The above data, especially the detection of phenoxy radicals provides the first direct evidence for the presence of the radical mechanism in the photo-rearrangement of allyl phenyl ethers, though in our experimental conditions allyl radicals or 2,5-cyclohexadienones could not be observed.

Faculty of Pharmaceutical Sciences Hokkaido University Kita-12, Nishi-6, Kita-ku, Sapporo

Received September 18, 1973

KEIJI HEMMI SHUNJI NARUTO KEN-ICHI HIRAO OSAMU YONEMITSU

Chem. Pharm. Bull. 22(3) 719-721 (1974)

UDC 547.853.3.04:547.963.32.057

Direct Synthesis of 2,5'-Anhydro Pyrimidine Nucleosides

Anhydronucleosides are useful intermediates for the chemical transformation of nucleosides and nucleotides. Although a large number of pyrimidine anhydronucleosides has been prepared,¹⁾ the syntheses of 2,5'-anhydro pyrimidine nucleosides developed so far seem to be rather complicated. Recently Wada and Mitsunobu reported²⁾ that the treatment of 2',3'-O-isopropylideneuridine with triphenylphosphine (I) and diethyl azodicarboxylate (II)³⁾ in tetrahydrofuran afforded 2',3'-O-isopropylidene-2,5'-anhydrouridine in an excellent yield. According to them,⁴⁾ however, under the same conditions uridine was not transformed into 2,5'-anhydrouridine but into a 1:1 adduct of uridine with I. The authors happened to find that (O)-2,5'-, (S)-2,5'- and (N)-2,5'-anhydro pyrimidine nucleosides (IVa, IVb and VI) could be synthesized directly from uridine (IIIa), 2-thiouridine (IIIb),⁵⁾ and isocytidine (V)⁶⁾ by treating them with I and II and adding a little amount of water to the reaction mixture.

Uridine (IIIa) was treated with 1.8 equivalents of triphenylphosphine (I) and diethyl azodicarboxylate (II) in dioxane at room temperature for 3 hours, followed by addition of 0.1 volume of water to the reaction mixture. The mixture was then heated under reflux for 30 minutes. After the work-up the product, 2,5'-anhydrouridine (IVa), was obtained in 67% yield: mp 213—214° (decomp.) (from aq. EtOH): Anal. Calcd. for $C_9H_{10}O_5N_2$: C, 47.81; H, 4.42; N, 12.38. Found: C, 47.68; H, 4.28; N, 12.35. It was positive to the periodate-

¹⁾ J.J. Fox, Pure and Applied Chemistry, 18, 223 (1969); B. Capon, Chem. Rev., 69, 407 (1969).

²⁾ M. Wada and O. Mitsunobu, Tetrahedron Letters, 1972, 1279.

³⁾ J.C. Kauer, Organic Syntheses, Colletive Vol. IV, 411.

⁴⁾ Y. Fujisawa and O. Mitsunobu, Abstracts of Papers, the 28th Spring Meeting of Chemical Society of Japan, Tokyo, April, 1973, Vol. III, p. 1868.

⁵⁾ a) D.M. Brown, D.B. Parihar, A. Todd and S. Varadarajan, J. Chem. Soc., 1958, 3028; b) T. Ueda and S. Shibuya, Chem. Pharm. Bull. (Tokyo), 18, 1076 (1970).

⁶⁾ D.M. Brown, A.R. Todd and S. Varadarajan, J. Chem. Soc., 1957, 868.

benzidine spray test,⁷⁾ and its ultraviolet (UV) spectrum ($\lambda_{\text{max}}^{\text{HoO}}$ 240 nm, ε 12000) was similar to that of 2',3'-O-isopropylidene-2,5'-anhydrouridine.^{2,6)} Ammonolysis of IVa with methanolic ammonia afforded isocytidine,⁶⁾ and treatment of IVa with liquid hydrogen sulfide^{5b)} in aqueous pyridine afforded 2-thiouridine.⁵⁾ Nuclear magnetic resonance (NMR) spectrum of IVa was in good accordance with those expected for the structure IVa (Table I): the signals were characteristic of the anomeric 1'- and geminal 5'-protons of anhydronucleosides and similar cyclic compounds.^{5b,8)}

	Compound IVa	Compound IVb	Compound VI
C ₁ '-H (ppm)	5.57(s)	5.56(d)	5.46(s)
$J_1, (Hz)$	` ,	1.5	`
C ₅ '-Ha (ppm)	4.13(q)	3.04(q)	3.10(q)
J_4' , a (Hz)	1.2	3.0	2.0
C ₅ '-Hb (ppm)	4.50(q)	3.40(q)	3.29(q)
J_{4}' , b (Hz)	1.5	2.8	2.5
$J_{a,b}$ (Hz)	13.0	14.0	13.5

Table I. NMR Chemical Shift of 2,5'-Anhydronucleosides

NMR spectra were taken on a Hitachi R-20B recording spectrometer (60 M Hz) in d-DMSO-D₂O. TMS was employed as an internal standard.

