Chem. Pharm. Bull. 24(10)2494—2499(1976)

UDC 547.415.1.04:547.333.3.04

Reaction of N-(Butoxymethyl)dialkylamines and N,N'-Methylenebis-(dialkylamine)s with N-(1-Cyclohexen-1-yl)dialkylamines

OSAMU MATSUDA and MINORU SEKIYA

Shizuoka College of Pharmacy1)

(Received January 31, 1976)

We have now found that reactions of N-dialkylaminomethyl-dialkylamines and -imide, and O-dialkylaminomethyl ethers with N-(1-cyclohexen-1-yl)dialkylamines result in electrophilic substitution at α and α' positions of the enamine to give N-(2-dialkylaminomethyl-6-methylene-1-cyclohexen-1-yl)dialkylamines. Features and generalization of the reactions are described.

The methylene compounds linking two N- and O-functional groups have an affinity for nucleophiles resulting in substitution.²⁾ The present paper relates an attempt to carry out the reaction of these types of the compounds with enamines, none of analogous reactions having appeared in the literature.

Three N- and O-morpholinomethyl compounds, I, II, and III (see below), possessing different leaving groups in nucleophilic substitution were first allowed to react with 4-(1-cyclohexen-1-yl)morpholine (IV) on refluxing in toluene to give the same plates, mp 77—80° and bp 156—158° (1.5 mmHg), in 43%, 43%, and 30% yield, respectively.

Based on analytical, ultraviolet(UV), infrared(IR) and mass spectral data the product was assigned as either of the following two structures.

$$\begin{array}{c} CH_2 \\ \hline \\ -N \\ \hline \\ CH_2N \\ \hline \\ V \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ CH_2N \\ \hline \\ O \end{array}$$

A nuclear magnetic resonance (NMR) spectrum of this product in deuteriochloroform exhibited a clear evidence for the former, 4-(6-methylene-2-morpholinomethyl-1-cyclohexen-1-yl)morpholine(V), where the terminal methylene protons appeared at δ 5.16—5.30 (1H) and at δ 4.75—4.92 (1H) as multiplets and the singlet methyl protons of the latter (VI) were hardly observed.

Next, 1-(butoxymethyl)piperidine(VII) was allowed to react with IV under the same condition, whereupon, in addition to the same type of the product, 4-(6-methylene-2-piperidinomethyl-1-cyclohexen-1-yl)morpholine(VIII), 4-[2,6-bis(piperidinomethyl)-1-cyclohexen-1-yl]morpholine (IX) was obtained in 37% yield.

¹⁾ Location: 2-2-1 Oshika, Shizuoka.

a) M. Sekiya and Y. Terao, Chem. Pharm. Bull. (Tokyo), 18, 947 (1970); b) K. Ito, H. Oba and M. Sekiya, ibid., 20, 2112 (1972); c) H. Sakai, K. Ito and M. Sekiya, ibid., 21, 2257 (1973); d) O. Matsuda, K. Ito and M. Sekiya, ibid., 22, 1119 (1974); e) K. Shimizu, K. Ito and M. Sekiya, ibid., 22, 1256 (1974); f) M. Sekiya, O. Matsuda and K. Ito, ibid., 23, 1579 (1975), etc.

$$C_{4}H_{9}OCH_{2}N \longrightarrow \begin{array}{c} & CH_{2} \\ \hline \\ VII \end{array} \longrightarrow \begin{array}{c} & CH_{2}N \\ \hline \\ & CH_{2}N \\ \hline \\ & CH_{2}N \\ \hline \\ & VII \end{array} \longrightarrow \begin{array}{c} & CH_{2}N \\ \hline \\ & CH_{2}N \\ \hline \\ & N \\ \hline \\ & N \\ \end{array}$$

The structure, IX, was assigned on the basis of the formation of the previously known 2,6-bis-(piperidinomethyl)cyclohexanone³⁾ by hydrolysis with hydrochloric acid, in addition to its IR, NMR and mass spectral data. Conversion of IX into VIII to a considerable extent was realized on refluxing in toluene. Therefore, IX is probably regarded as an precursor in the formation of VIII. When we speculate on a mechanism of the reaction, a plausible path can be written as shown in Chart 1.

