Chem. Pharm. Bull. 25(10)2755—2760(1977)

UDC 547.473.04:541.14.04

Synthetic Studies on Lignans and Related Compounds. V.¹⁾ Regiospecificity in the Photocyclization of 2,3-Dibenzylidenebutyrolactones²⁾

Takefumi Momose, Ken-ichi Kanai, Takeshi Nakamura, and Yukiko Kuni

Faculty of Pharmaceutical Sciences, Osaka University³⁾

(Received June 23, 1977)

The photocyclization of 2,3-dibenzylidenebutyrolactones (5) was investigated in association with the possible biogenetic pathway to natural naphthalide lignans in which 1-phenyl-2,3-naphthalide types predominate over 4-phenyl-2,3-naphthalide ones. The butyrolactones (5) were prepared via Stobbe condensation of benzylidenesuccinates (6) followed by the selective reduction of the resulting half esters (7) to hydroxy acids (8) and subsequent lactonization, and their cis,cis-configuration was assigned on the basis of comparative proton magnetic resonance (1H-NMR) data. Irradiation of 5 afforded selectively β -apolignans (11) of the 1-phenyl-2,3-naphthalide types irrespectively of the ring substituents, and none of the 4-phenyl-2,3-naphthalide types was formed in the reaction.

Keywords—2,3-dibenzylidenebutyrolactone lignan; taiwanin A; cis,cis,cis-geometry of double-Stobbe products; regiospecific photocyclization; β -aponaphthalide lignan; 1-phenyl-2,3-naphthalide lignan; biosynthetic model; cis- and trans-cinnamate; (Z)- and (E)-arylmethylenesuccinate

In the preceding paper,¹⁾ we described the synthesis of naphthalide lignans related to taiwanin C (1) and E (2),⁴⁾ and revealed that our prediction⁵⁾ concerning the photoproducts from taiwanin A (3)⁴⁾ was actually the case: only 1-aryl-2,3-naphthalides (1 and 2) instead of 4-aryl-2,3-naphthalides (4) were formed from a 2,3-dibenzylidenebutyrolactone (3) on photocyclization. The result suggests that a preferential activation of the olefinic system conjugated with the carbonyl group in 2,3-dibenzylidenebutyrolactones in the light is responsible for the selective formation of 1 or 2 instead of 4, and appears to be associated with the fact that most of natural naphthalide lignans belong to type 1 or 2 rather than type 4.

In this paper, we give details of regiospecific photocyclization⁶⁾ of 2,3-dibenzylidenebuty-rolactones in the absence of oxygen.

Preparation of 2,3-Dibenzylidenebutyrolactones

Our approach to the lactones (5a and b) is outlined in Chart 1. The Stobbe condensation of dimethyl trans-veratrylidenesuccinate (6a) with benzaldehyde afforded a half ester (7a), which was reduced to a hydroxy acid (8a) by treatment with lithium aluminum hydride at $-20^{\circ}-15^{\circ}$. Treatment of 8a with p-toluenesulfonic acid in the dark completed the synthesis of 5a. Another lactone (5b) was prepared in the same manner starting from dimethyl trans-benzylidenesuccinate (6b).

¹⁾ Part IV: Z. Horii, M. Tsujiuchi, K. Kanai, and T. Momose, Chem. Pharm. Bull. (Tokyo), 25, 1803 (1977).

²⁾ Presented in part at the 23rd Meeting of Kinki Branch, Pharmaceutical Society of Japan, Kyoto, Nov. 1973, Abstracts of Papers, p. 47. The preliminary communication has appeared in *Heterocycles*, 4, 1481 (1976).

³⁾ Location: 133-1, Yamada-kami, Suita, Osaka 565, Japan.

⁴⁾ Y.-T. Lin, T.-B. Lo, K.-T. Wang, and B. Weinstein, Tetrahedron Lett., 1967, 849.

