Chem. Pharm. Bull. 24(8)1917—1921(1976)

UDC 547.854.4.04:547.853.3.04

Nitrosative Cyclization of 1,3-Dimethyl-6-(\alpha-methylalkylidenehydrazino)-uracils by Means of N-Nitrosodimethylamine-Phosphorus Oxychloride Mixture. A New Route to 2-Vinyl-v-triazolo[4,5-d]pyrimidines

KEITARO SENGA, YUKAKO KANAMORI, SADAO NISHIGAKI, ^{1α}) and Fumio Yoneda^{1δ})

Pharmaceutical Institute, School of Medicine, Keio University^{1a)} and Faculty of Pharmaceutical Sciences, Kumamoto University^{1b)}

(Received November 17, 1975)

A new synthetic method of 2-vinyl-v-triazolo[4,5-d]pyrimidines, which consists of the nitrosative cyclization of 1,3-dimethyl-6-(α -methylalkylidenehydrazino)uracils with a mixture of N-nitrosodimethylamine and phosphorus oxychloride (NDA+POCl₃) is described. The reaction of 1,3-dimethyl-6-hydrazino-5-nitrosouracil with acetophenone gave 1,3-dimethyl-6-phenyl-7-azalumazine (3-phenylfervenulin) (X). The nitrosation of 6-benzylidenehydrazino-1,3-dimethyluracil with NDA+POCl₃ also gave X.

The antitumor activity of certain v-triazolo[4,5-d]pyrimidines has stimulated considerable interest in this area.²⁾ This ring system has generally been prepared by two principal routes: one involving the ring closure of suitably-substituted pyrimidine derivatives, and the other involving the utilizing of the v-triazole precursors and annelating the condensed pyrimidine ring.³⁾

We now describe a new route to the synthesis of 2-vinyl-v-triazolo[4,5-d]pyrimidines consisting of the nitrosative cyclization of 1,3-dimethyl-6-(α -methylalkylidenehydrazino)-uracils with a mixture of N-nitrosodimethylamine (NDA) and phosphorus oxychloride (referred hereafter as NDA+POCl₃) which has first been introduced by us as a new type of nitrosating reagent.⁴⁾

The key intermediates, 1,3-dimethyl-6-(α -methylalkylidenehydrazino) uracil (IIa—e), were prepared by the treatment of 1,3-dimethyl-6-hydrazino uracil (I)⁵⁾ with respective ketones (Table I).

Refluxing of 1,3-dimethyl-6-(α -methylbenzylidenehydrazino)uracil (IIa)⁶) with two equivalents of NDA+POCl₃ in benzene for 15 min afforded a good yield of 4,6-dimethyl-2-(1-phenyl-vinyl)-v-triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (IVa). The structure of IVa was assigned on the basis of its spectral data and elemental analysis. In particular, the nuclear magnetic resonance (NMR) spectrum (DMSO- d_6) of IVa revealed two protons attributable to the olefinic protons of 1-phenylvinyl group at the position 2, which ruled out the possibility of 1,3-dimethyl-7-phenyl-9H-pyrimido[4,5-c][1,2,5]triazepine-2,4(1H,3H)-dione (VI)⁷⁾ as an alternative structure for IVa. Additional support for the structure of IVa was provided by its

¹⁾ Location: a) 35, Shinanomachi, Shinjuku-ku, Tokyo; b) 5-1, Oe-honmachi, Kumamoto.

²⁾ The antitumor activity of v-triazolo[4,5-d]pyrimidines has been reviewed by R.K. Robins: J. Med. Chem., 7, 186 (1964).

³⁾ R.K. Robins, "Heterocyclic Compounds," Vol. 8, ed. by R.C. Elderfield, John Wiley and Sons, 1967, p. 162, and references cited therein.

⁴⁾ F. Yoneda, K. Senga, and S. Nishigaki, Chem. Pharm. Bull. (Tokyo), 21, 260 (1973).

⁵⁾ W. Pfleiderer and K-H. Schündehütte, Ann., 612, 158 (1958).