In view from the overall reaction equation according with the following (Eq.1), there seemed a fear of an exchange of amine moiety of the enamine by the dialkylamine generated as the reaction proceeded, as presumed from the previously known reaction of enamine.⁴⁾

$$\begin{array}{c}
\text{CH}_2\\
\text{-NR}_2 + 2\text{XCH}_2\text{NR}_2'
\end{array}
\longrightarrow
\begin{array}{c}
\text{CH}_2\\
\text{-NR}_2 + 2\text{XH} + \text{R}_2'\text{NH}
\end{array}$$

$$\begin{array}{c}
\text{CH}_2\\
\text{CH}_2\text{NR}_2'
\end{array}$$

As long as the use of N,N'-methylenebis(dialkylamine) ($X=NR'_2$) the reaction brings about generation of even three molar equivalent of the dialkylamine (R'_2NH) which tends to give the enamine product possessing NR'_2 in place of NR_2 through the amine exchange reaction. This was demonstrated by carrying out the reaction of 1,1'-methylenedipiperidine with IV.

An amine fraction, bp 133—135° (1.5 mmHg), obtained by vacuum distillation was confirmed to be a mixture of VIII and 1-(6-methylene-2-piperidinomethyl-1-cyclohexen-1-yl)piperidine

³⁾ F.F. Blicke and F.J. McCarty, J. Org. Chem., 24, 1069 (1959).

⁴⁾ J.S. Marchese, C.A., 63, 2862 (1965).

2496 Vol. 24 (1976)

(X) by the following data. The compound, X, was separately synthesized by the reaction between 1-(1-cyclohexen-1-yl)piperidine and VII as described later (see Table I). A thin-layer chromatogram, a mass spectrum and a NMR spectrum of the liquid material evidenced the mixture composed of VIII and X, exhibiting both the corresponding two patterns. Nearly equimolar proportion of the two was suggested from the NMR spectrum and an elemental analysis data. In view from the above the leaving NR'₂ of N,N'-methylenebis(dialkylamine) as a reactant should be equal to the amine moiety (NR₂) of the starting enamine in order to exclude the amine exchange reaction.

The reaction of VII with IV described in the foregoing corresponds to that of Eq. 1 where $X=OC_4H_9$. In this reaction the amine exchange of the product induced by equimolar amount of the generated dialkylamine was shown to be almost negligible by no detection of X in the reaction mixture.

Several extensions of the reaction of N-(1-cyclohexen-1-yl)dialkylamines were examined with N-(butoxymethyl)dialkylamines and with N,N'-methylenebis(dialkylamine)s. Because of lower reactivity and laborious isolation of the products N-(dialkylaminomethyl)phthalimides were not used for extension. As can be seen in Table I, general synthesis of the α,α' -disubstituted enamines, which have not been described in the literature, was successfully performed by this reaction. For synthesis of the enamines possessing different two amine residues N-(butoxymethyl)dialkylamines were conveniently used as reactants, while N,N'-methylenebis(dialkylamine)s for that possessing the same two amine residues.

Table I. Reaction^{a)} of N-(Butoxymethyl)dialkylamines and N,N'-Methylenebis-(dialkylamine)s with N-(1-Cyclohexen-1-yl)dialkylamines

X	$ m NR^1R^2$	NR³R⁴	$Yield^{b)}$ (%)
C ₄ H ₉ O	N_O	Ń	47
C_4H_9O	Ń	Ń	47
C_4H_9O	Ń	Ŋ	38
C_4H_9O	Ń	$\operatorname{CH_3}$ $\operatorname{CH_2C_6H_5}$	39
C_4H_9O	Ń	NO	41
C_5H_9O	CH ₃ N CH ₂ C ₆ H ₅	N_O	43
, N	Ń	Ń	46
Ņ	ν́	Ń	46
CH ₅ N C ₆ H ₅ CH ₂	CH ₃ N CH ₂ C ₆ H ₅	CH ₃ N CH ₂ C ₆ H ₅	34

a) molar proportion: substrate: enamine (0.05 mole)=2.5: 1, solvent: toluene (70 ml), refluxing time: 5 hr

b) based on the starting enamine

d) mass spectrum m/e: 276 (M+); IR cm⁻¹ (KBr)

b) mass spectrum m/e: 274 (M⁺) c) IR cm⁻¹ (KBr)