⁵⁾ Z. Horii, M. Tsujiuchi, and T. Momose, Tetrahedron Lett., 1969, 1079.

⁶⁾ Shortly before the publication of our preliminary communication²⁾ concerning a series of experiments on the selective photocyclization of 2,3-dibenzylidenebutyrolactones, a report on the similar subject has appeared; H.G. Heller and P.J. Strydom, J. Chem. Soc., Chem. Commun., 1976, 50.

The cis,cis-configuration⁷⁾ for **5** was assigned based on comparative proton magnetic resonance (¹H-NMR) data (see Table I) as in the case of taiwanin A (3).⁸⁾ The cis-cinnamate (9), one of the model compounds, was prepared by methylation of cis-cinnamic acid which was prepared in a manner similar to that reported for the p-methoxy analogue.⁹⁾ Dimethyl cis-veratrylidenesuccinate (10), another model compound, was prepared in the same manner¹⁰⁾ starting from trans-veratrylidenesuccinic acid.¹¹⁾ The olefinic protons in 7 and one of those in 8 and 5 resonate at the field closely similar to that for the β -proton in methyl trans-cinnamate¹²⁾ (δ 7.69) rather than in 9 (δ 6.93) and 10 (δ 6.76): the β -proton in the trans-cinnamate is deshielded by the carbonyl group of the ester, while those in 9 and 10 are not. The assignment coincides with the results obtained for isomeric bisbenzylidenesuccinic acids and related compounds.¹³⁾

Photoreaction

A solution of **5a** in dimethyl formamide (DMF) was irradiated with a 100 W high-pressure mercury lamp through a filter of ordinary borosilicate glass in the presence of 1,4-diazabicyclo-

⁷⁾ The term "cis" means that the phenyl moieties are located cis to the central carbon-carbon linkage of the butadiene system.

⁸⁾ R.J. Hart and H.G. Heller, J. Chem. Soc., Perkin Trans. I, 1972, 1321, and references therein.

⁹⁾ J. Bregman, K. Osaki, G.M.J. Schmidt, and F.I. Sonntag, J. Chem. Soc., 1964, 2021.

¹⁰⁾ The anisylidene analogue has been prepared by House and Larson [H.O. House and J.K. Larson, J. Org. Chem., 33, 448 (1968)].

¹¹⁾ E.C. Horning and G.N. Walker, J. Am. Chem. Soc., 74, 5147 (1952).

¹²⁾ H.A. Szymanski and R.E. Yelin, "NMR Band Handbook," IFI/Plenum Data Corporation, New York, 1968, p. 266.

¹³⁾ H.-L. Elbe and G. Köbrich, Chem. Ber., 107, 1654 (1974).

Table I. Chemical Shifts (δ Values for the CDCl₃ Solution) for the Olefinic Protons in **5a** and Related Model Compounds

Compound	Olefinic H
H CO_2Me	7.69(d, $J=16 \text{ Hz})^{a}$
\mathbf{g}	6.93(d, $J = 12 \text{ Hz}$)
MeO H CH_2CO_2Me O	6.76(fused t, $J=1\mathrm{Hz}$)
6a	7.83(s)
7a	7.92(s) 7.94(s)
$8\mathbf{a}^{b)}$	7.83(s)
5a	7.64(s) 6.62(t, $J=2 \text{ Hz}$)
3¢) (Taiwanin A)	7.54(s) 6.72(t, $J=2 \text{ Hz}$)

a) Reported value: δ 7.71.12)

b) Another olefinic proton signal is masked by aromatic proton signals.

c) Reported values for the d_6 -DMSO solution: δ 7.47 and 6.68.4)

