London), 24, 999 (1967).

⁶⁾ I.G. Anderson and G.A.D. Haslewood, Biochem. J., 93, 34 (1964).

⁷⁾ M.N. Mitra and W.H. Elliott, J. Org. Chem., 33, 175 (1968).

⁸⁾ M. Okada and Y. Seki, unpublished result.