(Chem. Pharm. Bull.) 25(11)2953—2958(1977)

UDC 547, 857, 7, 04, 08: 543, 422, 06

## Spectral Properties of Mixed-Ligand Copper<sup>2+</sup> Complexes containing Adenine, 1,10-Phenanthroline and Halogen Anions

TADAO FUJITA and TAKEICHI SAKAGUCHI

Faculty of Pharmaceutical Sciences, Chiba University1)

(Received March 14, 1977)

The mixed ligand complexes,  $\operatorname{Cu_2^{2+}}$  (AdeH)<sub>2</sub>(phen)<sub>2</sub>X<sub>2</sub>·2H<sub>2</sub>O, where X is Cl, Br and ClO<sub>4</sub>, have been prepared from aqueous solution. The complexes were characterized by elementary and infrared spectroscopic analyses. In this paper, the IR spectra of these compounds were discussed in some detail and compared to those of binary parent complexes. It was supposed that N9 of adenine ligand coordinated to  $\operatorname{Cu^{2+}}$  from infrared (IR) spectra. The electron paramagnetic resonance (EPR) spectra of the mixed ligand complexes were recorded on polycrystalline samples at room temperature and g-values of the compounds were obtained.

Keywords—Mixed ligand complex; adenine; 1,10-phenanthroline; IR spectra; EPR spectra; metal complexes; purine base; coordination site

The mixed ligand complexes containing adenine as a component of nucleic acids were obtained and they were formulated as  $\text{Cu}_2(\text{C}_5\text{H}_5\text{N}_5)_2(\text{C}_{12}\text{H}_8\text{N}_2)_2\text{Cl}_2\cdot 2\text{H}_2\text{O}$ ,  $\text{Cu}_2(\text{C}_5\text{H}_5\text{N}_5)_2(\text{C}_{12}\text{H}_8\text{N}_2)_2(\text{ClO}_4)_2\cdot 2\text{H}_2\text{O}$ . Physical measurements including infrared and EPR spectroscopies have been employed in the characterization of the complexes. Recently the triplet-state EPR spectrum of the mixed ligand complex containing adenine and 1,10-phenanthroline has been reported. In this paper, the other complexes with various halogen anions are reported.

Sletten has demonstrated by X-ray methods that the complex  $Cu(Ade)_2 \cdot 4H_2O$  is demeric structure.<sup>3)</sup> Recently it has been established that neutral adenine functions as a syn, bidentate bridge (via N3 and N9) in the copper compound  $[Cu_2(AdeH)_4(H_2O)_2 \cdot](ClO_4)_4 \cdot 2H_2O^4)$  and  $[Cu_2(AdeH)_4Cl_2]Cl_2 \cdot 6H_2O.^5)$  Protonated adenine has also been observed to function as a syn, syn bridge, viz., in  $[Cu_3(AdeH_2)_2Cl_8] \cdot 4H_2O.^6)$  In contrast, the nitrogen atom N9 only is coordinated to copper (II) in the complex  $[Cu_2(AdeH_2)_2Br_2]Br_2^{7)}$  and (Glycylglycinato)-(aquo)(AdeH)Cu monohydrate<sup>8)</sup> and (N-salicylidene-N'-methylethylenediamine) (aquo)(9-methyladenine)Cu nitrate dihydrate.<sup>9,10)</sup>

The EPR spectrum of the copper complex with adenine separated at pH 7 was examined in polycrystalline samples by Duerst, Baum, and Kokoszka.<sup>11)</sup> Jezowska-Trzebiatowska, et al. studied the EPR spectra of complexes containing adenine at various pH.<sup>12)</sup> In this

<sup>1)</sup> Location: Yayoi-cho, Chiba 280, Japan.

<sup>2)</sup> T. Fujita and T. Sakaguchi, Chem. Pharm. Bull. (Tokyo), 25, 1055 (1977).

<sup>3)</sup> E. Sletten, Chem. Commun., 1119 (1967); idem, Acta Crystallogr., Sect B, 25, 1480 (1969).

<sup>4)</sup> A. Terzis, A.N. Beauchamp, and R. Rivest, Inorg. Chem., 12, 1166 (1973).