[2.2.2]octane (DABCO),¹⁴⁾ and simultaneously bubbled with dry, oxygen-free nitrogen. Chromatography of the crude product gave a β -apolignan (11a) in 41% yield. Similar irradiation of 5a in benzene afforded 11a in 46% yield, but was accompanied by a secondary product.¹⁵⁾ Lack of the secondary product in the run using DMF as solvent can be explained as follows. The ultraviolet (UV) spectrum of 11a showed λ_{max} 284.2 nm (log ε 3.62) in benzene and λ_{max} 283.8 nm (log ε 3.59) in DMF, respectively. The hyperchromic shift in DMF prevents 11a from absorbing the light of wave length essential to the degenerate rearrangement of 11a in the presence of a filter of ordinary borosilicate glass. In the absence of DABCO, 11a was obtained in low yields. The structure of 11a was established on the basis of the following observations. The photoproduct showed infrared spectrum (IR) absorption at 1752 (C=O) and 1694 (C=C) cm⁻¹, and ¹H-NMR signals at δ ca. 3.84 (2H, m, C₄-H), 4.85 (2H, s, -CH₂-OCO-), and ca. 4.93 (1H, m, C₁-H), which were closely similar to those of β -apopicropodophyllin.¹⁵⁾ The carbon skeleton of 11a was confirmed by its aromatization with lead tetraacetate into a known lignan (12).¹⁷⁾

Similar irradiation of **5b** afforded a mixture of **11b** (mp 136—137°; 30%) and **11c** (mp 184.5—185°; 20%). These products exhibited IR bands characteristic of β -apolignans at $ca.\ 1750$ (C=O) and $ca.\ 1690$ (C=C) cm⁻¹, and their substitutional isomerism was deduced from their ¹H-NMR spectra. The structure of **11b** was assigned from the presence of two singlet ¹H-NMR signals due to aromatic protons at δ 6.58 and 6.72. The assignment of another one

d) Taiwanin A (3) was prepared according to the procedure described by Swoboda, et al. [G. A. Swoboda, K.-T. Wang, and B. Weinstein, J. Chem, Soc. (C), 1967, 161].

¹⁴⁾ A quencher of singlet oxygen: see R.S. Atkinson, D.R.G. Brimage, R.S. Davidson, and E. Gray, J. Chem. Soc., Perkin Trans. I, 1973, 960.

¹⁵⁾ Found to be a product of photorearrangement of 11a (see Ref. 2). This will be described in another paper.

¹⁶⁾ D.C. Ayres, Can. J. Chem., 47, 2075 (1969).

¹⁷⁾ L.H. Klemm, K.W. Gopinath, D.H. Lee, F.W. Kelly, E. Trod, and T.M. McGuire, Tetrahedron, 22, 1797 (1966)

(11c) was furnished based on the presence of two doublet signals of AB type at δ 6.87 and 6.98 (J=8 Hz) ascribed to C_6 -H and C_5 -H, respectively. The C_1 -H signal at δ 5.23 for 11c appeared at considerably lower field than for 11a (δ ca. 4.93) and 11b (δ ca. 4.90) owing to the deshielding effect of the C_8 -methoxyl group, the feature supporting the structure for 11c.

Consequently, the photocyclization of the 2,3-dibenzylidenebutyrolactones (5) was found to proceed regiospecifically, giving only the β -apolignans (11) of the 1-aryl-2,3-naphtha-

lide types.

In the photocyclization of α,α' -dibenzylidenesuccinic anhydrides,¹⁸⁾ the ring closure is known to occur at both phenyl rings irrespectively of the ring substituents, whose effects on the cyclization selectivity have been observed significantly for 1,4-diphenyl-1,3-buta-dienes.¹⁹⁾ The leading role of the cinnamoyl system (Ar- \dot{C} = \dot{C} - \dot{C} =O) in the cyclization of the succinic anhydrides²⁰⁾ seems to operate also for the present butyrolactone system, resulting in the high specificity.

