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The theory of the limiting equilibrium states specified by the Mohr criterion was
developed for the axially symmetrical problem in regard to tabletting. The unique
solution of the equilibrium equations could be obtained when the stress field and the
displacement field, which was calculated by using the stress-strain relations and the
displacement-strain relations, satisfied the following boundary conditions: (1) the stress
on the die wall satisfies the wall yield condition and the active pressure is applied to the
die wall; (2) the powder does not slide on the punches; (3) the displacement at the
die wall is produced only in the direction parallel to die wall. The above relations were
derived on the base of the incremental theory and the theory of the velocity field in soil
mechanics.

The mechanical properties which were required for the numerical calculations on the
computors were the yield locus, the wall yield locus and the stress-strain relation in the
one-dimensional compression, which were obtained experimentally with the potassium
chloride powder. The results of calculations showed that there appeared the region
where the pressure was higher than in the neighbourhood and the region where the pressure
was lower when the upper punch pressure changed from zero to 2 kg/cm?,

Keywords tablets; compression; powders; potassium chloride; stress-strain
relations; computer application; friction; equilibrium

Introduction

The density distribution in the compressed powder becomes an important problem in
tabletting, powder metallurgy, the ceramic industry, efc. Train? measured the density
distribution in the compact of magnesium carbonate which was compressed from one side
by upper punch. He reported that the region of lower density than that in the neighbour-
hood appeared in the center below the upper punch and the region of higher density appeared
in the center above the lower punch. Aketa and Tsuwa® also obtained the similar patterns
of density distribution by use of the various metal powders. It is very interesting that the
similar patterns of density distribution have been obtained by use of the magnesium carbon-
ate and metal powders which appear to differ greatly from each other in mechanical prop-
erties. However, no theoretical explanation for those patterns has been made up to the
present.

In order to explain the density distribution theoretically and besides to elucidate many
other problems in tabletting, efc., the theory on the stress, strain and their distributions in
the bed of powder must be developed. .

In the analysis of static stress within the bed of powder, the theory of the limiting equi-
librium states specified by the Mohr-Coulomb criterion has been used widely. On the base

1) Location: a) Arise, Igawadani-machi, Tarumi-ku, Kobe; b) Yoshida-Shimoadachi-machi, Sakyo-ku,

Kyoto.
2) D. Train, Trans. Instn Chem. Engrs, 35, 258 (1957).
38) Y. Aketa and H. Tsuwa, Technol. Reporis Osaka Univ., 18, 489 (1968).
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of this theory, the stress distribution can be calculated numerically from the equilibrium
equations and the yield conditions without considering strain.# However, the boundary
conditions of stress must be known previously. When the powder in the cylindrical die
(fixed) is compressed from one side by upper punch, they can not be assumed appropriately.
Clearly, they are not self-evident either. Besides it is practically difficult to measure the
forces which are not distributed uniformly.

On the other hand, the boundary conditions of displacement are almost evident, because
the displacements of punches can be known from the operating conditions and no displace-
ment of the die is produced: the elastic deformation of materials of the die and punches are
negligible in comparison with that of powder. Accordingly, if we can elucidate the displace-
ment-strain relations and the stress-strain relations, the stress distribution which satisfies
the boundary conditions of displacement can be determined uniquely.

In soil mechanics, the theory of velocity field® which is an extension of the theory of
perfectly plastic solids® to soil medium has been used to describe the stress-strain relations
in the plastic flow of soils or sands. In the case of compressed powders, all the stress-strain
relations can not be given by the theory of the velocity field. That theory only relates to
the shearing deformation in which the decrease in the apparent volume of powder with an
increase in the isotropic component of stress can be neglected. Hence, our subject is how
to introduce the decrease in the volume into the stress-strain relations.

In this paper, we develop the theory of the limiting equilibrium states specified by the
Mohr criterion for the axially symmetrical problems and propose the stress-strain relations.
Besides we present the methods of numerical calculations of the stress and strain distributions
on the base of those theories, report the methods and the results of measurements of mechani-
cal properties of powder required for numerical calculations, and hold the discussions on a
few results of simplified calculations.

Theoretical

1. Theory of the Limiting Equilibrium States Specified by the Mohr Criterion

1.1. Equilibrium Equations——The case where the powder in the cylindrical die (fixed)
is compressed from one side by a flat upper punch (the lower is also flat) is considered here.
Since it is a problem of axial symmetry, it is convenient to use the cylindrical coordinates
(r, 0, z), where we consider » and 6 in the surface of upper punch and z, extending perpen-
dicularly downward (that is, in the direction towards the lower punch). Let o,, 0, and o,
be normal components of stress parallel to 7-, 6- and z- axes and 7,, be shearing-stress com-
ponent, then the well known equilibrium equations of stress for axially symmetrical pro-
blems have the following form:?