⁶⁾ S. Senda and K. Hirota, Chem. Pharm. Bull. (Tokyo), 22, 1459 (1974).

⁷⁾ The 6-amino-5-nitrosopyrimidine derivatives carrying methyl or methylene substituents on the 6-amino group have been known to undergo thermally induced intramolecular dehydration. For example, H. Goldner, G. Dietz, and E. Carstens, *Ann.*, 691, 142 (1969) and G.P.G. Dick, H.C.S. Wood, and W.R. Logan, *J. Chem. Soc.*, 1956, 2131.

Table I. 1,3-Dimethyl-6-(\alpha-methylalkylidenehydrazino)uracils

$$\begin{array}{c|c}
CH_3 - N & CH_2 - R^1 \\
O & N & NHN = C - R^2 \\
CH_3 & CH_3
\end{array}$$

			(9C)				Analysis (%)				
Compd. No.	\mathbb{R}^1	R2	Recrystn.	ield %)	Formula		Calcd.			Found	
			solvent (70)			ć	Н	N	ć	Н	N
IIa	Н	Ph	203—205 ⁶⁾ EtOH	72	$C_{14}H_{16}O_2N_4$	61.75	5.92	20.58	61.48	5.90	20.75
IIb	Н	<i>p</i> -ClPh	214—216 DMF-EtOH	52	$\mathrm{C}_{14}\mathrm{H}_{15}\mathrm{O}_{2}\mathrm{N}_{4}\mathrm{Cl}$	54.79	4.93	18.27	54.65	4.88	18.41
IIc	H	p-MePh	166—168 DMF-EtOH	50	$\rm C_{15}H_{18}O_{2}N_{4}$	62.92	6.34	19.57	62.81	6.30	19.46
IId	H	Me	146—148 ⁶⁾ EtOH	34	$\mathrm{C_9H_{14}O_2N_4}$	51.42	6.71	26.65	51.71	6.49	26.63
IIe	H	Et	130—131 EtOH	77	$C_{10}H_{16}O_2N_4$	53.55	7.19	24.99	53.58	7.20	25.25

acid cleavage to the known 4,6-dimethyl-v-triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (V).8) As depicted in the Chart 1, this reaction involves without doubt the intermediacy of a 5-nitroso derivative (III), whose dehydrative cyclization to the 2-vinyl-v-triazolo[4,5-d]pyrimidine is apparently facilitated by the presence of phosphorus oxychloride in the reaction medium. It should be noted here that the usual nitrosation of IIa with sodium nitrite and

⁸⁾ F.F. Blicke and H.C. Godt Jr., J. Am. Chem. Soc., 76, 2798 (1954).

acetic acid or hydrochloric acid did not give the corresponding v-triazolo[4,5-d]pyrimidine but 1,3-dimethyl 6-(α -methylbenzylidenehydrazino)-5-nitrosouracil (VII)⁹⁾ in good yield.

In complete analogy with the above result, 2-[1-(4-chlorophenyl)vinyl]-(IVb) and 2-[1-(4-methylphenyl)vinyl]-4,6-dimethyl-v-triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (IVc) were prepared by the reaction of the corresponding 1,3-dimethyl-6-(α -methylbenzylidenehydrazino)-uracils with NDA+POCl₃ (Table II).

When the reaction was applied to 1,3-dimethyl-6-isopropylidenehydrazino uracil (IId),60 the expected 4,6-dimethyl-2-isopropenyl-v-triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (IVd)

Table II. 2-Substituted 4,6-Dimethyl-v-triazolo[4,5-d]pyrimidine-5,7(4H, 6H)-diones

$$CH_3 - N \qquad \begin{matrix} M \\ & \downarrow \\ N \end{matrix} \qquad \begin{matrix} H \\ & \downarrow \\ N \end{matrix} \qquad \begin{matrix} -R^3 \\ & \downarrow \\ CH_3 \end{matrix}$$