Experimental

All melting points and boiling points are uncorrected. ¹H-NMR spectra were obtained with a Hitachi R-22 (90 MHz) spectrometer with tetramethylsilane as an internal standard, IR spectra with a Hitachi EPI-G3 spectrophotometer, UV spectra with a Shimadzu MPS-50L spectrophotometer, and mass spectra with a Hitachi RMU-6E spectrometer (direct inlet, at 70 eV). Column chromatography was effected using Mallinckrodt silicic acid. Preparative thin-layer chromatography (TLC) was performed on Merck Kieselgel 60 PF₂₅₄. The photochemical reactions were carried out in an immersion apparatus fitted with an Eikosha 100 W high-pressure mercury lamp.

Dimethyl trans-Veratrylidenesuccinate (6a) trans-Veratrylidenesuccinic acid (29.0 g) was methylated with CH₂N₂ in AcOEt in a usual manner to give **6a** (30.2 g, 93%) as a pale yellow oil, bp 158—161° (0.002 mmHg) [lit. 22) bp 188—192° (0.5 mmHg)]. IR $v_{\rm max}^{\rm COL}$ cm⁻¹: 1747, 1717 (C=O), 1635 (C=C), 1600, 1582 (arom.). ¹H-NMR (CDCl₃) δ : 3.57 (2H, s, $-{\rm CH_2CO_2Me}$), 3.69 (3H, s, $-{\rm CO_2Me}$), 3.78 (3H, s, $-{\rm CO_2Me}$), 3.83 (3H, s, OMe), 3.87 (3H, s, OMe), 6.93 (3H, s, Ar-H), 7.83 (1H, s, $-{\rm CH_2CO_2Me}$). MS m/e: 294 (M+). Anal. Calcd.

for C₁₅H₁₈O₆: C, 61.21; H, 6.17. Found: C, 61.16; H, 6.21.

Dimethyl trans-Benzylidenesuccinate $(6b)^{23}$ —trans-Benzylidenesuccinic acid¹¹ (5.5 g) was converted into 6b (5.9 g, 94%) in a similar manner to that for 6a. A pale yellow oil, bp 130—135° (1 mmHg) [lit.²³) bp 235—240° (4 mmHg)]. IR $v_{\rm max}^{\rm CCI_1}$ cm⁻¹: 1747, 1726 (C=O), 1644 (C=C). ¹H-NMR (CDCl₃) δ : 3.56 (2H, s, -CH₂CO₂Me), 3.74 (3H, s, -CO₂Me), 3.84 (3H, s, -CO₂Me), 7.37 (5H, s, Ar-H), 7.92 (1H, s, -CH=C-). Anal.

Calcd. for C₁₈H₁₄O₄: C, 66.65; H, 6.02. Found: C, 66.40; H, 5.99.

Methyl Hydrogen α-Benzylidene-β-veratrylidenesuccinate (7a) — Metallic K (4.0 g) was dissolved in dry t-butanol (60 ml), and to this was added a solution of 6a (21.6 g) and benzaldehyde (7.6 g) in dry t-butanol (27 ml) with stirring at room temperature over 1 hr. After heating under reflux for 2 hr, the solution was poured into ice-water (800 ml), and the separated oil was taken in ether. The aqueous layer was acidified with 5% H_2SO_4 , and the separated oil was extracted with AcOEt. The extract was washed with satd. NaCl, dried over Na₂SO₄, and evaporated to give a brown glass (28.6 g), which was chromatographed on silica gel (570 g) in CHCl₃ to give 7a (17.0 g, 66%) as pale yellow crystals (from ether-CCl₄), mp 153—154°. IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 1717, 1685 (C=O), 1633 (C=C), 1597, 1580 (arom.). ¹H-NMR (CDCl₃) δ: 3.70 (6H, s, -CO₂Me and OMe), 3.82 (3H, s, OMe), 6.7—7.7 (8H, m, Ar-H), 7.92 (1H, s, -CH=C-), 7.94 (1H, s, -CH=C-), 9.30 (1H, broad, -CO₂H). MS m/e: 368 (M⁺, 33%), 336 (100%). Anal. Calcd. for C₂₁H₂₀O₆: C, 68.47; H, 5.47. Found: C, 68.19; H, 5.44.