00 071z Gr—00

o7 0z 7 =0

5 ; ey
Trz Oz Trz

X i =
or + 0z + 7

4) R. Aoki and M. Suzuki, J. Chem. Eng. Japan, 2, 235 (1969).

5) a) K. Akai, “Doshitsu Rikigaku Tokuron,” Morikita-Shuppan, Tokyo, 1974, p. 151; b) T.H. Wu,
“Soil Mechanics,”” Allyn and Bacon, 1966, pp. 257—264.

6) W. Prager, “Rheology,” Vol. 1, ed. by F.R. Eirich, Academic Press Inc. Pub., New York, 1956, p. 63.

7) a) S. Timoshenko and J.N. Goodier, “Theory of Elasticity,” McGraw-Hill Book Co., New York, 1934,
p- 343; b) M. Reiner, “Lectures on Theoretical Rheology,” North-Holland Pub. Co., Amsterdam, 1960,
pp. 26—30.
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" 1.2. The Mohr-Coulomb Yield Condition and the Yield Surface Let oy be the normal
component of stress acting on the failure surface, vy be shearing-stress component, ¢ be cohe-
sion and ¢ be the angle of internal friction, then the Mohr-Coulomb yield condition is expres-

sed by the following Eq. (2).
Ty =c¢+oytand ’ ‘ )

Using the principal stresses oy, 0, and o3, we can rewrite Eq. (2) as Eqs. (3) and (4).

. Cosd. " 1+siné ’
=9 - @
a1 C T—sin 3 o3 I —sin o (61>09>03) ®)
1 = % cos & 1+sin é (0:>05>0)) @

1—sino  *1_sino

‘I‘n stress space that has the rectangular Cartesian coordinates gy, g, and a5, Eqs. (8) and (4)
express the two planes. The directions normal to those planes are respectively as follows:

(1, 0, _1+sin6) (1, _1+sin6 0)

1—siné/’ 1—sinég’

In the same manner, another four equations which hold in the case where o, or ¢, is the
maximum principal stress can be obtained. The sides of the hexagonal pyramid in stress
space which are formed by the above six planes are called ‘yield surface’.5®

- From the axial symmetry, g, must be one of the principal stresses, but it is impossible
that ¢, takes the maximum. Now, let o; be the maximum principal stress. (In the follow-
ing, the direction in which the principal stress o; acts will be termed o-direction (¢=1, 2, 3)).
Then, the g,-direction is contained by the ~—=z plane and the deformation in the »—z plane
must be produced under the yield condition (8) or (4). In the axially symmetrical problem,
the displacement in the 7-direction is accompanied with the expansion or the shrinking in the
6-direction (see the third of Egs. (82)). It is here assumed that the shearing deformation
is also produced under the Mohr-Coulomb yield condition in the plane which contains the
o,-direction and the 6-direction.

Finally, if 6,=0,, the deformations in the »—z plane and the 0¢,-6 plane which are per-
pendicular to each other are simultaneously produced under the yield conditions (3) and (4),
respectively. Then, the principal stresses must satisfy the relations expressed by the inter-
section (5) of the two planes (3) and (4) in stress space. ' :

cos 6 :

91-27"5in 5 B ;

iFsins = ° ®)
1—sind

Hence, the following Eq. (6) hold.
0o = G2 = 03 (6)

1.3. Expressions of o1, a4, . and 7. in Terms of the Principal Components of Stress——
Since the yield conditions of powder generally become a curve in the Mohr diagram, they can
not always be formulated as Eq. (2). Even in such case, ¢ and é in Eq. (2) can also be made
constant in the narrow range of stress and therefore the discussions in Section (1.2) are ac-
ceptable. Since the overall range of stress can be divided into such narrow ranges, the above
important relations (6) generally hold.

Using Eq. (6), we can express g,, g4, 6, and 1, in terms of the prmmpal components of
stress as follows:

8) K. Akai, “Doshitsu Rikigaku Tokuron,” Morikita-Shuppan, Tokyo, 1974, p. 62.