<sup>5)</sup> P. de Meester, D.M.L. Goodgame, K.A. Price, and A.C. Skapski, Nature (London), 229, 191 (1971); P. de Meester and A.C. Skapski, J. Chem. Soc., A, 2167 (1971).

<sup>6)</sup> P. de Meester and A.C. Skapski, J. Chem. Soc., Dalton Trans., 1972, 2400.

<sup>7)</sup> P. de Meester and A.C. Skapski, J. Chem. Soc., Dalton Trans., 1973, 424.

<sup>8)</sup> T. Sakaguchi and M. Tanno, Nippon Kagaku Kaishi, 1974, 1637; K. Tomita, T. Izuno, and T. Fujiwara, Biochem Biophys. Res. Commun., 54, 96 (1973).

<sup>9)</sup> T.J. Kistenmacher, L.G. Marzilli, and D.J. Szalda, Acta Crystallogr. Sect. B, 32, 186 (1976).

<sup>10)</sup> D.J. Szalda, T.J. Kistenmacher, and L.G. Marzilli, Inorg. Chem., 14, 2623 (1975).

<sup>11)</sup> R.W. Duerst, S.B. Baum, and G.F. Kokoszka, Nature (London), 222, 665 (1969).

<sup>12)</sup> B.J. Jezowska-Trzebiatowska, H. Kozwski, and A. Anyonow, Bull. Acad. Pol. Sci., 22, 31 (1974).

paper, the mixed ligand complexes containing adenine ligand are reported and the infrared (IR) and electron paramagnetic resonance (EPR) spectra are discussed.

## Results and Discussion

The IR spectra have been reported about adenine and its metal complexes.<sup>2,8,13,14</sup>) In the present study IR spectra of the mixed ligand complexes containing adenine, Cu<sup>2+</sup>, 1,10-phenanthroline and halogen ions were discussed.

In adenine the bands at 3290 and 3110 cm<sup>-1</sup> were assigned to NH<sub>2</sub> stretching.<sup>13)</sup> In Cu<sub>2</sub>(AdeH)<sub>2</sub>(phen)<sub>2</sub>Cl<sub>2</sub>·2H<sub>2</sub>O<sup>15)</sup> many bands assigned to NH<sub>2</sub> stretching were observed in

$$NH_{2}H \\ N \\ N \\ 1 \\ N \\ 3 \\ N \\ 3 \\ 9$$

Fig. 1. Structure of Adenine

the region 3000—3400 cm<sup>-1</sup>. Four bands from 2600 to 2975 cm<sup>-1</sup> were assigned to NH stretching in adenine ligand. In A,<sup>16)</sup> no bands assignable to NH stretching were observed in this region. The bands in the region 2600—2900 cm<sup>-1</sup> are attributed to N9-H stretching<sup>13</sup>,<sup>17)</sup> and therefore, it is likely that Cu<sup>2+</sup> binds to N9 of adenine in A. A strong absorption at 1630 cm<sup>-1</sup> was assigned to C=C and C=N stretching due to adenine and 1,10-phenanthroline.

The structure of Cu<sub>2</sub>(AdeH)<sub>2</sub>Cl<sub>4</sub> has not been determined by X-ray methods. In the IR spectrum of this complex no bands assigned to N9-H stretching from 2900 to 2600 cm<sup>-1</sup> were seen and it was probable that N9 coordinated to Cu<sup>2+</sup> in this compound. In Cu<sub>2</sub>(AdeH)<sub>2</sub>-Cl<sub>4</sub> the band assigned to NH<sub>2</sub> bending did not shift by complexation and appeared at 1670 cm<sup>-1</sup>.

In the IR spectrum of A, no bands attributed to  $\rm NH_2$  out-plane deformation from 900 to 950 cm<sup>-1</sup> were seen and the strong absorptions at 722 and 680 cm<sup>-1</sup> were assigned to  $\rm NH_2$  rocking.

In adenine the band at 546 cm<sup>-1</sup> was attributed to C=C and C=N stretching. Then in Cu<sub>2</sub>(AdeH)<sub>2</sub>Cl<sub>4</sub> three bands in the region 550—600 cm<sup>-1</sup> were observed. These bands were assigned to C=C, C=N and Cu-N stretching. In A two bands were seen in this region and these bands were assigned to C=C and C=N stretching due to adenine and 1,10-phenanthroline ligands.