19) C.C. Leznoff and R.J. Hayward, Can. J. Chem., 48, 1842 (1970).

¹⁸⁾ F.G. Baddar, L.S. El-Assal, N.A. Doss, and A.H. Shehab, J. Chem. Soc., 1959, 1016.

²⁰⁾ Heller and Szewczyk have mentioned non-planarity of the butadiene system in the cis, cis-diarylidene succinic anhydrides on the basis of the X-ray crystallographic analysis of the bis-p-anisylidene analogue²¹) and of the UV spectroscopic studies on isomeric bis(α-substituted benzylidene) analogues, and have ascribed the regiospecific photocyclization of these anhydrides to n→n* excitation of one of two independent cinnamoyl chromophores; H.G. Heller and M. Szewczyk, J. Chem. Soc., Perkin Trans. I, 1974, 1487

²¹⁾ M.D. Cohen, H.W. Kaufman, D. Sinnreich, and G.M.J. Schmidt, J. Chem. Soc. (B), 1970, 1035.

²²⁾ The diester (6a) has been prepared, by Schrecker, from veratrylidenesuccinic acid by the Fischer esterification [A.W. Schrecker, J. Am. Chem. Soc., 79, 3823 (1957)].

²³⁾ The diester (6b) has been prepared, by El-Assal and Shehab, from benzylidenesuccinic acid by methylation with dimethyl sulfate (L.S. El-Assal and A.H. Shehab, J. Chem. Soc., 1963, 2983).

Methyl Hydrogen α-Veratrylidene-β-benzylidenesuccinate (7b)—A solution of 6b (9.2 g) and veratral-dehyde (10.4 g) in dry t-butanol (50 ml) was added to a stirred solution of potassium t-butoxide [from metallic K (2.8 g)] in dry t-butanol (60 ml) at room temperature over 40 min, and the solution was refluxed for 2 hr. Working-up similar to that for 7a afforded a brown glass (16.5 g), which was chromatographed on silica gel (495 g) in CHCl₃ to give 7b (13.9 g, 95%) as pale yellow crystals (from ether-CCl₄), mp 136—138°. IR $v_{\text{max}}^{\text{cncl}_3}$ cm⁻¹: 1709, 1692 (C=O), 1633 (C=C), 1598 (arom.). ¹H-NMR (CDCl₃) δ: 3.71 (3H, s, OMe or -COOMe), 3.74 (3H, s, OMe or -CO₂Me), 3.86 (3H, s, OMe), 6.24 (1H, broad, -CO₂H), 6.7—7.6 (8H, m, Ar-H), 7.87 (1H, s, -CH=C-), 7.99 (1H, s, -CH=C-). MS m/e: 368 (M+, 100%). Anal. Calcd. for C₂₁H₂₀O₆: C, 68.47; H, 5.47. Found: C, 68.09; H, 5.42.

2-Veratrylidene-3-benzylidene-4-hydroxybutyric Acid (8a)——A solution of 7a (10.0 g) in dry tetrahydrofuran (42 ml) and dry ether (260 ml) was added to a stirred suspension of LiAlH₄ (15 g) in dry ether (448 ml) at -50° over 1.5 hr, and the suspension was stirred at -15°²⁴) for 5 hr. After addition of AcOEt (60 ml) and subsequently of 5% H₂SO₄, the organic layer was separated, and the aqueous layer was extracted with AcOEt. The combined extracts were washed with satd. NaCl, dried over Na₂SO₄, and evaporated in vacuo below room temperature to give a pale yellow glass (10.6 g), which was crystallized from benzene to afford 8a (5.4 g, 59%).²⁴ Recrystallization from ether-benzene gave an analytical sample as colorless prisms, mp 102—105°. IR ν_{max} cm⁻¹: 1682 (C=O), 1599, 1581 (arom.). ¹H-NMR (CDCl₃) δ: 3.70 (3H, s, OMe), 3.80 (3H, s, OMe), 4.24 (2H, broad s, -CH₂OH), 6.30 (2H, broad s, -CH₂OH and -CO₂H), 6.7—7.7 (9H, m, Ar-H and -CH=C-), 7.83 (1H, s, -CH=C-). Anal, Calcd. for C₂₀H₂₀O₅·1/2 C₆H₆: C, 72.80; H, 6.10. Found: C, 72.94; H, 6.21.