Table II. N-(2-Dialkylaminomethyl-6-methylene-1-cyclohexen-1-yl)dialkylamines

CH₂
-NR³R⁴
-CH₂NR⁴R²

Ref.	<i>a</i>)	(9			6)	<i>d</i>)				
ppm) CH ₂ N< 2H, s)	3.14	3.07	3.22	3.20	3.14	3.07	3.02	3.10	3.28	3.20
IR, cm ⁻¹ NMR, δ (ppm) (liquid) $\Sigma = CH_2 \Sigma CH_2 N \langle \Sigma = CH_2 \rangle CCH_2 N \langle \Sigma \rangle C = C \langle \delta \rangle C = C \langle $	4.75—4.92 5.16—5.30	4.66—4.80 5.10—5.26	4.66—4.90	4.80—4.94 5.04—5.18	4.64—4.84 5.07—5.24	4.74—4.90 5.15—5.30	4.64—4.85	4.74—4.94 5.04—5.20	4.64—4.85 5.12—5.25	4.72—4.85 5.12—5.27
:m ⁻¹ iid) ⁵ >c= c g.	880	988	880	878	887	068	828	888	880	884
IR, cm ⁻¹ (liquid) %c=c< ô>c=	1620 1600	1620 1600	1622 1602	1620 1602	1622 1601	1621 1600	1620 1600	1620 1600	1622 1600	1622
UV λ_{max} mµ (log ϵ)	238(4.26) 286(3.30)	237 (4.24) 290 (3.26)	239(4.18) 295(3.01)	238(4.27) $289(3.36)$	238 (4.21) 291 (3.22)	238 (4.22) 285 (3.27)	240 (4.02) 296 (2.97)	238 (4.16) 286 (3.26)	238(4.01) 287(3.14)	238(4.22) 285(3.26)
Analysis (%) Found (Calcd) C H	69.08 9.46 10.01 (69.03) (9.41) (10.06)	78.99 11.00 10.08 (78.77) (11.02) (10.21)	78.03 10.41 10.86 (77.99) (10.64) (11.39)	83.51 8.72 8.04 (83.19) (8.73) (8.09)	73.91 10.18 10.22 (73.86) (10.21) (10.14)	74.22 10.15 9.80 (73.86) (10.21) (10.14)	78.52 10.43 10.54 (78.40) (10.83) (10.76)	80.83 9.51 8.82 (81.23) (9.76) (9.02)	73.42 9.83 10.70 (73.24) (9.99) (10.68)	76.57 8.78 8.80 (76.88) (9.03) (8.97)
_				ο.	z Z	Z			~ ~	Z Z
Formula	$C_{16}H_{26}O_2N_2$	$\mathrm{C_{18}H_{30}N_2}$	$C_{16}H_{26}N_2$	$\mathrm{C_{24}H_{30}N_{2}}$	$\mathrm{C_{17}H_{28}ON_{2}}$	C ₁₇ H ₂₈ ON ₂	$C_{17}H_{28}N_2$	$\mathrm{C_{21}H_{30}N_2}$	$\mathrm{C_{16}H_{26}ON_2}$	$\mathrm{C_{20}H_{28}ON_{2}}$
n ⁿ Formula	— C ₁₆ H ₂₆ O ₂	$1.5340 C_{18}H_{30}N_{2}$	$1.5382 C_{16}H_{26}N_2$	1,5750 C ₂₄ H ₃₀ N ₅	$ C_{17}H_{28}O]$	$- C_{17}H_{28}O]$	1,5364 C ₁₇ H ₂₈ N ₅	1.5570 C21H30N2	1.5320 C ₁₆ H ₂₆ Ol	1.5600 C ₂₀ H ₂₈ O
	$156-158(1.5) C_{16}H_{26}O_{2}$ mp $77-78^{\circ}$ plates(ether)	1) 1.5340			143—144(0.6) — C ₁₇ H ₂₈ OJ mp 40—41° plates(ether)	[1.5364			
n n		1) 1.5340	1.5382	$^{\text{CH}_3}_{\text{N}}$ 180—181(0.5) 1.5750 $^{\text{CH}_4}_{\text{C},H_5}$	N 143—144(0.6) mp 40—41° plates(ether)	[1.5364	1.5570	140—142(0.6) 1.5320	N O 164—165(0.3) 1.5600
${ m bp[^{\circ}C(mmHg)]}$ $n_{ m b}^{ m H}$		1) 1.5340	1.5382	180—181(0.5) 1.5750	N 143—144(0.6) mp 40—41° plates(ether)	[1.5364	155—157(0.4) 1.5570	140—142(0.6) 1.5320	1.5600