The coordination site of [Cu(AdeH)<sub>2</sub>Br<sub>2</sub>]Br<sub>2</sub> prepared in an aqueous acidic solution was determined as N9 by X-ray methods.<sup>7)</sup> In the present study, Cu<sub>2</sub>(AdeH)<sub>2</sub>Br<sub>4</sub>·5H<sub>2</sub>O was prepared but the structure and coordination site of this compound were not determined by X-ray methods. By mixing this parent complex, Cu<sub>2</sub>(AdeH)<sub>2</sub>Br<sub>4</sub>·5H<sub>2</sub>O, and 1,10-phenanthroline, the mixed ligand complex, Cu<sub>2</sub>(AdeH)<sub>2</sub>-(phen)<sub>2</sub>Br<sub>2</sub>·2H<sub>2</sub>O<sup>18)</sup> was obtained. The IR



Fig. 2. IR Spectra of Cu<sub>2</sub>(AdeH)<sub>2</sub>(phen)<sub>2</sub>-Br<sub>2</sub>·2H<sub>2</sub>O (top) and Cu<sub>2</sub>(AdeH)<sub>2</sub>Br<sub>2</sub>·5H<sub>2</sub>O (bottom) in Nujol Mulls

<sup>13)</sup> C.L. Angell, J. Chem. Soc., 1961, 504.

<sup>14)</sup> T. Sakaguchi and S. Ishino, Nippon Kagaku Kaishi, 1974, 1480.

<sup>15)</sup> This complex is denoted by A and 1,10-phenanthroline is denoted by phen in this paper.

<sup>16)</sup>  $Cu_2(AdeH)_2(phen)_2Cl_2\cdot 2H_2O$  is denoted by A.

<sup>17)</sup> T. Shimanouchi, M. Tsuboi, and Y. Kyogoku, Adv. Chem. Phys., 7, 435 (1964).

<sup>18)</sup>  $Cu_2(AdeH)_2(phen)_2Br_2 \cdot 2H_2O$  was denoted by B.

spectra of these compounds were recorded in Nujol Mulls. In the IR spectrum of Cu<sub>2</sub>-(AdeH)<sub>2</sub>Br<sub>4</sub>·5H<sub>2</sub>O, a strong band appeared in the region 1660 cm<sup>-1</sup>, which was assigned to NH<sub>2</sub> bending. In contrast, in Cu(AdeH)<sub>2</sub>·4H<sub>2</sub>O and Cu<sub>2</sub>(AdeH)<sub>4</sub>(ClO<sub>4</sub>)<sub>4</sub>·6H<sub>2</sub>O, a strong band assigned to NH<sub>2</sub> bending appeared at 1640 cm<sup>-1</sup>. In the IR spectrum of B,<sup>18)</sup> a shoulder

Table I. Elementary Analysis of Several Binary and Ternary Cu<sup>2+</sup> Complexes

| Compound                                           | C (%)  |       | H (%)  |       | N (%)  |       |
|----------------------------------------------------|--------|-------|--------|-------|--------|-------|
|                                                    | Calcd. | Found | Calcd. | Found | Calcd. | Found |
| $Cu_2(AdeH)_4(ClO_4)_4 \cdot 6H_2O$                | 20.46  | 20.56 | 2.75   | 2.46  | 23.87  | 23.31 |
| $Cu_2(AdeH)_2Br_4 \cdot 5H_2O$                     | 22.20  | 22.11 | 3.18   | 2.59  | 25.90  | 25.89 |
| $Cu_2(AdeH)_2Cl_4$                                 | 22.26  | 21.67 | 1.87   | 1.76  | 25.92  | 25.53 |
| $Cu_2(AdeH)_2(phen)_2 \cdot Cl_2 \cdot 2H_2O$      | 47.18  | 46.92 | 3.50   | 3.46  | 22.17  | 21.91 |
| $Cu_2(AdeH)_2(phen)_2 \cdot Br_2 \cdot 2H_2O$      | 42.52  | 42.85 | 3.37   | 3.19  | 20.43  | 19.73 |
| $Cu_2(AdeH)_2(phen)_2 \cdot (ClO_4)_2 \cdot 2H_2O$ | 41.10  | 40.96 | 3.05   | 2.79  | 19.74  | 19.73 |