2-Benzylidene-3-veratrylidene-4-hydroxybutyric Acid (8b)—The half ester (7b, 1.0 g) was reduced with LiAlH₄ in a similar manner to that for 8a to give a pale yellow glass (0.95 g), which was purified by preparative TLC on silica gel using benzene-acetone (3:1) as a developing solvent to give 8b (0.49 g, 53%) as a pale yellow glass. IR $\nu_{\max}^{\text{CRCl}_3}$ cm⁻¹: 1687 (C=O), 1603, 1584 (arom.). ¹H-NMR (CDCl₃) δ : 3.71 (3H, s, OMe), 3.80 (3H, s, OMe), 4.27 (2H, broad s, -CH₂OH), 5.41 (2H, broad s, -CH₂OH and -CO₂H), 6.6—7.7 (9H, m, Ar-H and -CH=C-), 7.82 (1H, s, -CH=C-).

2-Veratrylidene-3-benzylidene-4-hydroxybutyric Acid γ-Lactone (5a) — A solution of 8a (0.20 g) and ρ -toluenesulfonic acid (0.30 g) in dry ether (75 ml) was stirred in the dark for 47 hr at room temperature. The solution was washed with satd. NaHCO₃ and then satd. NaCl, dried over Na₂SO₄, and evaporated in vacuo below room temperature to give 5a (0.17 g, 93%) as a yellow solid, mp 87—93°. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1765 (C=O), 1624 (C=C), 1592, 1580 (arom.). ¹H-NMR (CDCl₃) δ: 3.54 (3H, s, OMe), 3.78 (3H, s, OMe), 5.02 (2H, d, J=2 Hz, -CH₂OCO-), 6.3—7.4 (8H, m, Ar-H), 6.62 (1H, t, J=2 Hz, -CH=C-), 7.64 (1H, broad s, -CH=C-). UV $\nu_{\text{max}}^{\text{EIOH}}$ nm (log ε): 266 (3.98), 390 (3.64).

2-Benzylidene-3-veratrylidene-4-hydroxybutyric Acid γ-Lactone (5b)—The hydroxy acid (8b, 0.25 g) in dry ether (85 ml) was lactonized with p-toluenesulfonic acid (0.30 g) in a similar manner to that for 5a to give 5b (0.20 g, 83%) as a yellow solid, mp 125—130°. IR $\nu_{\text{max}}^{\text{RBr}}$ cm⁻¹: 1770 (C=O), 1622 (C=C), 1590 (arom.). ¹H-NMR (CDCl₃) δ: 3.50 (3H, s, OMe), 3.73 (3H, s, OMe), 5.02 (2H, d, J=2 Hz, -CH₂OCO-), 6.59 (1H, m, -CH=C-), 6.2—7.4 (8H, m, Ar-H), 7.67 (1H, broad s, -CH=C-). UV $\lambda_{\text{max}}^{\text{EtoH}}$ nm (log ϵ): 276 (3.56), 389 (2.85).

Methyl cis-Cinnamate (9)—A solution of trans-cinnamic acid (1.2 g) and Na₂CO₃ (1.2 g) in H₂O (180 ml) was irradiated through Pyrex sleeve (1.5 mm wall thickness) for 13 hr under a stream of oxygen-free N₂. The solution was acidified with 5% H₂SO₄, and the separated solid was filtered off, and the filtrate was extracted with AcOEt. The extract was washed with satd. NaCl, dried over Na₂SO₄, and evaporated to give a colorless solid (1.2 g), which was recrystallized from petroleum ether (bp 40—47°) to give cis-cinnamic acid (0.16 g, 13%) as colorless crystals, mp 66—68° (lit. 25) mp 68°).