NII-Electronic Library Service



No. 7 1613

o1+03 01—03

ar=———2——— 5 cos 2¢
oz=gl—?+f—l—g—910032go e '

g1—03 _,
Trg = %stga

g9 = 03

where o, is the maximum, ¢, is the minimum principal stress and ¢ is an angle of the z-axis
to the o,-direction (refer to Fig. 1).

o1sin
// 1 /¢ T

Typo——rm——————- w _____

yield locus;zy= floy)

-

0 (ﬁ‘%)/z .

|
i
1
|
i
i
]
H
Y

(6i+a3)/2

. Ty (dfy/dﬂ'Y)
os—direction 7 . /

o1-direction - | Fig. 2, Mohr Diagram

Fig. 1. Stress Acting on the Sides of Tri-
angular Element in the »—z Plane

1.4. Characteristics of Equilibrium Equations——Since the yield locus of the powder
compressed under high pressure can not be written generally in such a simple form as Eq.
(2), we express it as follows:

w=fo=f ®)
The function f can be determined from the yield locus obtained experimentally.
It is clear from Fig. 2 that the center and the radius of a Mohr circle are given by

01+03

5 =Y + ff’
)
”_1;& = fV/ITF2
where
dﬂaY) /
doy (&)

namely, f* is the slope of a tangent of the yield locus. Substituting Egs. (9) into Egs. (7),
we can rewrite Eqgs. (7) in the following form:

or =0y + ff' — fFA 1+ 2cos2¢
0z = ay + ff' + fA/1+f 2 cos 2¢
Trz=f~/1-|—f'2sin2g0

o0 = oy + ff' — fA/1Lf'?
Substituting Eqgs. (10) into the equilibrium equations (1), we have a system (11) of hyper—
bolic quasi-linear partial differential equations of the first order for ¢y and ¢:

(10)
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Ador Bgi‘i+cag"+Da9" X

or 0z ar
an
/aaY raO-Y /a‘P ,agD
Al—— P» + B 5, + C'—= 3 4- D' o
where
— 12 r N BEWE) ff,f”
A=1+f2+ff <f~/1+f +«/1+f'2) cos 2¢
| poireL L :
B = (f~/1—|—f +«/1+f,?) sin 20
C = 2//T5f 7 sin 20 2)
D =2f/1+f%cos2¢
X = '—"—:‘f'\/l-]-f'z(l-—COS 2¢)
and
A'=B
;o 12 ! A WP ff’f”
B =1+4+/*+j+ (f«/1+f +%1+f,2>0052go
C'=D, D'=—C (1)
Y = —-lf«/Wsin 20 (f” = _—-_dzf(o'Y))
¥ doy?

Following Lister,” we have the characteristic equations of the system (11). They are
summerized in the following:
(1) Along I-slip-line,

dz _ T+ f%sin20—1

ar. B f'-—-'\/1~|—f’2 cos 2¢ . (14)
Lt/ ff" doy | de _ sin o{(W1+f"2~f") cos p—sin ¢} (15)
2f(1 +f,2) dar dr 1/(,\/@(:05 2S0_f,)

(2) Along II-slip-line,
dz 14 f%sin 20+ 1

Gr F'—a/14+f"%cos 2¢ (16)

L-f24Hff" doy _ dp _ sin o {(+v/ T+ 2—f") cos ¢ +-sin ¢} a7

2f(1+f'%  ar dr 7(W/1+f% cos 20 —f')
When 7=0, the right hand sides of Eqgs. (15) and (17) can be replaced by -do/dr and do/dr,
respectively.
If we define g as follows;
p=E Lo (o=tanf)
(refer to Fig. 3) Eq. (14)—(17) are replaced by Eqs. (18)—(21) (f”=0).
(1) Along I-slip-line, ' ‘

92 _ oot B (18)

dr »
1 doy do _ { cos (B—2¢) } .
of @ o P g (19)

9) M. Lister, “Mathematical Methods for D1g1tal Computers,” ed. by A, Ralson and H.S. Wilf, John Wlley
and Sons, Inc., New York, 1960, p. 165.
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(2) Along II-slip-line,

92 _ cot (20~P) | (@)
dr

Ldoy _dp _ 1

feot (820 -2 ] . ey

2f ar dr 2r sin (8—2¢) ,
It is clear that Eqgs. (18) and (20) agree with the directions of slip-lines in the »—z plane-
r 0 :
o1—direction
q)
v g
e | A
& yield locus
- N wall yield
TS~ ! z locus
s C Typeeees s
o \~
1 \ Py
ox—direction 0
2
' ™
B i
: ® Fig. 4. Wall Yield Condition of Stress

Fig. 3. 'Angles of the ¢,-Direction to
the Slip-lines and the z-Axis :

1.5. Assumptions for the Boundary Conditions of Stress ——At first, it is assumed that
the powder slides on the die wall (r=7y). Then, since the stress on the die wall must satisfy
the wall yield conditions, it should be represented by either A or B in Fig. 4: A and B are
the intersections of a wall yield locus and a Mohr circle. Since it can be postulated that the
active pressure!® is applied to the die wall in our case, the stress on the die wall can be repre-
sented by the point A.X (The point B represents the stress, for example, when the bridge
of powder is formed in a hopper.) Then, the angle of the die wall to ¢,-direction is ¢y (shown
in Fig. 4), whose sign is always positive. Further, we also assume that the powder is in
the limiting equilibrium states on the die wall. Then, ¢y become a function of ¢y. Here
we generally express ¢y as Eq. (22).