Table II. IR Data of Cu<sub>2</sub>(AdeH)<sub>2</sub>(phen)<sub>2</sub>Cl<sub>2</sub>·2H<sub>2</sub>O(KBr)

| Tentative assignment  NH <sub>2</sub> str. | Adenine          | $Cu_2(AdeH)_2Cl_4$ | $\begin{array}{c} \operatorname{Cu_2(AdeH)_2(phen)_2} \cdot \\ \operatorname{Cl_2} \cdot 2\operatorname{H_2O} \end{array}$ |  |
|--------------------------------------------|------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|--|
|                                            | 3290 m           | 3390 s             | 3395 s                                                                                                                     |  |
|                                            | 3110 s           | 3200 s             | 3280 m                                                                                                                     |  |
|                                            |                  | 3125 s             | 3175 m                                                                                                                     |  |
|                                            |                  |                    | $3050\mathrm{w}$                                                                                                           |  |
| NH str.                                    | $2975\mathrm{w}$ |                    |                                                                                                                            |  |
|                                            | $2790\mathrm{w}$ |                    |                                                                                                                            |  |
|                                            | 2690 w           |                    |                                                                                                                            |  |
|                                            | $2600\mathrm{w}$ |                    |                                                                                                                            |  |
| NH <sub>2</sub> bending                    | 1670 s           | 1670 s             | 1660 sh                                                                                                                    |  |
| C=C, C=N                                   | 1610 s           | 1618 s             | 1630 s                                                                                                                     |  |
| Purine Ring vib.                           | $1510\mathrm{w}$ | 1520 s, 1585 s     | 1550 m                                                                                                                     |  |
|                                            |                  | 1485 s             | 1520m, 1495m                                                                                                               |  |
| Ring vib.                                  | $1458\mathrm{w}$ | 1457 s             | 1456 m                                                                                                                     |  |
|                                            | 1426 m           | 1412 s             | 1432 s, 1402 s                                                                                                             |  |
|                                            | 1375 m           |                    | 1385 m                                                                                                                     |  |
| NH ring,                                   | 1342m            | 1364m              | 1348 s                                                                                                                     |  |
| C-NH <sub>2</sub> str.                     | 1318m            | 1323 s             | 1298 s                                                                                                                     |  |
| NH <sub>2</sub> wagging and twisting       | 1260 m           | $1250\mathrm{w}$   | $1230\mathrm{w}$                                                                                                           |  |
| 2 100 10 12 11 11 11 11                    | $1160\mathrm{w}$ | 1220 m             | 1174 s                                                                                                                     |  |
|                                            | 1132 m           | 1175m              | 1152 s                                                                                                                     |  |
| NH                                         |                  | 1116 s             | 1110 m                                                                                                                     |  |
|                                            | 1028m            | 1020 w, 980 w      | 970 m                                                                                                                      |  |
| NH <sub>2</sub> out-plane def.             | 945m             | 936 m              |                                                                                                                            |  |
|                                            | 918m             |                    |                                                                                                                            |  |
| NH out-plane def.                          | $875\mathrm{w}$  |                    | 872 m                                                                                                                      |  |
| •                                          | 850 w            |                    | 852 s                                                                                                                      |  |
|                                            | 801m             |                    |                                                                                                                            |  |
| CH bending                                 |                  | 789 s              | 795 w                                                                                                                      |  |
|                                            |                  | •                  | $780\mathrm{w}$                                                                                                            |  |
|                                            |                  | 740 s              | 735 m                                                                                                                      |  |
| NH <sub>2</sub> rocking                    | 728m             | 725 s              | 722 s, 680 s                                                                                                               |  |
| Ring and CN str.                           | $644\mathrm{w}$  | <b>63</b> 0 m      | 643 w                                                                                                                      |  |
| 2                                          | $625\mathrm{w}$  |                    |                                                                                                                            |  |
| C=C, C=N and Cu-N str.                     |                  | 596 m              |                                                                                                                            |  |
| -                                          |                  | $572\mathrm{w}$    | $560\mathrm{w}$                                                                                                            |  |
|                                            | 546 w            | 550 s              |                                                                                                                            |  |
|                                            |                  |                    | 425 w                                                                                                                      |  |