			(00)			Analysis (%)					
Compd. No.	\mathbb{R}^1	\mathbb{R}^2	Recrystn.	Yield (%)	Formula	•	Calcd.			$\overbrace{\text{Found}}$	
			solvent	<i>V</i> - <i>V</i>		c	Н	N	ć	Н	N
IVa	Н	Ph	188.5—190 EtOH	65	$C_{14}H_{13}O_2N_5$	59.35	4.63	24.72	59.37	4.74	24.53
IVb	H	<i>p</i> -ClPh	149.5—152 BzH- <i>n</i> -hexane	31	$\mathrm{C_{14}H_{12}O_{2}N_{5}Cl}$	52.87	3.80	22.04	53.14	3.77	21.75
IVc	H	p-MePh	164—166 BzH-n-hexane	52	${\rm C_{15}H_{15}O_2N_5}$	60.59	5.09	23,56	60.84	5.00	23.69
IVd	H	Me	157—159 <i>n</i> -hexane	57	$\mathrm{C_9H_{11}O_2N_5}$	48.86	5.01	31.66	48.76	4.97	31.59
IVe	Me	Me	124—125.5 <i>n</i> -hexane	. 44	$C_{10}H_{13}O_{2}N_{5}$	51.05	5.57	29,77	51.24	5.50	29.65

TABLE III. NMR Data of 2-Substituted 4,6-Dimethyl-v-triazolo[4,5-d]-pyrimidine-5,7(4H, 6H)-diones^a)

$$\begin{array}{c|c}
O & R^{1'}(H) \\
R^{4} - N & C - R^{1} \\
O & N & C - R^{2} \\
R^{3} & R^{3}
\end{array}$$

Compd.		$\delta~({ m DMSO-}d_{ m e})$						
No.	R^1	R1' (H)	R^2	R³ (CH ₃)	R ⁴ (CH ₃)			
IVa		I, $J_{R^1R^1}=1.5$) I, $J_{R^1R^1}=1.5$)	7.39 (s, 5H)	3.42 (s, 3H)	3.28 (s, 3H)			
IVd		or. s, 1H)	2.34 (s, 3H)	3.38 (s, 3H)	3.22 (s, 3H)			
IVe	1.83 (tt, 3H, $\int_{\mathbb{R}^{1}\mathbb{R}^{1}} = 7$, $\int_{\mathbb{R}^{1}\mathbb{R}^{2}} = 1.5$	6.47 (qt, 1H, $J_{R^{i}'R^{i}}=7$	$J_{R^{1'}R^2} =$		3.22 (s, 3H)	- - - 5		

a) Coupling constant J given in Hertz.

⁹⁾ This compound is extremely unstable, therfore the purification was unsuccessful. The structure and properties of VII will be covered in a later communication.

was obtained. However, 1,3-dimethyl-6-[(1-methylpropylidene)hydrazino]uracil (IIe) gave 4,6-dimethyl-2-(1-methylpropenyl)-v-triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (IVe) instead of an isomeric 1-ethylvinyl derivative. The structures of these products were elucidated by the NMR spectroscopy. The NMR data for the v-triazolo[4,5-d]pyrimidines prepared in this study were summarized in Table III.

In connection with above study, we have investigated a following reaction to seek an alternative route to the v-triazolo[4,5-d]pyrimidines. For example, the reaction of 1,3-dimethyl-6-hydrazino-5-nitrosouracil (VIII)¹⁰⁾ with acetophenone was carried out in expectation of the formation of IVa, however, the product was found to be 1,3-dimethyl-6-phenyl-7-azalumazine (3-phenylfervenulin) (X).¹¹⁾ Compound X was alternatively obtained by the nitrosative cyclization of 6-benzylidenehydrazino-1,3-dimethyluracil (IX)¹²⁾ using NDA+POCl₃.