a) mass spectrum m/e: 278 (M⁺); IR cm⁻¹ (KBr)

Experimental⁵⁾

Reaction of N-(Butoxymethyl)dialkylamines and N,N'-Methylenebis(dialkylamine)s with N-(1-Cyclohexen-1-yl)dialkylamines—General Procedure: The following eight N- and O-dialkylaminomethyl compounds shown with their boiling points were used as substrate: 4,4'-methylenedimorpholine(I),6' bp 127—129° (18 mmHg); 1,1'-methylenedipiperidine,7' bp 110—111° (15 mmHg); 1,1'-methylenedipyrrolidine,8' bp 87—88° (14 mmHg); N,N'-methylenebis(N-methylbenzylamine),9' bp 153—154° (2 mmHg); 4-(butoxymethyl)morpholine(II),10) bp 105—108° (14 mmHg); 1-(butoxymethyl)piperidine(VII),11) bp 98—99° (19 mmHg); 1-(butoxymethyl)pyrrolidine,12) bp 84—85° (18 mmHg); N-(butoxymethyl)-N-methylbenzylamine,20) bp 132—137° (18 mmHg). Four N-(1-cyclohexen-1-yl)dialkylamines shown with their boiling points were used as enamines: 4-(1-cyclohexen-1-yl)morpholine(IV),13) bp 139—140° (35 mmHg); 1-(1-cyclohexen-1-yl)piperidine,13) bp 117—118° (15 mmHg); 1-(1-cyclohexen-1-yl)pyrrolidine,13) bp 110—111° (15 mmHg); N-(1-cyclohexen-1-yl)-N-methylbenzylamine, bp 156—157° (15 mmHg), $n_p^{\rm p}$ 1.5530. IR $n_p^{\rm max}$ cm⁻¹: 1638 (C=C). NMR δ : 7.25 (5H, s, C₆H₅), 4.44—4.67 (1H, m, -CH=C \langle), 4.08 (2H, s, CH₂), 2.49 (3H, s, CH₃), 1.40—2.40 (8H, m, -(CH₂)₄-). Anal. Calcd. for C₁₄H₁₉N: C, 83.53; H, 9.51; N, 6.96. Found: C, 83.14; H, 9.39; N, 7.03.

A solution of 0.125 mole of the substrate and 0.05 mole of the enamine in 70 ml of toluene was refluxed for 5 hr with stirring. The reaction solution was concentrated under reduced pressure to remove solvent and the unreacted materials. Distillation of the oily residue under reduced pressure gave the corresponding product as a liquid or solid distillate. Physical, spectral and analytical data and yields of all the products are listed in Tables I and II.

The following, a) and b), describes the procedure in the runs in which two kinds of the products were obtained.