absorption at 1650 cm<sup>-1</sup> was assigned to NH<sub>2</sub> bending. In the IR spectrum of Cu<sub>2</sub>(AdeH)<sub>2</sub>-(phen)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub>·2H<sub>2</sub>O, no bands assignable to N9-H stretching were observed and it was likely that N9 coordinated to Cu<sup>2+</sup>. A strong absorption appeared at 1655 cm<sup>-1</sup> and this was assigned to NH<sub>2</sub> bending. This band shifted to lower frequency by complexation. In the IR spectrum of C,<sup>19</sup> two bands at 564 and 432 cm<sup>-1</sup> were assigned to C=C and C=N vibrations.

In all respects, the infrared spectra of three mixed ligand complexes resembled one another.

In the IR spectrum of Cu<sub>2</sub>(AdeH)<sub>4</sub>(ClO<sub>4</sub>)<sub>4</sub>·6H<sub>2</sub>O whose ClO<sub>4</sub> anions are held in an interaction network of hydrogen bonds,<sup>4)</sup> the bands at 1113 and 1088 cm<sup>-1</sup> are assigned to the asymmetric stretching modes of ionic perchlorate.<sup>20)</sup> The bands at 632 and 622 cm<sup>-1</sup> are assigned to the asymmetric bending modes of ionic perchlorate.<sup>20)</sup> The absence of bands in the 900—930 cm<sup>-1</sup> region and the lack of splitting of 1090 cm<sup>-1</sup> band substantiate the presence of a noncoordinate anion.

In contrast, in the IR spectrum of C, the symmetric stretching modes of ionic perchlorate about 1101 cm<sup>-1</sup> are splitting, and a new band appeared at 932 cm<sup>-1</sup>. Therefore, it may be concluded that the ClO<sub>4</sub><sup>-</sup> anion takes part in coordination to the copper (II) ion.<sup>20)</sup>

Table III. IR Data of Cu<sub>2</sub>(AdeH)<sub>2</sub>(phen)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub>·2H<sub>2</sub>O

| Tentative<br>assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | $\begin{array}{c} \operatorname{Cu_2(AdeH)_4(ClO_4)_2} \cdot \\ 2\operatorname{H_2O} \end{array}$ |        | $\begin{array}{c} \operatorname{Cu_2(AdeH)_2(phen)_2} \cdot \\ (\operatorname{ClO_4)_2.2H_2O} \end{array}$ |         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------|---------|--|
| OH str.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                   |        |                                                                                                            |         |  |
| NH <sub>2</sub> str.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 3325 s                                                                                            |        | 3380 s                                                                                                     |         |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 3185 s                                                                                            |        | 3125 s                                                                                                     | 100     |  |
| NH <sub>2</sub> bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 1680 s                                                                                            |        | 1655 s                                                                                                     |         |  |
| C=C, $C=N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 1605 s                                                                                            |        | 1610 s                                                                                                     |         |  |
| Purine Ring vib.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 1570 m                                                                                            |        |                                                                                                            |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1505 w                                                                                            |        | $1500\mathrm{w}$                                                                                           |         |  |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * 14 %       | 1472 s                                                                                            |        | 10 mg                                                                                                      |         |  |
| Ring vib.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | <i>i</i> .                                                                                        |        | 1462 m                                                                                                     |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | De est       | 1410 s                                                                                            |        | 1434 s                                                                                                     |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100          |                                                                                                   |        | 1407 m                                                                                                     | trib.   |  |
| NH ring, C-NH <sub>2</sub> str.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1355 m                                                                                            |        | 1348 s                                                                                                     |         |  |
| <b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 1310m,                                                                                            | 1289 w | 1305 s                                                                                                     |         |  |
| NH <sub>2</sub> wagging and twisting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * * ** · · · | 1215 s                                                                                            |        | 1232m                                                                                                      |         |  |
| 2 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ****         | ,                                                                                                 |        | $1205\mathrm{w}$                                                                                           | · · · · |  |
| , we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | . 4                                                                                               | 100    | 1188 w                                                                                                     | 1       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1150 s                                                                                            |        | 1150 sh                                                                                                    |         |  |
| $ClO_4$ asym. str.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 1113 s                                                                                            |        | 1101 s                                                                                                     |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1, 1         | 1088 s                                                                                            |        |                                                                                                            |         |  |
| $\mathbf{N}\mathbf{H}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 995 w                                                                                             |        | 980 m                                                                                                      |         |  |
| NH <sub>2</sub> out-plane def.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 940 w                                                                                             |        | 932 w                                                                                                      |         |  |
| CH bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 792 s                                                                                             |        | 798m                                                                                                       |         |  |
| and the second s |              | ***                                                                                               |        | 772 m                                                                                                      | ** **   |  |
| NH, rocking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 735 s                                                                                             |        | 726 s                                                                                                      |         |  |
| Ring and CN str.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 645 w                                                                                             |        | 660 m                                                                                                      |         |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                   |        | 650 m                                                                                                      |         |  |
| ClO <sub>4</sub> - bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 632 w                                                                                             |        | 630 s                                                                                                      |         |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 622 s                                                                                             |        |                                                                                                            |         |  |
| C=C, $C=N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 575 w                                                                                             |        | 564 m                                                                                                      |         |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 1111                                                                                              |        | 432m                                                                                                       |         |  |