A possible mechanism for the formation of X from VIII and acetophenone is indicated in in Chart 2. A postulated intermediate would be 5,6-dihydro-1,3-dimethyl-5-hydroxy-6-methyl-6-phenyl-7-azalumazine (XI), which could give rise to the observed product X by loss of the element of methanol. An analogous aromatization was reported in the pteridine synthesis from a 6-amino-5-nitrosopyrimidine and 2-phenylpropionitrile.¹³⁾

$$CH_{3}-N \longrightarrow N=0$$

$$CH_{3}-N \longrightarrow NHNH_{2}$$

$$CH_{3}-C \longrightarrow CH_{3}$$

$$CH_{3}-N \longrightarrow NHN=C$$

$$CH_{3}-N$$

Experimental¹⁴⁾

1,3-Dimethyl-6-(α -methylalkylidenehydrazino) uracils (IIa—e in Table I)—A mixture of 1,3-dimethyl-6-hydrazinouracil (I)⁵⁾ (1.7 g, 0.01 mole) and an equimolar amount of the respective ketone in AcOH (30 ml) was heated at reflux for 2 hr. The reaction mixture was evaporated to dryness *in vacuo* and the residue was recrystallized from appropriate solvent to give the corresponding pure product. In the case of IId and IIe, the ketone itself was used as solvent.

2-Substituted 1,3-Dimethyl-v-triazolo[4,5-d]pyrimidine-5,7(4H,6H)-diones (IVa—e in Table II)—A mixture of 1,3-dimethyl-6-(α -methylalkylidene hydrazino)uracil (0.005 mole), NDA (0.74 g, 0.01 mole), and POCl₃ (1.54 g, 0.01 mole) in C₆H₆ (30 ml) was heated at reflux for 15—30 min. The reaction mixture was evaporated to dryness *in vacuo*. The residue was extracted with hot n-hexane (ca. 500 ml) and the extract

¹⁰⁾ W. Pfleiderer and K-H. Schündehütte, Ann., 615, 42 (1958).

¹¹⁾ a) F. Yoneda, M. Kanahori, K. Ogiwara, and S. Nishigaki, J. Heterocyclic Chem., 7, 1443 (1970); b) F. Yoneda and T. Nagamatsu, Bull. Chem. Soc. Japan, 48, 2884 (1975).

¹²⁾ F. Yoneda and T. Nagamatsu, Bull. Chem. Soc. Japan, 48, 1484 (1975).

¹³⁾ J. Weinstock, J.P. Rosenbloom, and P.S. Hines, J. Org. Chem., 33, 3339 (1968).

¹⁴⁾ All melting points were uncorrected. IR, NMR, and Mass spectra of all new compounds were consistent with the proposed structures. The NMR spectra were recorded on a Hitachi Perkin-Elmer Model R-20 (60 MHz) spectrometer using tetramethylsilane as an internal standard.

was concentrated *in vacuo*. The residue was recrystallized from proper solvent to give the corresponding pure product (IVa—e).

4,6-Dimethyl-v-triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (V)—A suspension of IVa (0.283 g, 0.001 mole) in HCOOH (5 ml) was refluxed for 10 hr. The solution was evaporated to dryness *in vacuo* and the residue was recrystallized from H₂O to give the product (V) (0.12 g, 67%), mp 254—257°, identified with an authentic sample.⁸)

1,3-Dimethyl-6-phenyl-7-azalumazine (3-Phenylfervenulin) (X)—Method A: A mixture of 1,3-dimethyl-6-hydrazino-5-nitrosouracil (VIII)¹⁰⁾ (0.398 g, 0.002 mole) and acetophenone (0.216 g, 0.002 mole) in EtOH (10 ml) was refluxed for 10 hr. The reaction mixture was evaporated to dryness *in vacuo*. The residue was triturated with EtOH and the insoluble solid was filtered. Recrystallization from EtOH afforded the pure product (X) (0.06 g, 11%), mp 267—270°, which is identical in all respects with the authentic sample.¹¹⁾

Method B: A mixture of 6-benzylidenehydrazino-1,3-dimethyluracil (IX)¹²⁾ (0.77 g, 0.003 mole), NDA (0.44 g, 0.006 mole) and POCl₃ (0.94 g, 0.006 mole) was heated at 90° for 15 min. The reaction mixture was triturated with $\rm H_2O$ and the insoluble solid was recrystallized from EtOH to give the product (X) (0.27 g, 35%) which is identical in all respects with the compound prepared by Method A.

