Communications to the Editor (Chem. Pharm. Bull.) 25(5)1155—1156(1977) UDC 547.814.5.04:541.14.04 ## Photo-oxidative Cyclization of Morusin When a solution of morusin (I) in CHCl₃ or benzene was exposed to bright sunshine, or irradiated with a high-pressure mercury lamp, morusin hydroperoxide (III) was obtained in a high yield. The reduction of III gave compound A (II) which had been isolated from the root bark of *Morus alba* L. The reaction mechanism of the photooxidation was discussed based on the several experimental results. **Keywords**—photooxidation; morusin; *Morus alba* L.; hydroperoxide; phenoxy radical; dihydrooxepin ring In the previous communication,¹⁾ the authors reported the structure determination of three new flavone derivatives, morusin (I), compound A (II), and cyclomorusin, obtained from the root bark of *Morus alba* L. We now report the formation of morusin hydroperoxide (III) on photooxidation of morusin (I). When a solution of I in CHCl₃ was exposed to bright sunshine for 7 hr, or irradiated with a high-pressure mercury lamp (40 W) for 5 hr, morusin hydroperoxide (III) was obtained in ca.80% yield. This reaction did not occur in the dark and was dependent on the solvent, proceeding in CHCl₃ or benzene solution, but in MeOH, EtOH or *tert*-BuOH solution the starting material being recovered unchanged. III shows the following data: $C_{25}H_{24}O_{8}$, mp 204—206° (yellow needles from MeOH), positive reaction on FeCl₃, Mg-HCl, and Zn-HCl test, negative on Gibbs test, UV absorption $\lambda_{\text{max}}^{\text{BiOH}}$ nm (log ε): 280 (4.46), 335 (4.42); IR absorption $\nu_{\text{max}}^{\text{Nuiol}}$ cm⁻¹: 3320, 1660, 1635, 1540; proton magnetic resonance (δ in pyridine- d_{5}) shows the AMX pattern, $$\begin{array}{c} I: R_1 = R_2 = H \\ Ia: R_1 = CH_3, R_2 = H \\ Ib: R_1 = H, R_2 = CH_3 \\ \\ \hline III: R_1 = R_2 = R_3 = H \\ \hline III: R_1 = R_2 = R_3 = H \\ \hline IIII: R_1 = R_2 = R_3 = H \\ \hline IIII: R_1 = R_2 = R_3 = H \\ \hline IIII: R_1 = R_2 = R_3 = H \\ \hline IIII: R_1 = R_2 = R_3 = H \\ \hline IIII: R_1 = R_2 = CH_3, R_2 = R_3 = H \\ \hline IIIII: R_1 = R_2 = CH_3, R_3 = H \\ \hline IIIII: R_1 = R_1 = R_2 = CH_3, R_3 = H \\ \hline IIIII: R_1 = R_2 = CH_3, R_3 = H \\ \hline IIIII: R_1 = R_2 = R_1 =$$ ¹⁾ T. Nomura, T. Fukai, S. Yamada, and M. Katayanagi, Chem. Pharm. Bull. (Tokyo), 24, 2898 (1976). ²⁾ Elemental analysis of the compound gave a satisfactory result. such as 2.89 (dd, J=10 and 18 Hz, C_9-H), 3.90 (dd, J=2 and 18 Hz, C_9-H), 4.76 (dd, J=2 and 10 Hz, $C_{10}-H$); mass spectrum m/e: 452 (M⁺), 436 (M⁺-O), 421 (M⁺-O-CH₃), 377 (M⁺-C₃H₇O₂, IVa), 203 (formed from the ion at 421 by a reverse Diels-Alder reaction).^{3,4)} From these data, III can be regarded as a flavone containing a dihydrooxepin ring.