<sup>19)</sup>  $Cu_2(AdeH)_2(phen)_2(ClO_4)_2 \cdot 2H_2O$  is denoted by C.

<sup>20)</sup> B.J. Hathaway and A.E. Underhill, J. Chem. Soc., 1961, 3091; D.G. Hendricker and R.L. Bonder, Inorg. Chem., 9, 273 (1970).

## **EPR** Spectra

Carrabine and Sundaralingam<sup>21)</sup> reported the structure of di-μ-chloro-bis dichloro(guaninium)copper<sup>2+</sup> dihydrate and the structure to be that of a dimer consisting of chloro-briged, trigonal-bipyramidally coordinated copper<sup>2+</sup> ions. The EPR spectrum of a guanine-copper chloride complex was reported by Villa<sup>22)</sup> and R.F. Drake, *et al.*<sup>23)</sup> The latter reported that assignment of resonance fields was made impossible by the broadening of the spectrum and the presence of monomeric impurities and the full-field spectrum of Cu(gua)Cl<sub>3</sub>·H<sub>2</sub>O (gua denots guanine) was very broad, and structureless and g-values of 2.18 can be obtained from the central point in the inflection.

Trinuclear adenine complex  $Cu_3Cl_8(C_5H_6N_5)_2\cdot 4H_2O$  showed only a single broad EPR band in the g=2 region,<sup>24)</sup> related to that found for  $Cu(gua)Cl_3\cdot H_2O^{\cdot 22,23)}$  The mixed ligand complexes, A and C, showed only a single broad band in the g=2 region, too. The EPR spectral line shape of these complexes would indicate the exchange interaction to be very small, since the delocalization ability of chloride and perchlorate ions is very low. Therefore, the spectra of these mixed ligand complexes will indicate that the distance Cu-Cu is remarkably small.<sup>12)</sup> Consequently, it was assumed that these complexes contained chloride and perchlorate bridges. The mixed ligand complex B showed such a broad band that the g-value of this complex was not determined.

In the present study, a distinct resonance at 1500 G were not observed, which would be assigned to  $\Delta M = \pm 2$  band and it was not apparent that the spins at the Cu²+ ions were interacting, yielding a triplet and a siglet state. The spectrum of the complex, Cu<sub>3</sub>Cl<sub>3</sub>(adenine)<sub>3</sub>·6H<sub>2</sub>O was symmetrical<sup>12,24)</sup> but the spectra of the mixed ligand complexes were unsymmetrical as that of Cu(gua)Cl<sub>3</sub>·H<sub>2</sub>O.<sup>22,23)</sup> The guanium complex is made up of trigonal bipyramidals sharing equatorial-to-apex with chloro-bridged Cu²+, while many complexes with the bridged Cu²+ are square-based pyramid sharing base-to-apex. The mixed ligand complexes, A, B and C, were assumed to be made up of either the former or the latter.