The cis-acid (0.16 g) was methylated with CH₂N₂ in ether in a usual manner to give **9** (0.17 g, 95%) as a colorless oil, bp 114—115° (bath temperature, 1 mmHg) [lit.²⁶) bp 129—130° (17 mmHg)]. IR $v_{\rm max}^{\rm col_4}$ cm⁻¹: 1735 (C=O), 1631 (C=C). ¹H-NMR (CDCl₃) δ : 3.74 (3H, s, -CO₂Me), 5.98 (1H, d, J=12 Hz, -CH=C-), 6.93 (1H, d, J=12 Hz, -CH=C-), 7.2—7.7 (5H, m, Ar-H). Anal. Calcd. for C₁₀H₁₀O₂: C, 74.05; H, 6.22. Found: C, 73.56; H, 6.16.

Dimethyl cis-Veratrylidenesuccinate (10)——A solution of trans-veratrylidenesuccinic acid¹¹⁾ (10.0 g) and Na₂CO₃ (12.0 g) in H₂O (300 ml) was irradiated through Pyrex sleeve (1.5 mm wall thickness) for 26 hr under a stream of oxygen-free N₂. The solution was acidified with 5% H₂SO₄, and extracted with AcOEt. The extract was washed with satd. NaCl, dried over Na₂SO₄, and evaporated to give a pale yellow solid (9.4 g). The crude acid was contaminated with trans-acid (ca. 30% in ¹H-NMR spectrum), and further purification was unsuccessful.

The crude acid (9.4 g) was methylated with CH₂N₂ in AcOEt in a usual manner to give a pale yellow solid (10.6 g), which was recrystallized from isopropyl ether to give 10 (6.2 g, 56%) as colorless needles, mp

²⁴⁾ The yield on the run at -20° was 41%.

²⁵⁾ A method using photoisomerization of the free acid in benzene has been described: H. Stobbe and F.K. Steinberger, Ber., 55, 2225 (1922).

²⁶⁾ S. Sugden and H. Whittaker, J. Chem. Soc. London, 127, 1868 (1925).

69.5—70°. IR $\nu_{\rm max}^{\rm EBr}$ cm⁻¹: 1729, 1718 (C=O), 1640 (C=C), 1604, 1579 (arom.). ¹H-NMR (CDCl₃) δ : 3.44 (2H, d, J=1 Hz, $-{\rm CH_2CO_2Me}$), 3.69 (3H, s, $-{\rm CO_2Me}$), 3.71 (3H, s, $-{\rm CO_2Me}$), 3.87 (3H, s, OMe), 3.89 (3H, s, OMe), 6.76 (1H, fused t, J=1 Hz, $-{\rm CH=C-}$), 6.7—7.0 (3H, m, Ar-H). MS m/e: 294 (M⁺, 36%), 175 (100%). Anal. Calcd. for ${\rm C_{15}H_{18}O_6}$: C, 61.21; H, 6.17. Found: C, 61.29; H, 6.20.

