Cyclization of **4b** with 48% HBr–AcOH (2: 1) gave α -2-benzyl-1',3',5,9-tetramethyl-thieno[4,3-f]morphan (**5b**) in 60% yield as colorless oil. **5b** HBr, mp 240—243° (decomp.) (ethanol–acetone), *Anal.* Calcd. for C₂₁H₂₇NS·HBr·1/2H₂O: C, 61.81; H, 6.84; N, 3.28. Found: C, 62.22; H, 6.94; N, 3.31.

In the Table I, the signal for the 9-methyl group in **5a** or **5b**, respectively, appears as a diamagnetically shifted doublet, δ 0.85 or 0.79 (J=7.0 Hz) due to a position above the thiophene ring. Thus, the configuration of **5** was assessed as the α -diastereomer⁴ in which both methyl groups in C_5 - and C_9 -positions were in a *cis* orientation.

The synthetic and biological studies of **5** and related compounds will be published in detail elsewhere in near future.

Research Laboratory Sanwa Kagaku Kenkyusho Co., Ltd. 1212 Gejo-cho, Kasugai, 486, Japan

Masatoshi Ban Yutaka Baba Kenji Miura Yasuaki Kondo Kenji Suzuki Mikio Hori

Gifu College of Pharmacy 5-Higashi, Mitafora, Gifu, 502, Japan

Received March 22, 1976

Chem. Pharm. Bull. 24(7)1681—1683(1976)

UDC 547.36.04:576.8.098:542.98

Stereochemistry in Oxidation of Primary Allylic Alcohols by Cell-free System of Callus induced from Cannabis sativa L.

The pro-R hydrogen from C-1 methylene of primary allylic alcohols as geraniol and *trans*-cinnamyl alcohol was abstracted in cell-free system of callus induced from *Cannabis* sativa L.

We have previously reported¹⁾ that tetrahydrocannabinol, the other cannabinoids and essential oil which observed in the extract of original plant were not detected in the callus induced from *Cannabis sativa* L. (Moraceae). Then we have found that geraniol and nerol which are cannabinoids' precursors²⁾ were converted into citrals by the suspension cultures from Cannabis callus.³⁾ Further, without the addition of nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP), the activity in oxidation of primary and secondary allylic alcohols, that is, geraniol, nerol, *trans*-cinnamyl alcohol, (+)-trans-verbenol and (—)-isophorol, was demonstrated by the cell-free system from Cannabis callus.³⁾

In this paper, we report on the stereochemistry which is related to distinguish C-1 enantiomeric hydrogens of primary allylic alcohols.

⁴⁾ S.E. Fullerton, E.L. May, and E.D. Becker, J. Org. Chem., 27, 2144 (1962).

¹⁾ H. Itokawa, K. Takeya, and M. Akasu, Shoyakugaku Zasshi, 29, 106 (1975).

²⁾ a) R. Mechoulam and Y. Gaoni, *Tetrahedron*, 21, 1223 (1965); b) Y. Shoyama, M. Yagi, and I. Nishioka, *Phytochemistry*, 14, 2189 (1975).

³⁾ Unpublished..

(S)-trans-Cinnamyl alcohol-1-D (I) and (S)-geraniol-1-D (IV) were prepared by reduction of trans-cinnamaldehyde and citral-a4) with isobornyloxymagnesium-2-D bromide according to the method of Streitwieser.⁵⁾ The deuterium contents of prepared alcohols were respectively over 98% from the proton magnetic resonance (PMR) spectra. Without the addition of NAD or NADP, the prepared alcohols-1-D were respectively incubated with the cell-free system (homogenized with 1 ml of Tris-buffer/1 g of fresh callus; 0.2m, pH 7.2) of callus induced from C, sativa L.¹⁾ for 4 hr at 26°. The biotransformed aldehydes were chromatographically purified from the n-hexane extracts of incubated filtrate. We have found that the obtained aldehydes consist of the mixtures of trans- and cis-compounds (84% of trans- and 16% of cis-cinnamaldehyde; 64% of citral-a and 36% of citral-b) from the PMR spectra and gas-liquid chromatography (GLC). On the other hand, a small amount of nerol, geometrical isomer of geraniol, was detected by GLC-MS of the extract in the conversion of geraniol. The PMR spectra (CDCl₃, δ , ppm) of aldehydes were as follows, trans-cinnamaldehyde; 6.63 (dd, J=15.5, 7.5 Hz, C=C $\langle \frac{\text{CHO}}{\text{H}} \rangle$ and d, t, J=15.5, 2 Hz, C=C $\langle \frac{\text{CDO}}{\text{H}} \rangle$, 7.42 (d, J=15.5 Hz, $\frac{\text{H}}{\text{Ph}} \rangle$ C=C), 7.43 (aromatic protons), 9.63 (d, J=7.5 Hz, CHO), cis-cinnamaldehyde; 6.12 (dd, J=12.0, 8.0 Hz, $C = C < \frac{H}{CHO}$ and d, t, J = 12.0, 2 Hz, $C = C < \frac{H}{CDO}$), 7.35 (d, J = 12.0 Hz, $\frac{H}{Ph} > C = C$), 9.88 (d, J = 8.0

TABLE I.