ow = gloy) (22)
Next, on the base of the axial symmetry and Eq. (22), we shall derive the relationship

equations reqired to set up the boundary conditions of stress later.
From the axial symmetry,

0=0 atr=0 (23)

Hence, on the symmetrical axis, the coefficientsf(12) of the first of equilibrium equations (11)
reduce to

Ae= () (1), Be= om0, D= 2pVTETT,

10) @) D.W. Taylor, “Fundamentals of Soil Mechanics,” John Wiley and Sons, Inc., New York, 1948, p. 422;
b) J.K. Walters, Chem. Eng. Sci., 28, 13 (1973).

11) As will be shown in Fig. 29, uwX in Janssen’s equation takes the value 0.1—0.24. Measured values of
uw are about 0.3—0.5 (Fig. 20—22). If the active pressure is applied to the die wall, K can be approxi-
mated by o,/¢, whose value is 0.3—0.4 (Fig. 15). Hence, pwK should take the value 0.09—0.2, which
agrees well with the above value 0.1—0.24. If the passive pressure is applied to the die wall, K must
take the value 1.7—0.75: in this case, K can be approximated by ¢,/¢,. Hence, it can be postulated
that the passive pressure is not applied to the die wall and hence the bridge of powder is not formed.
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= lim [~ Lo/ T 77 (1— -
X, = lim {- LV IFF (1 cos 2;0)} =0
Accordingly, the first of Egs. (11) reduces to

A (a;:)a+D (gf) =0 atr=0 | (24)

where A, is the value of A taken on the symmetrical axis and so on. Since (9¢[dz),=
(clear from Eq. (23)), finally Eq. (24) reduces to

doy _ _ _3_0'}{_ _ | -
oo w0 () e
Further, differentiating the second of Egs. (10) with respect to 7, we have

00, doy g

which reduces to Eq. (27) from Egs. (23) and (25).
00, v __‘ 00, \ _
a0 =0 ((5H).0) @)
On the other hand, from Eq. (22), we have the following expression (28) which hold on
the die wall. ;
99\ _ d¢w (dov) _ (90¥
(8z)W— doy (62: )W g(az )W (28)

where the suffix W means that the values of derivatives are taken on the die wall. Substi-
tuting Eq. (28) into Eq. (11), then we have
=55 -0 @
where .
E = Awy(B'w+D'wg) — A'w(Bw+Dwg’)
F = Cy(B'w+D'wg’) — C'w(Bw-+Dwg)
G = Xy(B'w+D'wg) — Yw(Bw+Dwg')
Eliminating (9 ¢¢/d7)y from Egs. (26) and (29), we have

E( aa‘;z )W = B'wG — (B'WF+CW)(39°)W (30)

The above Egs. (23), (27) and (30) are of great importance in the analysis of the stress distri-
bution in the case where there is no singular point on the boundary. The details will be
found later (see Section (3.1)).

It is possible that the points (7, 0) and (7, /), which are the intersections of the die wall
and the planes of upper and lower punches, become singular (% is the thickness of the bed
of powder). While only two sliplines can be drawn in the »—z plane through any point ex-
cept for singular points, an infinite number of slip-lines can be drawn through a singular point.?

Now, for convenience, we rewrite Eq. (15) as Eq. (15") to derive the equilibrium equa-
tion which should hold at the singular point (7, 0).

1 T _ sin {(+/14f"2—f") cos p—sin ¢} ,
o I (WTFF)| +dp = T ey ey (19)

Let the intersections of II-slip-lines (p=¢;, ¢y, - and ¢,) drawn through the singular
point A (7w, 0) and a I-slip-line drawn in the neighbourhood of A be By, B,, --- and B, as
shown in Fig. 5. When the I-slip-line is gradually brought closer to the point A, the value

12) V.A. Florin, “Florin no Doshitsu Rikigaku,” trans. by S. Ogusa, Morikita-Shuppan, Tokyo, 1971, Vol. 3,
p. 24.
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Fig. 5. Slip-lines: Drawn through the Fig. 6. Transformation of the Circle with a
~ Singular Point . : Radius of Unity to the Ellipse (‘Strain
: ' Ellipese’) by Strainin the ¢;-Direction

of dp=0;,1—¢; (¢; and ¢;,, correspond to the points B; and B, ., respectively) remains finite,
while the value of dr=7,;,,—7; in Eq. (15') becomes unlimitedly small. Hence, Eq. (31) must
hold at the singular point A.

—2-;701 {m (V14 '3)} +dp=0 | , (31)

If the value of oy corresponding to the II-slip-line ¢p==¢, is known, the values of ¢y corespond-
ing to the other II-slip-lines can be calculated numerically by the finite-difference method
according to Eq. (31).

