Attempts to synthesise the hypothetical biogenetic intermediate mancunine (5, 18,19-double bond) from hirsuteine (1, 18,19-double bond) by the same route were unsuccessful.

Faculty of Pharmaceutical Sciences, Chiba University 1–33, Yayoi-cho, Chiba Shin-ichiro Sakai Nobuo Shinma

Received December 22, 1976

Chem. Pharm. Bull. 25(4) 844—846 (1977)

UDC 547.918.02:543.422.25.06

Application of ¹³C NMR Spectroscopy to Chemistry of Natural Glycosides: Rebaudioside-C, a New Sweet Diterpene Glycoside of Stevia rebaudiana

From leaves of *Stevia rebaudiana* Bertoni (Compositae), there were isolated three new sweet glycosides, named rebaudioside-C, -D, and -E. Application of ¹³C NMR spectroscopy as well as chemical evidences led to assign the structure V in Chart 1 to rebaudioside-C.

Keywords——¹³C NMR of oligoglycosides; PRFT method; Kaurene type diterpenes; rebaudiosides-C, -D, -E; natural sweetener; *Stevia rebaudiana* Bertoni; Compositae

Stevia rebaudiana Bertoni (Compositae), a wild herb of Paraguay is known to contain the sweet glucoside, stevioside(I)¹⁾ and has attracted much attention as a new source of the natural sweetener. Recently, the present authors reported isolation and structural determination of additional sweet glucosides, named rebaudiosides-A(II) and -B(III) from this plant.²⁾

The glycoside fraction²⁾ of the methanolic extract of leaves of this plant was recrystal-lized from methanol to give I and the mother liquor was subjected to repeated column chromatography on silica gel (solvent CHCl₃: MeOH: $\rm H_2O(30:10:1)$ homogeneous) and AcOEt: MeOH(10:1)), affording now three new sweet glycosides, named rebaudiosides-C (yield 0.4%), -D(yield 0.03%) and -E(yield 0.03%) along with I, II, III and steviolbioside-(IV).²⁾

Rebaudioside-C(V), colorless needles, mp 215—217°, $[\alpha]_{\rm D}^{25}$ —29.9° (MeOH) which was crystallized by slow concentration of its methanolic solution, showed its spot³) between those of I and II on thin–layer chromatogram on silica gel(solvent CHCl₃: MeOH: H₂O(15: 6: 1 homogeneous)).

On the basis of our recent study on ¹³C nuclear magnetic resonance(CMR) of *Stevia* diterpene glycosides, ⁴⁾ the spectrum ⁵⁾ of V revealed that V must be a glycoside of steviol(VI), both the 19-COOH and the 13-tert-OH of which must be combined with sugar moieties. On hydrolysis with crude hesperidinase, ⁶⁾ V afforded glucose, rhamnose and VI, while alkaline

¹⁾ E. Mosettig, U. Beglinger, F. Dolder, H. Lichiti, P. Quitt, and J.A. Waters, J. Am. Chem. Soc., 85, 2305 (1963) and the references cited therein.

²⁾ H. Kohda, R. Kasai, K. Yamasaki, K. Murakami, and O. Tanaka, Phytochemistry, 15, 981 (1976).

³⁾ Visualized as a yellow spot on heating after spraying 10% H₂SO₄.

⁴⁾ K. Yamasaki, H. Kohda, T. Kobayashi, R. Kasai, and O. Tanaka, Tetrahedron Letters, 1976, 1005.

⁵⁾ All spectra were taken in C_5D_5N ; δ ppm from TMS; at 25°.

⁶⁾ H. Kohda and O. Tanaka, Yakugaku Zasshi, 95, 246 (1975).

saponification of V yielded 1,6-anhydroglucopyranose²⁾ and an acidic glycoside(VII), colorless needles(from MeOH), mp 205—207°, $[\alpha]_D^{25}$ —47.9° (MeOH). A set of carbon signals which disappeared on going from V to VII was assigned to a β -glucopyranosyl unit bonded with the 19–COOH of this type of diterpenes⁴⁾ (see Table I).

The extensive studies on CMR of mono- and oligo-saccharides have been reported?) and it has been expected that an α -rhamnopyranoside must be distinguished from its β -anomer by chemical shifts of C-3 and -5 carbons8) as well as the coupling constant of the 1-\(^{13}\text{C}-1^{14}\text{H.9}\) Recently, the glycosylation shifts of numerous aliphatic alcohols have been also investigated? Partially relaxed Fourier transform method(PRFT) which was reported to facilitate the identification of carbon resonances of individual sugar units in the spectra of oligosaccharides? was applied to the spectrum of VII, disclosing that in the region of sugar carbon resonances, a set of resonances with longer spin-lattice relaxation times (T₁) than others can be assigned to an unsubstituted β -glucopyranoside. Further, this PRFT experiment led to assign signals due to other two suger units to an unsubstituted α -rhamnopyranoside and a 2,3-di-O-substituted β -glucopyranoside, in the latter of which the degree of the downfield-displacement of carbon signals of its C-2 and -3 strongly suggested that its C-2 and -3 hydroxyl groups were combined with α -rhamnopyranosyl and β -glucopyranosyl units, respectively. 7,10)