21) J.A. Carrabine and M. Sundaralingam, J. Am. Chem. Soc., 92, 369 (1970).

 $(phen)_2Cl_2 \cdot 2H_2O$  with g=2.12.

<sup>J.F. Villa, Inorg. Chem., 9, 2052 (1973).
R.F. Drake, V.H. Crawford, N.W. Naney, and W.E. Hatfield, Inorg. Chem., 13, 1246 (1974); J.R. Wasson, J.W. Hall, H.W. Richardson, and W.E. Hatfield, ibid., 16, 458 (1977).</sup> 

<sup>24)</sup> D.M.L. Goodgame and S.V. Waggett, Biochim. Biophys. Res., 42, 67 (1971).

## Experimental

Apparatus—Infrared spectra were recorded in Nujol or KBr disk on a Hitachi Infrared Spectrometer, Model G3. The EPR spectra were taken on a JES-ME-IX EPR Spectrometer. The spectra were recorded on polycrystalline samples at a room temperature and g-values were determined by the methods of Hathaway and Billing.<sup>25)</sup>

Reagents—The ligands and other materials were obtained from Wako Pure Chemical Industries Ltd. and Tokyo Kasei Co., Tokyo.

Preparation—Cu<sub>2</sub>(AdeH)<sub>4</sub>(ClO<sub>4</sub>)-6H<sub>2</sub>O was prepared according to Ref. 4.

The following complexes are new compounds.

 $Cu_2(C_5H_5N_5)Cl_4$ : In 13 ml of 0.1 m HCl, 0.9 g of adenine hydrochloride was dissolved. In 9 ml of  $H_2O$ , 4 g of  $CuCl_2 \cdot 2H_2O$  was dissolved. These two solutions were mixed and the solution was heated at 95° for several hours. A yellow polycrystalline compound was obtained. The complex was washed with 0.1 m HCl and methanol.

 $Cu_2(C_5H_5N_5)_2(C_{12}H_8N_2)_2Cl_2\cdot 2H_2O$ : In 20 ml of methanol, 200 mg of 1,10-phenanthroline was added to 80 ml of hot water containing  $Cu_2(C_5H_5N_5)_2Cl_4$  with stirring. The solution was heated for two hours at a room temperature and then the solution was evaporated. When the solution was cooled, dark green crystals were obtained. They were crystallized from water and dried under a reduced pressure.

 $Cu_2(C_5H_5N_5)_2(C_{12}H_8N_2)_2(ClO_4)_2 \cdot 2H_2O$ : Method I, in 200 ml of water, 0.578 g of  $Cu_2(AdeH)_4(ClO_4)_4 \cdot 6H_2O$  was suspended. In 100 ml of methanol, 0.397 g of 1,10-phenanthroline was dissolved. The two solution were mixed and evaporated. Dark green crystals thus obtained were recrystallized form water and dried under a reduced pressure.

Method II, in 200 ml of an aqueous methanol, 0.270 g of adenine, 0.741 g of Cu<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O and 0.396 g of 1,10-phenanthroline were dissolved. The solution was refluxed for two hours at 90°. When the solution was cooled, dark green crystals were obtained. They were recrystallized from water and dried under a reduced pressure.

 $Cu_2(C_5H_5N_5)_2Br_4\cdot 5H_2O$ : In 50 ml of 0.1 m HCl, 0.338 g of adenine was dissolved and 2.23 g of  $CuBr_2$  was dissolved in 10 ml of 0.1 m HCl. The two solutions were mixed with stirring. A brown compound was obtained and washed with water. It was dried under a reduced pressure.

 $Cu_2(C_5H_5N_5)_2(C_{12}H_8N_2)_2Br_2\cdot 2H_2O$ : In 100 ml of 50% aqueous methanol solution, 0.530 g of  $Cu_2-(C_5H_5N_5)_2Br_4\cdot 5H_2O$  and 0.390 g of 1,10-phenanthroline were suspended. The solution was stirred for two hours at a room temperature. Dark green crystals thus obtained was recrystallized from water and dried under a reduced pressure.

Acknowledgement Thanks are due to Miss H. Oida for elementary analysis.

<sup>25)</sup> B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5, 143 (1970).