The fundamental equations for the analysis of stress in the compressed powder have
been developed so far. If the boundary conditions of stress are known, the stress distribution
should be determined according to these equations. But, in our case, the conditions of
stress on the upper punch can not be known.

2. The Incremental Theory and the Stress-strain Relations

Since the deformation of powder in the compression under high pressure such as tablet
formation is large, the theory of infinitesimal strain used in the classical theory of elasticity
can not be applied to our problem as it is. There are two kinds of theories on large deforma-
tion, which are the incremental theory'® and the finite deformation theory.'¥ We shall
apply the incremental theory to the analysis of strain in the bed of powder.

In the compression of powder in the cylindrical die, the thickness of the bed of powder
can change from the initial thickness %, to %, which is the thickness of the bed containing
no void. This process of compaction is divided into many small steps. Then, for each step,
the theory of infinitesimal strain can be developed.

For the axially symmetrical deformation, the component of d1sp1acement in the 6-direc-
tion vanishes. The components of the increment of displacement in the 7- and z-directions
are denoted by du, and du,, respectively. Since we can make the increment of strain very
small or infinitesimal according to the incremental theory, the increment of strain (taken

13) Y. Yamada, “Matrix-ho no Oyo,” ed. by Y. Yamada, Tokyo Univ. Shuppan-kai, Tokyo, 1972, p. 149.
14) R.S. Rivlin, “Rheology,” ed. by F.R. Eirich, Academic Press Inc. Pub., New York, Vol. 1, 1956, p. 354.
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positive when it produces compression) can be expressed by Egs. (32) as components in the
directions of coordinate axes.”™

ddu
dey = — i
¢ or
adu
de, = — z
¢ 0z
dep = — d:ff (32)
deds = — ddu. | 9du,
e oz ' Or
d802 = d8r€ =0 .

As has been described in Introduction and was discussed in our previous paper,'® we
must introduce the decrease in the apparent volume of powder induced by the isotropic com-
ponent of stress into the stress-strain relations. Clearly we can not obtain the dense
compacts without such a property of powder. Further, since powders must be compressed
in the shape determined by the die and punches, the shearing strain must also bé produced
in the bed of powder. However, it is impossible without the decrease in the apparent
volume, because shearing is restricted by the die wall and the punches whose materials are
greatly rigid on comparing with powder. Further the increase in the apparent volume ac-
companies the shearing of powder.5® Hence the total change in the apparent volume can
be given approximately by the summation of the above two.

Since it is inconvenient to measure the decrease in the apparent volume induced by the
isotropic component of stress directly,!® we introduce it in the following manner:

2.1. Compression in the g,-Direction when no Strain is produced in the ¢, and ¢;-Direc-
tions (One-dimensional Compression)——Since the frictional force acts on the die wall in the
case of compression of the powder in a die, the stress and strain distributions within the bed
of powder are not uniform. However, as was described in our previous paper,'® we can
cancel the frictional force by extrapolating the amount of powder filled into the die to zero.
Then, we can consider the bed of powder to be in the following state: the stress and strain
are uniform; the maximum principal stress o; acts in the direction of symmetrical axis; no
strain is produced in the radius direction. In the following, we shall derive the stress-strain
relations for the powder compressed under the above conditions. Clearly, the decrease in the
apparent volume induced by the isotropic component of stress is included by those stress-
strain relations. v '

Let h, be the thickness of the cylindrical bed of powder. Further, we define the
dimensionless thickness 7 as follows:

k= = h(0y) (33)

he,o
where /., is the value of #, when ¢,=0. The increment de, of strain induced by the change
of g,* to ¢,® is defined by
heh—he® _ h(o14) —h(0:®)
BA R(o1d)
de, is the instantaneous strain proposed by Hencky.1”

dse = (34)

15) J. Okada and Y. Fukumori, Yakugaku Zasshi, 94, 285 (1974).

16) a) D.W. Taylor, “Fundamentals of Soil Mechanics,” John Wiley and Sons, Inc., New York, 1948, p. 335;
b) S.C. Cowin, Powder Techmnology, 9, 61 (1974); ¢) P.W. Rowe, Geotechnique, 19, 1 (1969).