These evidences led to formulation of V and VII as shown in Chart 1. This was further confirmed by the following chemical evidences. Permethylation¹²⁾ of VII followed by methanolysis gave methyl 2,3,4-tri-O-methylrhamnopyranoside, methyl 2,3,4,6-tetra-O-methylglucopyranoside and methyl 4,6-di-O-methylglucopyranoside. On mild hydrolysis with 1.5% H₂SO₄ in MeOH: H₂O(1:1), VII yielded rhamnose and a desrhamno-glycoside-(VIII), which was subjected to methylation¹²⁾ followed by methanolysis to give methyl 2,3,4,6-tetra-O-methylglucopyranoside and methyl 2,4,6-tri-O-methylglucopyranoside.

Structural determination of rebaudiosides-D, colorless needles, (from EtOH), mp 283— 286° , $[\alpha]_{D}^{25}$ —22.7° (MeOH) and -E, colorless needles(from MeOH), mp 205—207°, $[\alpha]_{D}^{25}$

Chart 1

⁷⁾ P.A.J. Gorin and M. Mazurek, Can. J. Chem., 53, 1212 (1975); T. Usui, N. Yamaoka, K. Matsuda, K. Tuzimura, H. Sugiyama, and S. Seto, J.C.S. Perkin I, 1973, 2425; P. Colson and R.R. King, Carbohydrate Research, 47, 1 (1976) and the references cited therein.

⁸⁾ D.E. Dorman and J.D. Roberts, J. Am. Chem. Soc., 92, 1355 (1970).
9) K. Bock, I. Lundt, and C. Pedersen, Tetrahedron Letters, 1973, 1037.

¹⁰⁾ R. Kasai, M. Suzuo, J. Asakawa, and O. Tanaka, Tetrahedron Letters, 1977, 175; K. Tori, S. Seo, Y. Yoshimura, H. Arita, and Y. Tomita, Tetrahedron Letters, 1977, 179.

¹¹⁾ A. Allerhand and D. Dodfrell, J. Am. Chem. Soc., 93, 2777 (1971).

¹²⁾ S. Hakomori, J. Biochem., 55, 205 (1964).

 -34.2° (MeOH), both of which showed lower Rf values than II in the thin-layer chromatography (vide supra), are under progress.

Table I. ¹³C Chemical Shifts (in C₅D₅N at 25°, 25.15 MHz)

	Aglycone			Sugar moiety		Sugar moiety				
	V	VII		v	VII		Me-G	IX	X ⁴)	Me-Rh
C-1	40.8	41.0	G-1	96.1		C-1	105.5	95.7	99.4	102.4
2	19.4	19.7	2	74.2			74.9	73.9	75.3	72.6
3	38.5	38.6	3	79.5^{a}		2 3	78.3	79.1	77.9c)	72.0
4	44.0	43.9	4	70.7		4	71.6	71.0	71.5	73.7
5	57.5	57.0	5	78.7ª)		5	78.3	79.1	78.5 ^{c)}	69.4
6	22.0	22.6	6	62.1		6	62.7	62.0	62.6	18.5
7	41.7	41.7	G'-1	97.7	98.2		•,	•=••	0	10.0
8	42.2	42.5	2	77.4	76.2					
9	54.1	54.1	3	89.9	89.8					
10	39.9	39.8	4	70.3	69.6					
11	20.6	20.7	5	77.4	77.5					
12	38.5	38.0	6	$62.4^{(d)}$	62.3					
13	87.3	86.6	G''-1	104.2	104.2					
14	43.2	43.6	2	75.1	75.0					
15	48.6	48.5	3	$78.3^{(b)}$	78.4					
16	152.9	154.1	4	71.5	71.4					
17	106.1	105.0	5	78.7^{b}	78.4					
18	28.2	29.3	6	62.6^{d}	62.3					
19	177.2	180.0	Rh-1	102.1	101.6 ^e)					
20	15.3	15.9	2	72.5	72.4					
		_3.0	: 3	72.0	72.4					
			4	74.2	74.1					
			5	69.8	69.6					
			6	18.8	18.8					

IX: prepared from VI

Me-G: methyl β-D-glucopyranoside

Me-Rh: methyl α-L-rhamnopyranoside

a,b,c,d) Values may be reversed. e) $J_{C_1-H_1}=171\pm 1~\mathrm{Hz}$

Acknowledgement The authors are grateful to Dr. Y. Miyazaki and Mr. K. Nishi, the Experimental Stations of Medicinal Plants, National Institute of Hygienic Sciences for their kind supply of the cultivated plant material, to Prof. J. Shoji, Showa University for his kind donation of partially methylated glucoses and to Dr. K. Morimoto, Hiroshima Prefectural Institute of Public Health for his valuable advice.

Hiroshima Prefectural Institute of Public Health 1-5-70 Ujinakanda, Hiroshima-shi

Institute of Pharmaceutical Sciences Hiroshima University School of Medicine 1-2-3 Kasumi, Hiroshima-shi IKUNORI SAKAMOTO

Kazuo Yamasaki Osamu Tanaka

Received December 23, 1976