1,4-Dihydro-1-(3,4-dimethoxyphenyl)-3-hydroxymethyl-2-naphthoic Acid γ -Lactone (11a)—A solution of 5a (99 mg) and DABCO (23 mg) in DMF (90 ml) was irradiated through an ordinary borosilicate glass sleeve (1.5 mm wall thickness) at 5° under a stream of dry, oxygen-free N₂. The reaction went to completion after 20 min's irradiation (checked by TLC). Evaporation of the solution in vacuo afforded a pale brown viscous oil (106 mg), which was purified by preparative TLC on silica gel using CHCl₃ as solvent to give 11a (41 mg, 41%) as colorless rhombs (from EtOH), mp 168—169°. IR $v_{\text{max}}^{\text{RB}r}$ cm⁻¹: 1752 (C=O), 1694 (C=C), 1604, 1593, 1578 (arom.). ¹H-NMR (CDCl₃) δ : 3.80 (3H, s, OMe), 3.82 (3H, s, OMe), ca. 3.84 (2H, m, C₄-H), 4.85 (2H, s, -CH₂OCO-), ca. 4.93 (1H, m, C₁-H), 6.50 (1H, dd, J=9, 2 Hz, C₆'-H), 6.70 (1H, d, J=9 Hz, C₅'-H), 6.82 (1H, d, J=2 Hz, C₂'-H), 7.1—7.2 (4H, m, Ar-H). MS m/e: 322 (M⁺, 100%). UV $\lambda_{\text{max}}^{\text{BioH}}$ nm (log ε): 282.0 (3.57). Anal. Calcd. for C₂₀H₁₈O₄: C, 74.52; H, 5.63. Found: C, 74.31; H, 5.56.

1,4-Dihydro-6,7-dimethoxy-3-hydroxymethyl-1-phenyl-2-naphthoic Acid γ -Lactone (11b) and 1,4-Dihydro-7,8-dimethoxy-3-hydroxymethyl-1-phenyl-2-naphthoic Acid γ -Lactone (11c)—A solution of 5b (100 mg) and DABCO (20 mg) in DMF (91 ml) was irradiated for 30 min in a similar manner to that for 11a. After evaporation of the solution, the crude product (155 mg) was purified by preparative TLC on silica gel using dry ether as solvent to give 11b (30 mg, 30%) and 11c (20 mg, 20%).

Compound 11b: Colorless micro needles (from EtOH), mp 136—137°. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1748 (C=O), 1691 (C=C), 1611 (arom.). ¹H-NMR (CDCl₃) δ : 3.76 (3H, s, OMe), 3.90 (3H, s, OMe), 3.7—4.0 (2H, m, C₄-H), 4.84 (2H, s, -CH₂OCO-), ca. 4.90 (1H, m, C₁-H), 6.58 (1H, s, C₈-H), 6.72 (1H, s, C₅-H), 7.0—7.3 (5H, m, Ar-H). MS m/e: 322 (M+, 30%). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 286.4 (3.46). Anal. Calcd. for C₂₀H₁₈O₄: C, 74.52; H, 5.63. Found: C, 74.42; H, 5.63.

Compound 11c: Colorless leaflets (from EtOH), mp 184.5—185°. IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 1749 (C=O), 1690 (C=C), 1604 (arom.). ¹H–NMR (CDCl₃) δ : 3.36 (3H, s, OMe), 3.81 (3H, s, OMe), 3.70—3.90 (2H, m, C₄–H), 4.78 (2H, broad s, –CH₂OCO–), 5.23 (1H, m, C₁–H), 6.87 (1H, d, J=8 Hz, C₆–H), 6.98 (1H, d, J=8 Hz, C₅–H), 7.1—7.3 (5H, m, Ar–H). MS m/e: 322 (M+, 100%). UV $\lambda_{\rm max}^{\rm EtOH}$ nm (log ε): 282 (3.05). Anal. Calcd. for C₂₀H₁₈O₄: C, 74.52; H, 5.63. Found: C, 74.67; H, 5.66.

1-(3,4-Dimethoxyphenyl)-3-hydroxymethyl-2-naphthoic Acid γ -Lactone (12)——A mixture of 11a (60 mg), lead tetraacetate (181 mg), and dry AcOH (2 ml) was heated at 90° for 20 min under a stream of dry N₂. After evaporation of the solution, the crude material was purified by preparative TLC on silica gel using CHCl₃-EtOH (30: 1) as solvent to give 12 (20 mg, 33%) as colorless needles (from EtOH), mp 213—214°. The product was identical with the authentic sample prepared according to the Klemm's procedure¹⁷⁾ on IR and ¹H-NMR spectral comparison.