17) a) M. Reiner, “Lectures on Theoretical Rheology,” North-Holland Pub. Co., Amsterdam, 1960, p. 12;
b) H. Hencky, Ann. Physik, 2, 617 (1929). ‘
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Fig. 6 shows the strain ellipse!® corresponding to one-dimensional compression. The
strain d s, in the o,-direction is produced in the »—=z plane: zero in the ¢3- and 6-directions.
Then the components of strain in the directions of coordinate axes are expressed as follows:1®)

 dery = %81(1—005 2¢)

dez,l =

a : ,
28" (1+cos 2¢) (35)
derz,1 = dee sin 2¢ '

dso 1= 0
where de, 3, deo,y and de,, are compressive strains in the dlrectlons of 7-, 6- and z-axes, re-
spectively, and de,,, is shearing strain. Eq. (35) can be derived easily in accordance with
the formula of linear transformation of coordinates. :
2.2. Shearing in the r—z Plane under Mohr’s Yield Conditions——In this section, we
shall derive the strain produced by shearing in the »—z plane under Mohr's yield conditions,
following the theory of velocity field in soil mechanics.?
The yield function Q is defined by Eq. (36).
Q = (04 05) sin 8 —a/(0:—05)2 + 4t = —2c cos ¢ (36)
Eq. (86) is an expression of the yield surface (3) by the components of stress in the directions
of coordinate axes. From Eq. (36), the components of the increment of strain in the's-.
and z-directions can be expressed as follows:

der,s = ——Zz—z—g— = —(sin 6+ cos 2¢) Az
80 _ .
des,s = —la 3 — (sin 6—cos 2¢) 2, (37)
Oz
ders, s = —Az 9 - 25sin 2¢- s

Tz

where 1, is a parameter. :
2.3. Strain induced by the Displacement in the r-Dxrectmn—«—It is assumed that the
increment of strain in the 6-direction induced by the displacement in the 7-direction is pro-
duced by the same kind of shearing as that described in section (2.2). However, in this case,
the shearing is produced in the plane which contains the 6- and ey-directions. Hence, we
can obtain Eq. (38) as the components of the increment of strain in the 6- and oy-directions.
(Let 25 be the parameter in this case.)
deo,s = —(sind+1)43
38)
der,s = —(sin 6—1)As
Tt is also assumed that the component of the increment of strain in the o-direction contained
by the »—z plane is zero. Hence, the components in the 7- and z-directions can be expressed

as follows:

dev,s = -1:—;—11‘—‘5(1—-cos 20) s

dess = (1+cos 2¢)2s (39)

1—sind
2
dgrz,3 = (1—sin 8) sin 2¢- 43
2.4. The Total Increments of Strain: The matrix of linear transformation of the
circle to the ellipse shown in Fig. 6 can be expressed as follows:

18) J.C. Jaeger, “Elasticity, Fracture and Flow,” John Wiley and Sons, Inc., New York, 1956.
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( l—der,l —-dsrz,l )
—dar'z'l . 1—d52,1
For the deformations described in sections (2.2) and (2.3), the same expressions can also be
obtained (Replace the suffix ‘1’ by ‘2’ or ‘3"). The matrix of the transformation to the final

strain ellipse can be given by the product of those three matrices. Since we can make the
increment of strain very small or infinitesimal, the resultant matrix can be expressed as follows:

3 3
( l—zldsr,i “"c_zldsrz,i )

3 3
- z :dé‘rz,i 1— 2 :dsz,i
i=1 i=t

Hence, from Egs. (35), (37), (38) and (39), the total increment of strain is given by Eq. (40);
as components. : , '

dep = - 9dx = ﬁe—(1—-cos 2¢( + )—sin d—cos 2¢)4s
o .2
+ l—;—lni(l—cos 2043
de, = — ﬁgg—z- = dse ~=>(14cos 2¢) + (—sin d+cos 2¢)4,
. (40)
+ 1—sind (14cos 2¢)43

deg = — e _ ~(1+sin )4

Ay = — Bduy _ s _ deesin 2¢ + 243 sin 2¢ + (1—sin )43 sin 2¢p

ar dz

where de, and 8 are generally functions of oy. Eq. (40) are the stress-strain relations
expressed as increments.

3. Methods of Numerical Calculations

The flow chart to outline problems is shown in Fig. 7.

3.1. Setting of the Boundary Conditions of Stress on the Upper Punch——At first, we
divide the mean pressure on the upper punch into equal small steps in stead of the total

change of the thickness (hy-hy,), though the necessity of the incremental theory is due to the
large deformation. But, it does not come into question, if the increment 4Py of the pres-

sure on the upper punch is sufficiently small.
Since the conditions of stress on the upper punch are not known, we express them by

the following polynomials:
05 = gax (ﬁ)m, o= 2”1 (é)

The mean value of ¢, on the upper punch must agree with a given value of Py. That is,

-1

(4D

rWZnWZdy
Py = _07____.___
J’0w271'7’d1’

Hence, from the first of Eq. (41), 4, can be expressed as Eq. (42).

a1 = Py — 2% - f:l ‘ (42)