Chem. Pharm. Bull. 24(8)1921—1925(1976)

UDC 547.833.9.04:546.819.04

Studies on Tetrahydroisoquinolines. XII.¹⁾ An Alternative Synthesis of (\pm) -Bracteoline, (\pm) -Isoboldine, (\pm) -N-Methyllaurotetanine, and Their Related Aporphines

HIROSHI HARA, OSAMU HOSHINO, and BUNSUKE UMEZAWA

Faculty of Pharmaceutical Sciences, Science University of Tokyo²⁾

(Received December 1, 1975)

By the treatment of the p-quinol acetate (Xa) and (Xb) with trifluoroacetic acid, (\pm)-10-benzyloxy-1-hydroxy-2,9-dimethoxyaporphine (XIa) and (\pm)-9-benzyloxy-1-hydroxy-2,10-dimethoxyaporphine (XIb) were given in good yield, respectively. Furthermore, XIa and XIb were converted to (\pm)-bracteoline (XIIa) and (\pm)-isoboldine (XIIb) by catalytic debenzylation, or to (\pm)-10-hydroxy-1,2,9-trimethoxyaporphine (XIVa) and (\pm)-N-methyllaurotetanine (XIVb) by methylation and successive debenzylation, respectively.

Previously, a simple synthesis¹⁾ via a p-quinol acetate of aporphines having alkoxyl groups in the D ring, such as (\pm) -thaliporphine (I), (\pm) -domesticine (II), and (\pm) -1-hydroxy-2,9,10,-11-tetramethoxyaporphine (III), has been achieved in our laboratory.

As an extension of the method, synthesis of aporphines having a hydroxyl group in the D ring was undertaken and we report here an improved synthesis of (\pm) -bracteoline (XIIa),³⁾ (\pm) -isoboldine (XIIb),⁴⁾ and (\pm) -N-methyllaurotetanine (XIVb).⁵⁾

¹⁾ Part XI: H. Hara, O. Hoshino, and B. Umezawa, Chem. Pharm. Bull. (Tokyo), 24, 262 (1976).

²⁾ Location: 12, Ichigaya Funagawara-machi, Shinjuku-ku, Tokyo, 162, Japan.

³⁾ a) T. Kametani, S. Shibuya, H. Sugi, O. Kusama, and K. Fukumoto, J. Chem. Soc. (C), 1971, 2446; T. Kametani, H. Sugi, S. Shibuya, and K. Fukumoto, Tetrahedron, 27, 5375 (1971); b) P. Kerekes, K. Délenk-Heydenreich, and S. Pfeifer, Chem. Ber., 105, 609 (1972).

a) B. Franck, G. Dunkelmann, and H.J. Lubs, Angew. Chem. Internat. Edit., 6, 1075 (1967); W.W-C. Chan and P. Maitland, J. Chem. Soc. (C), 1966, 753; T. Kametani, K. Fukumoto, A. Kozuka, H. Yagi, and M. Koizumi, ibid. (C), 1969, 2034; T. Kametani, A. Kozuka, and K. Fukumoto, ibid., (C), 1971, 1021; A.R. Battersby, A.K. Bhatnager, P. Hackett, C.W. Thornber, and J. Stauton, Chem. Commun., 1968, 1214; b) A.H. Jackson and J.A. Martin, J. Chem. Soc. (C), 1966, 2061; T. Kametani, T. Sugahara, H. Yagi, and K. Fukumoto, Tetrahedron, 25, 3667 (1969); c) S.M. Kupchan and P.F. O'Brien, J.C.S. Chem. Commun., 1973, 915.

⁵⁾ a) I. Kikkawa, Yakugaku Zasshi, 79, 83 (1959); b) T. Kametani, K. Fukumoto, S. Shibuya, H. Nemoto, T. Nakano, T. Sugahara, T. Takahashi, Y. Aizawa, and M. Toriyama, J. Chem. Soc. Perkin I, 1972, 1435.