Chem. Pharm. Bull. 25(9)2788-2789(1977)

UDC 547.814.1.04.09:615.357.011.5.015.11

Synthesis of Insect Antijuvenile Hormones

Tomihisa Ohta^{1(a)} and William S. Bowers¹⁾

New York State Agricultural Experiment Station, Cornell University¹⁾

(Received March 4, 1977)

An efficient synthesis of 2,2-dimethylchromenes was developed to pursue chemical structure-biological activity studies of insect antijuvenile hormones. The combination of Michael condensation and cyclodehydration with polyphosphoric acid gave nearly quantitative yields of alkoxy 2,2-dimethylchromanones which were reduced and dehydrated in one flask, to yield the respective 2,2-dimethylchromenes. By these methods several AJH analogs were prepared which possessed greater biological activity than the natural precocenes.

Keywords—insect antijuvenile hormone; precocene; 2,2-dimethylchromene; one step synthesis of 2,2-dimethylchromanones; 6-methoxy-7-ethoxy-2,2-dimethylchromene

Two simple substituted chromenes, precocenes I and II, isolated from Ageratum Houstonianum (Compositae) were shown to possess insect antijuvenile hormone (AJH) activity.²⁾

Since these compounds induce precocious metamorphosis and sterilize certain insects, we have investigated the chemical structure-biological activity relationships with a view to developing more active AJH analogs. For these studies efficient synthetic methods were required. Certain 2,2-dimethylchromenes have been synthesized by several procedures³⁾ but generally in poor yield. Cyclization of aryl propargyl ethers⁴⁾ appears generally applicable to chromen synthesis, but neither Hug, *et al.*⁵⁾ nor we were able to obtain 2,2-dimethylchromenes in reported yields because of the inefficiency in preparation of tertiary carbinyl ethers.

Our synthetic approach resulted in a one step synthesis of 2,2-dimethylchromanones (3) through a combination of Michael type condensation and cyclodehydration with polyphosphoric acid. On stirring m-methoxyphenol and β , β -dimethylacrylic acid with polyphosphoric acid on a steam bath for 1 hr, 7-methoxy-2,2-dimethylchromanone (3: $R=H,R'=OCH_3$) was

$$\begin{array}{c} R \\ R' \\ COOH \\ R' \\ COCH_3 \\ CH_3 \\ R' \\ CH_4 \\ CH_5 \\ CH_5 \\ R' \\ CH_6 \\ CH_6 \\ CH_6 \\ R' \\ CH_7 \\ CH_8 \\ R' \\ CH_8 \\ CH_8 \\ R' \\ CH_8 \\$$

¹⁾ Location: Geneva, New York 14456, U.S.A.; a) Present address: Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, 980, Japan.

²⁾ W.S. Bowers, T. Ohta, J.S. Cleere and P.A. Marsella, Science, 193, 542 (1976).

R.L. Shiner and A.G. Sharp, J. Org. Chem., 4, 575 (1939); L.I. Smith and P. M. Ruoft, J. Am. Chem. Soc., 62, 145 (1940); R. Huls and S. Brunell, Bull. Soc. Chim. Belg., 68, 325 (1959); J. Nikel, Chem. Ber., 92, 1989 (1959); E.E. Schweizer, E.T. Shaffer, C.T. Hughes and C.J. Berninger, J. Org. Chem., 31, 2907 (1966); G. Cardillo, R. Cricchio and L. Merlini, Tetrahedron, 24, 4825 (1968); R. Mechoulam, B. Yaghitinsky and Y. Gaoni, J. Am. Chem. Soc., 90, 2418 (1968).

⁴⁾ J. Hlubucek, E. Ritchie and W.C. Taylor, Tetrahedron Lett. 1969, 1369.

⁵⁾ R. Hug, G. Frater, H.J. Hansen and H. Schmid, Helv. Chim. Acta, 54, 306 (1971).

obtained in nearly quantitative yield. The chromanone (3: R=H,R'=OCH₃) was reduced with excess lithium aluminum hydride in anhydrous tetrahydrofuran and dehydration was effected without isolation of the chromanol (4: R=H,R'=OCH₃) by adding 4N hydrochloric acid and stirring briefly to afford 7-methoxy-2,2-dimethylchromene [precocene I (1)], bp 97—100°/2 mmHg, in 60% yield. Precocene II (2), bp 145—150°/4 mmHg, was also prepared in 81% yield from 3,4-dimethoxyphenol.

It should be noted that the yield of 6-methoxy-2,2-dimethylchromanone (3: $R=OCH_3$, R'=H) was only 18% when p-methoxyphenol and β , β -dimethylacrylic acid were treated with polyphosphoric acid at 140° for 1 hr. From these results, it is clear that the C_6 position of the phenol must be activated by a substituent at C_3 to permit a successful condensation.

Among AJH active chromenes given by the above procedure, 6-methoxy-7-ethoxy-2,2-dimethylchromene (5) was found to have over ten times higher activity than that of 2 in milkweed bug (Oncopeltus fasciatus).⁶⁾

Experimental

Alkoxyphenols—All alkoxyphenols except m- and p-methoxyphenol were prepared by oxidation of alkoxy benzaldehydes with 15.6% peracetic acid in acetic acid according to the method of Beroza.⁷⁾

Alkoxy 2,2-Dimethylchromenes—Alkoxyphenol (50 mmol) and β,β -dimethylacrylic acid (55 mmol) were stirred with 100 g of polyphosphoric acid on a steam bath for 1 hr. The reaction mixture was poured into 200 ml of ice-water and extracted with ether. The ether layer was washed with 5% sodium hydroxide solution, water, saturated brine, and dried over sodium sulfate. Evaporation of the ether gave crude chromanone (—95% pure on gas chromatography). The crude chromanone in 200 ml of anhydrous tetrahydrofuran was refluxed with 0.6 g of lithium aluminum hydride for 1 hr. Following decomposition of excess of lithium aluminum hydride with a few ml of ethyl acetate, the mixture was stirred with 100 ml of 4 n hydrochloric acid at room temperature for 15 min and then extracted with petroleum ether (bp 30—60°). The petroleum ether layer was washed with 5% sodium hydroxide solution, water, saturated brine, and dried over sodium sulfate. Removal of the solvent in vacuo gave an oil which was chromatographed on 100 g of Florisil. The product was eluted stepwise with increasing concentration of ether in hexane. Overall isolated yields are given in Table I. The structures of all new substances described in Chart 1 were consistent with spectroscopic data.

Phenol	Chromene No.	Yield %
3-Methoxy	1 ^(a)	60
3,4-Dimethoxy	$2^{b)}$	81
3-Ethoxy-4-methoxy	5 <i>c</i>)	68
3-Methoxy-4-ethoxy	6c)	69
3,4-Diethoxy	7 c)	60
3-Butyloxy-4-methoxy	8 ^{c)}	74
4-Methoxy	$g^{a,d,e}$	10
3,4-Ethylenedioxy	$10^{c)}$	60

Table I. Synthesis of 2,2-Dimethylchromenes

- a) Recovered from the fraction eluted with 2% ether in hexane.
 b) Recovered from the fraction eluted with 5% ether in hexane.
- c) Recovered from the fraction eluted with 10% ether in hexane.
- d) R. Livingstone and R. B. Watson, J. Chem. Soc., 1957, 1509.
- e) 9 did not show an AJH activity.

⁶⁾ Bioassay resúlts will be reported elsewhere.

⁷⁾ M. Beroza, J. Agr. Food Chem., 4, 49 (1956).