Products	Position of integral	Integral	Normal type and deuterium type	Ratio of presence (%)
trans-Cinnamaldehyde	aldehyde H	15.5	(II)	36.9
	C-2 olefinic H	42.0	(II')	63.1
cis-Cinnamaldehyde	aldehyde H	3.0	(III)	33.3
	C-2 olefinic H	9.0	(III')	66.7
Citral-a	aldehyde H	7.0	(V)	35.0
	C-2 olefinic H	20.0	(V')	65.0
Citral-b	aldehyde H	4.0	(VÍ)	34.8
	C-2 olefinic H	11.5	(VI')	65.2

⁴⁾ Citral-a was prepared by oxidation (MnO₂) of geraniol according to the method of J. Attenburrow, et al., J. Chem. Soc., 1094 (1952).

⁵⁾ A. Streitwieser Jr., J.R. Wolfe Jr., and W.D. Shaeffer, Tetrahedron, 6, 338 (1959).

Hz, CHO), citral-a⁶; 1.63, 1.70 (s, respectively, $_{\text{CH}_{3}}^{\text{CH}_{3}}$)C=C), 2.18 (d, J=1.5 Hz, CH₃-C=C), 5.06 (br, m, Me>C=C-H), 5.85 (a signal of hanging bell form which based on the mixture of doublet C=C $\langle \frac{\text{CHO}}{\text{H}} \rangle$ and triplet C=C $\langle \frac{\text{CDO}}{\text{H}} \rangle$, 9.95 (d, J=8.0 Hz, CHO), citral-b⁶⁾; 1.61, 1.70 (s, respectively, $\stackrel{\text{CH}_3}{\text{CH}_3}$ C=C), 1.97 (d, J=1.5 Hz, CH₃-C=C), 5.11 (br, m, $\stackrel{\text{Me}}{\text{Me}}$ C=C-H), 5.85 (a signal respectively) of hanging bell form which based on the mixture of doublet $C=C < \frac{H}{CHO}$ and triplet $C=C < \frac{H}{CDO}$, 9.86 (d, J=8.0 Hz, CHO). As shown in Table I, in the cinnamaldehydes, the value of integral based on the proton of aldehyde against the value of integral based on the C-2 olefinic proton as one standard proton was 36.9% in trans-form and 33.3% in cis-form. Consequently, 36.9% of cinnamaldehyde and 63.1% of cinnamaldehyde-1-D exist in trans-form, and 33.3%of cinnamaldehyde and 66.7% of cinnamaldehyde-1-D in cis-form. In a similar manner, it was clear that 35.0% of citral-a and 65.0% of citral-a-1-D in trans-form, and 34.8% of citral-b and 65.2% of citral-b-1-D in cis-form. The fact that in the biotransformed aldehydes, the compounds which were substituted by deuterium existed more than the normal compounds, have shown that the pro-R hydrogen from the C-1 methylene of primary allylic alcohols as geraniol and trans-cinnamyl alcohol is lost. These results coincide with the result that horse liver alcohol dehydrogenase abstracts the pro-R hydrogen from the C-1 methylene of geraniol,⁷⁾ but the fact that the biotransformed aldehydes were the mixtures of trans- and cis-compounds, and nerol was detected in the conversion of geraniol, are interesting problems concerning with the trans-cis isomerization of primary allylic alcohols.

On the other hand, in the conversion of citral-a and ciral-b by the same conditions mentioned above, citral-a was converted to citral-b with 30% of yield and citral-b was converted to citral-a with 25% of yield with 10 mg of the aldehydes to 40 g of fresh callus, but the corresponding alcohols were not detected.⁸⁾

Recently, a few papers were reported on the stereochemistry in *trans-cis* isomerization.⁹⁾ Although the mechanism of isomerization of primary allylic alcohols has not been evidenced yet, Imai and Marumo^{9a)} speculated that the process may include intermediary enolic forms in the aldehyde. But it is also thought that *trans-cis* isomerization may base on the radical reaction. We want to evidence this hereafter.

Tokyo College of Pharmacy 1432-1, Horinouchi, Hachioji, Tokyo, Japan HIDEJI ITOKAWA KOICHI TAKEYA MICHINORI AKASU

Received April 19, 1976

⁶⁾ cf) M. Ohtsuru, M. Teraoka, K. Tori, and K. Takeda, J. Chem. Soc. (B), 1967 1033.

⁷⁾ C. Donniger and G. Ryback, Biochem. J., 91, 11 (1964).

⁸⁾ S. Marumo, et al.^{9a)} reported that farnesal was nonenzymatically isomerized into trans and cis mixture with the addition of albumin. In our experiments, citral was not isomerized with only Tris-buffer (0.2m, pH 7.2), but isomerized with cell-free system of callus which was deactivated with autoclave (2 atm, 5 min). The dry callus (about 2—5% of fresh callus) contains about 0.8% of protein according to the semi-micro Kjeldahl method.

⁹⁾ a) K. Imai and S. Marumo, Tetrahedron Letters, 4401 (1974); b) K.H. Overton and F.M. Roberts, Chem. Comm., 1975 385; c) R. Evans and J.R. Hanson, Chem. Comm., 1975 231; d) B. Müller and C. Tamm, Helv. Chim. Acta, 58, 483 (1975).