^{1,5,6)} When III was reduced by NaBH₄, Ph₂S, Ph₃P, or (CH₃)₃N, in MeOH, compound A (II) was obtained in ca. 80% yield. The following data indicate the presence of two phenolic hydroxyls and a hydroperoxide group in III. Treatment of III with ethereal CH₂N₂ in MeOH gave the monomethylate²⁾ (IIIa), $C_{26}H_{26}O_8$ (M+ 466), mp 187—190°, IR $\nu_{\text{max}}^{\text{Nuiol}}$ cm⁻¹: 3280, positive on FeCl₃ test, and the dimethylate (IIIb), $^{7)}$ $C_{27}H_{28}O_8$ (M+ 480), mp 228—230°, IR $\nu_{\text{max}}^{\text{Nuiol}}$ cm⁻¹: 3300, negative on FeCl₃ test. Treatment of IIIb with Ac₂O in pyridine yielded the dimethyl ether monoacetate (IIIc), $C_{29}H_{30}O_9$ (M+ 522), mp 150—152°; IR $\nu_{\text{max}}^{\text{Nuiol}}$ cm⁻¹: 1780 (-OO-COCH₃),⁸⁾ mass spectrum m/e: 405 (base peak, M+-C₅H₉O₃, IVb).^{3,4)} From these results, the structure of morusin hydroperoxide is deduced to be III. Considering the result of photooxidation, it is probable that compound A (II) is an artifact which was formed from morusin (I) ν ia hydroperoxide (III) during isolation. III was also obtained in the dark in the presence of diphenyl picryl hydrazyl (DPPH)⁹⁾ or MnO₂,¹⁰⁾ and the yield of III was 20% and 35%, respectively. When the CHCl₃ solution of Ia¹¹⁾ was treated with DPPH in the dark, the formation of IIIa was detected by TLC. These findings suggest that phenoxy radical (V) is presumably intermediate of this oxidation. On the other hand, the photooxidation of I was inhibited by the addition of 2,6-di-tert-butyl cresol, a free radical inhibitor. This photooxidation did not occur in tetrahydro morusin (Ic)¹⁾ and 2'-O-methyl morusin (Ib).¹¹⁾ However irradiation of 4'-O-methyl morusin (Ia)¹¹⁾ gave the hydroperoxide (IIIa). These result indicate that both of the free hydroxyl group at C₂ and the isolated double bond are required for this photooxidation. The present findings probably suggest that the photooxidation proceeds via V as an intermediate. Further studies are now in progress to elucidate the mechanism of the photooxidation of morusin. **Acknowledgement** We are grateful to Prof. H. Mitsuhashi, Faculty of Pharmaceutical Science, Hokkaido University, for his valuable advices and encouragement. We also thank to Mr. Y. Hirano for his technical assistance, Miss Y. Sakamoto for PMR spectral measurement and Miss Y. Taniguchi for mass spectral measurement. Faculty of Pharmaceutical Science Toho University, 542, Miyama-cho, Funabashi-shi, Chiba, 274, Japan Received August 24, 1976 Taro Nomura Toshio Fukai Sachiko Yamada Masa Katayanagi ³⁾ A.V.R. Rao, S.S. Rathi, and K. Venkataraman, Indian J. Chem., 10, 989 (1972). ⁴⁾ L. Crombie, D.E. Games, J.J. Haskins, and G.F. Reed, J. Chem. Soc. (C), 1972, 2241. ⁵⁾ A.V.R. Rao, S.S. Rathi, and K. Venkataraman, Indian J. Chem., 10, 905 (1972). ⁶⁾ A.D. Pendse, R. Pendse, A.V.R. Rao, and K. Venkataraman, Indian J. Chem., 14B, 69 (1976). ⁷⁾ This compound was obtained as a minor product. ⁸⁾ P.D. Bartlett and R.R. Hiatt, J. Am. Chem. Soc., 80, 1398 (1958). ⁹⁾ A.R. Forrester, J.M. Hay, and R.H. Thomson (eds.), "Organic Chemistry of Stable Free Radical," Academic Press, London, 1968, Chapter 4. ¹⁰⁾ J. Brown, D.E. Clark, W.D. Ollis, and P.L. Veal, Proc. Chem. Soc., 1960, 393. ¹¹⁾ Ia and Ib were obtained by the treatment of I in ispropanol with ethereal CH_2N_2 . Ia, $C_{26}H_{26}O_6$ (M+ 434), mp 162—164°, Gibbs test (+), Ib, $C_{26}H_{26}O_6$ (M+ 434), mp 198—199°, Gibbs test (-).