Besides, since the derivative of ¢, in respect with 7 can be expressed from the first of Egs.
(41) as follows; :
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loop-2 displacement field
¥

loop-1 Is du,=0"7 yes N

Is du,=const.? .

on the lower punch NN NN N

yno

correct

stress conditions . ) z
on the upper punch Fig. 8. Nets in the »~—z Plane

die wall
[\
N

no| has maximum of Py
been. reached ?
yes

Fig. 7. Simplified Flow Chart

00, n (1—1awt=?
i=2

or 7 rwtt (43)
Eq. (44) can be obtained from Eq. (27).
as =90 (44)
In regard to ¢, from Eq. (23),
b1=0 (45)

Next, we shall consider the conditions of stress at the point (ry, 0).
3.1.1. When (ry, 0) Does not become a Singular Point: From Egs. (44) and (43),

( %‘; )W = ﬁg(i—nai | (46)

Substituting Eq. (46) into Eq. (30), we have

/. E s
(ﬁ__) _ BWG-—WhZS(z—l)m )
A B'wF+4+Cw
From Egs. (47) and the derivative of the second of Egs. (41) in respect with 7, b3 is given by

]

WWBle—- E :Za (7/'— 1) ai bg 1 .
by = T — 2= o 2= (48)
Since p=¢y at (ry, 0), from the second of Eqgs. (41) we have

by = ow — ‘%bi (49)

Finally, there are five relationship equations (42), (44), (45), (48) and (49) among m--n
numbers of constants in Egs. (41).
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The order of calculations is practically as follows: (1) a; can be calculated from the
given values of a; (=3, -+ m) and Py in accordance with Eq. (42).

(2) o, can then be calculated at any point on the upper punch from the first of Eq. (41).

(8) (¢y)w can be calculated, when the value of (s,)y obtained above and Egs. (8), (8') and
(22) are substituted into the second of Eq. (10) and then it is solved for ay. (( )w means a
value taken on the die wall.) :

(4) ¢y can be calculated, when (oy)y is substituted into Eq. (22).

(5) The values of E, F, G, B’y and Cy in Eq. (48) can then be calculated by using (oy)y
and ¢y obtained above.

(6) Substituting ¢y and the given values of b; (=4, -+ #) into Eq. (49), Eq. (48) and
(49) become a simultanecus equation for b, and &;. Solving the simultaneous equation,
b, and b, can be obtained easily.

(7) ¢ at any point on the upper punch can then be calculated from the second of Eq.
(41).

(8) oy, which is required to solve Eqgs. (14)—(17) or (18)—(21), can be calculated from
the second of Eq. (10).- '

3.1.2. When (ry, 0) becomes a Singular Point: In this case, b, and b, can be given ar-
bitrarily. Hence, the relationship equations among the constants in Eq. (41) reduce to only
three equations (42), (44) and (45). The values of ¢y and ¢ at (ry, 0) calculated from Eq.
(41) are identical to the values of oy ; and ¢, in the limit when B, approaches A (refer to Fig.
5 and section (1.5)). Hence, ¢, must satisfy the following inequality (50) in the limit.

—(pwr = 1< ow (50)

where (¢y), 1s the angle shown in Fig. 4. When ¢;= —(py), in the limit, the passive pressure'®
is applied to the upper punch at (ry, 0). Clearly, ¢, at B, shown in Fig. 5 is equal to ¢y in
the limit.

3.2. Calculations of the Stress Distribution——Solving Eqs. (14)—(17) or (18)—(21)
under the boundary conditions by the finite-difference methods numerically, we can obtain
the stress distribution. Since the details of the finite-difference methods have been described
by Lister,” they are omitted here.

3.3. Calculations of the Distribution of Dlsplacement——-’l‘he 7-z plane is divided into
small finite elements after the manner of the finite element method.’® Then, on the base
of the assumption that in each element the strain is uniform, the displacement at any point
in the element can be calculated in accordance with Wqs. (40). An example of nets is shown
in Fig. 8, where #w=10, dr=4z=2. In practice, we calculated by use of the net where 4r=
Az=0.b.

The outline of calculations will be described below.

When the known stress field P changes to the unknown stress field P*, the increment
aU of displacement field which is induced in the bed of powder must be calculated. (Points,
coordinates, efc., after deformation will be shown by the suffix* below.) The calculation of
aU results in the calculation of the increment du® of displacement produced at the point P
(shown in Fig. 9) when the coordinates of the nodes A, B and P before deformation (namely,
when the stress field is P) and the increments of displacements at the nodes A and B are
known. If du® can be calculated, the increment of displacement at every node can be
calculated stepwise from the boundary conditions which are known previously.