a) The reaction solution obtained from VII (21.4 g, 0.125 mole) and IV (8.4 g, 0.05 mole) in 70 ml of toluene was concentrated under reduced pressure. Crystals deposited in the oily residue was collected by filtration, and the filtrate was submitted to distillation under reduced pressure to give 1.7 g (12%) of 4-(6-methylene-2-piperidinomethyl-1-cyclohexen-1-yl)morpholine (VIII), physical, spectral and analytical data of which are recorded in Table II. The foregoing crystals, weighing 6.6 g (37%), were found to be 4-[2,6-bis(piperidinomethyl)-1-cyclohexen-1-yl]morpholine(IX), prisms from EtOH, mp 122—123°. IR $\nu_{\rm max}^{\rm KBT}$ cm⁻¹: 1650 (C=C). UV $\lambda_{\rm shoulder}^{\rm hexane}$ mµ (log ε): 243 (4.07). NMR δ : 3.56—3.82 (4H, m, CH₂OCH₂), 3.10 (2H, s, \Rightarrow CCH₂N \langle), 2.66—2.98 (4H, m, CH₂NCH₂), 1.96—2.56 (13H, m, 2 × CH₂NCH₂, \Rightarrow CCH₂N \langle and cyclohexene), 1.10—1.82 (16H, m, 2 × C₃H₆ and cyclohexene). Mass Spectrum m/ε : 361 (M+). Anal. Calcd. for C₂₂H₃₉ON₃: C, 73.08; H, 10.87; N, 11.62. Found: C, 72.99; H, 10.80; N, 11.66. Hydrolysis of IX by refluxing with 10% HCl gave morpholine and 2,6-bis(piperidinomethyl)cyclohexanone, plates from ligroin, mp 79—80° (lit.³⁾ mp 83—84°). IR $\nu_{\rm max}^{\rm KBT}$ cm⁻¹: 1703 (CO). Anal. Calcd. for C₁₈H₃₂ON₂: C, 73.92; H, 11.03; N, 9.58. Found: C, 73.81; H, 11.09; N, 9.66. Refluxing toluene solution of IX (3.6 g in 30 ml) for 5 hr gave 1.0 g (37%) of VII in addition to 2.0 g (56%) of the recovered IX.

Reaction of N-(Morpholinomethyl)phthalimide (III) with 4-(1-Cyclohexene-1-yl)morpholine(IV)——A mixture of 30.8 g (0.125 mole) of III and 8.4 g (0.05 mole) of IV in 140 ml of toluene was refluxed for 5 hr with stirring. After filtration on cool, the filtrate was concentrated under reduced pressure. The oily residue was well

6) M.O. Kolosova and V.I. Stavrovskaya, Zhur. Obschei Khim., 33. 955 (1963) [C. A., 59, 8722 (1963)].

8) W. Reppe, Ann, 596, 80 (1955).

⁵⁾ All melting and boiling points are uncorrected. IR spectra were determined with a Hitachi EPI-G2 spectrophotometer, and UV spectra were determined in hexane solution with a Hitachi EPS-3T spectrophotometer. Mass spectra were recorded with a Hitachi RMS-4 spectrometer. NMR spectra were taken at 60 MHz in CDCl₃ solution with a JEOL-C-60H spectrometer using tetramethylsilane as internal standard. The following abbreviations are used: s=singlet, m=multiplet.

⁷⁾ T.C. Simmons, F.W. Hoffmann, R.B. Beck, H.V. Holler, T. Katz, R.J. Koshar, E.R. Larsen, J.E. Mulvaney, K.E. Paulson, F.E. Rogers, B. Singleton, and R.E. Sparks, J. Am. Chem. Soc., 79, 3429(1955).

⁹⁾ H. Böhme and F. Eiden, Chem. Ber., 89, 2873 (1956).

¹⁰⁾ A.F. Isbell and D.W. Hood, J. Chem. Eng. Data, 7, Pt 2, 575 (1962) [C. A., 58, 10195 (1963)].

¹¹⁾ G.M. Robinson and R. Robinson, J. Chem. Soc., 123, 532 (1923).

¹²⁾ J. Ficini and H. Normant, Bull. Soc. Chim. France, 1957, 1454.

¹³⁾ S. Hunig, E. Benzing and E. Lücke, Chem. Ber., 90, 2833 (1957).

mixed with 18.6 g of triethanolamine followed by extraction with petr. ether. Usual treatment of the petr. ether solution gave 4.2 g (30%) of 4-(6-methylene-2-morpholinomethyl-1-cyclohexen-1-yl)morpholine(V), physical, spectral and analytical data of which are recorded in Table II.

Acknowledgement The authors are indebted to Mr. K. Narita and the other members of the Analysis Center of this college for elemental analyses and spectral measurements.