Similarly, the treatment of 2-thiouridine (IIIb) and isocytidine (V) with I, II and water afforded the corresponding (S)-2,5'-, and (N)-2,5'-anhydronucleosides. The product, (S)-2,5'-anhydro-1-(5-deoxy- β -D-ribofuranosyl)-2-thiouracil (IVb), was obtained in 78% yield: mp 164—165° (decomp.) (from aq. EtOH): Anal. Calcd. for $C_9H_{10}O_4N_2S$: C, 44.63; H, 4.16; N, 11,57. Found: C, 44.52; H, 3.96; N, 11.44. UV spectrum (λ_{max}^{Ho} 244 nm, ε 17000) was closely similar to that of its 2',3'-O-isopropylidene derivative. From the compound (V),(N)-2,5'-anhydro-1-(5-deoxy- β -D-ribofuranosyl)-isocytosine (VI)9) was obtained in 76% yield: mp 222—224° (decomp.): Anal. Calcd. for $C_9H_{11}O_4N_3$: C, 48.00; H, 4.92; N, 18.66. Found: C, 47.99; H, 4.89; N, 18.89. UV spectra (λ_{max}^{Ho} 221 nm, ε 25000; λ_{max}^{Ho} 258 nm, ε 6200) were closely similar to those of N²-methylisocytidine. Compounds IVb and VI were positive

⁷⁾ M. Visconti, D. Hoch and P. Karrer, Helv. Chim. Acta, 38, 642 (1955).

V. Skaric and M. Hohnjec, J.C.S. Chem. Comm., 1973, 495; K. Isono and T. Azuma, Chem. Pharm. Bull. (Tokyo), 20, 193 (1972); B.A. Otter, E.A. Falco and J.J. Fox, J. Org. Chem., 34, 1390 (1969); D. Lipkin, C.T. Cori and M. Sano, Tetrahedron Letters, 1968, 5993; J. Zemlicka and F. Sorm, Collection Czech. Chem. Commun., 32, 576 (1967).

⁹⁾ According to recent private communication, the compound VI was independently prepared by T. Ueda and J. Yamashita, Faculty of Pharmaceutical Sciences, Hokkaido University.

¹⁰⁾ The N²-methylisocytidine was prepared from 2,5'-anhydrouridine (IVa) with methylamine by a method that of the ammonolysis.

to the periodate-benzidine test.⁷⁾ Their NMR spectra were characteristic for the structures IVb and VI (Table I). In addition, 2',3'-O-isopropylidene derivatives of (S)-2,5', and (N)-2,5'-anhydronucleosides (IVb and VI) were also prepared from 2',3'-O-isopropylidene derivatives of IIIb and V in a similar way.

So far as is known, the work reported here is the first specifically designed to synthesize 2,5'-anhydro pyrimidine nucleosides directly from pyrimidine nucleosides. The studies of cleavage reaction of (S)-2,5'-anhydronucleosides are being undertaken.

Research Laboratory, Yamasa Shoyu Co., Ltd. Cho-shi, Chiba Susumu Shibuya Akira Kuninaka Hiroshi Yoshino

Received October 12, 1973

Chem. Pharm. Bull. 22(3) 721—723 (1974)

UDC 547.466.1.057

Syntheses and Properties of Formyl Sarcosine¹-LH-RH and N-Methyl-L-pGlu¹-LH-RH¹⁾

In the course of our investigations on the structure-activity relationship of luteinizing hormone-releasing hormone (LH-RH), pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH₂, acylated Gly¹-LH-RH such as formyl Gly¹-LH-RH was revealed to retain some biological activity in spite of the lack of the N-terminal pyrrolidone ring structure.²⁾ Time course study based on the serum level of luteinizing hormone (LH) after the administration of formyl Gly¹-LH-RH in rats suggested shorter life time of this compound than that of LH-RH in animal body (Fig. 1). In an attempt to suppress the rapid inactivation, we synthesized formyl Sar¹-LH-RH, in which methyl group was introduced to the nitrogen atom of formyl glycine part, and found a marked increase in LH-releasing activity (Table I). A prolonged high LH-level in serum was also observed distinctly (Fig. 1). This result prompted us to synthesize N-methyl-L-pGlu¹-LH-RH, and its LH-releasing activity remained at a half level of the natural LH-RH.

These analogs, formyl Sar¹-LH-RH and N-methyl-L-pGlu¹-LH-RH, were synthesized as follows. The protected nonapeptide amide, Z-His-Trp-Ser(Bu¹)-Tyr(Bu¹)-Gly-Leu-Arg(Tos)-Pro-Gly-NH₂ (I), synthesized according to the same procedure described in our previous communication,²) was decarbobenzoxylated by hydrogenolysis and coupled with formyl sarcosine p-nitrophenyl ester to give the protected decapeptide amide (II) [mp 165—167°, [α]²⁰ -33.3° (c=0.47 in MeOH), Anal. Calcd. for C₆₉H₉₇O₁₅N₁₇S·1.5H₂O: C, 56.62; H, 6.89; N, 16.27. Found: C, 56.90; H, 6.97; N, 15.58]. Deprotection of II with anhydrous hydrogen fluoride,³⁰ followed by purification with column partition chromatography on Sephadex G-25

¹⁾ The amino acid residues (except glycine and sarcosine) mentioned in this communication are of the L-configuration. The abbreviations used to denote amino acids, peptides and peptide derivatives are those recomended by IUPAC-IUB Commission on Biochemical Nomenclature, *Biochemistry*, 5, 2485 (1966); 6, 362 (1967).

²⁾ Y. Okada, K. Kitamura, Y. Baba, A. Arimura and A.V. Schally, Biochem. Biophys. Res. Commun., 53, 1180 (1973).

³⁾ S. Sakakibara, Y. Shimonishi, Y. Kishida, M. Okada and H. Sugihara, Bull. Chem. Soc. Japan, 40, 2164 (1967).