In regard to boundary conditions, it can be assumed that no displacement is produced
on the surface of upper punch:

dur = du, =0  on the upper punch _ (51)

which corresponds to the fact that the powder does not slide on the surface of upper punch.
(du, and du, are the components of displacement du in the 7- and z-directions, respectively.)
For the same reason, the boundary conditions (52) must be satisfied by the displacement of
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every node on the lower punch:
du: =0, du, = const.  on the lower punch (52)

Further, the displacement at any point on the die wall must satisfy the following boundary
condition (53). Besides, it is clear from the axial symmetry that Eq. (53) also hold on the
symmetrical axis.

du, =0  on the die wall or on the z-axis (53)

Eqgs. (51)—(b3) are based on the facts that the origin of coordinates is fixed to the surface
of upper punch and the elastic deformation of material of the die and punches is negligible on
comparing with that of powder. Hence, in Eq. (52), the displacement of lower punch is
relatively produced in spite of the compression from one side by upper punch.

After all, the increments of displacements of nodes on the surface of lower punch are
produced by dP=P*— P, and d P must be determined so as to satisfy the boundary conditions
(61)—(53). If described in a concrete form, the arbitrary constants in Egs. (41) must be
determined so as to minimize the sum of square of deviation from the boundary conditions
(62).

The method of calculation of the displacement of node will be described below.

3.3.1. Points which are neither on the Symmetrical Axis nor on the Die Wall: It is
assumed that the strain is uniform within the triangle ABP with the apices A, B and P
(shown in Fig. 9). Hence, the distribution of the increment of displacement can be written
in the following matrix form:

du; auA o ty—o\[r—vA
v VOV Py VY o
au; du? tstw 2, z—24 »
Substituting the coordinates and the increment of displacement of the point B into Eq. (54),

we have

du,B—du.A

B—duA
T 0
7 - 0
' c_
B* l C(Ar/Z,z AZ/Z) C”(O,zc’dz/Z)
AN
N T~
duB \\ \\\\\ Aﬁ C*

B 7-B) \ z \

S LN /N (b, auf) aue

\\ //
B\ AN C // A('TA ZA) C(O C)
\ / ’ z
A A N, / ’
(rB4-dr, 27) \ o
duP (dufduz) p*

\

du®

P(rd+4r/2,25+42/2)
c
Fig. 9. Triangular Element when the Point P is P(0,2+42/2)
neither on the Symmetrical Axis nor on the

Die Wall z

Fig, 10. Triangular Element when P
is on the Symmetrical Axis
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From the first of Eq. (40) and Eq. (54),

# = a';:f‘ = —de = dzee (1—cos 2¢) + (sin 6+ cos 2¢) 4,
- 12%11‘-"—(1—cos 20)s
Hence, 4, can be calculated in accordance With the following Eq. (57).
t1+—df°—(1—cos 2¢0)+ - SI (l—cos 20) 43
o= 2 (57)
sin 0+ cos 2go

where 1, is given by Eq. (58). (refer to the third of Eq. (40))
1 du® | du®

2(1+sin ¢) ( M-{—Ar) (8)

which is the average of the values of 15 at the points A and B, It is assumed that 4, and

A5 are also constant in the element ABP.
From the second of Eq. (40) and Eq. (54),

Ay =

ty = ag:tz = —de; = dzae (14008.20) + (sin 6—cos 20,
- —l—t—?z-lll-q(lﬁ—cos 2¢)2s (59)

It is clear that #; in Eq. (54) corresponds to half the shearing-strain component. That
is, from Eq. (54),

odu, dadu,
or + 0z

Hence, from the fourth of Eq. (40),

=+ ow+iz—o=2

B3 = — ~;—{dee+2}»2+(1—-sin 6)13} sin 2¢ (60)

Substituting the value of ¢; obtained from Eq. (60) into Eq. (56), we can calculate o corre-
sponding to the rotation of rigid body.

Now, all the constants in Eq. (54) have been calculated. When we substitute the coor-
dinates of the point P into Eq. (54), the required du® can be obtained. However, the values
of ¢,0 and de, are required for the calculations. For ¢ and 6, a suitable mean value in the
stress fields P and P* may be used. For example, the average of six values at the points
A, B and P in the stress field P and A*, B* and P* in P* can be used. However, since the
coordinates of P* is not known previously, we give them a suitable initial value (for example,
the value at A*) and make the displacement of P converge to a constant value. de, can be
given the mean value of de®, de,® and de,f. For example, de* is calculated in accordance
with the following equation:

h(91%) — h(a1%¥)

h(o14)

3.3.2. DPoints on the Synnnetrical Axis: The triangular element BCP in this case is
shown in Fig. 10. We must previously calculate the displacement of C’, which is not a node,
by an interpolation method and then calculate the displacement of C by applying the method
described in this section.

Since the element is adjacent to the symmetrlcal axis, it can be assumed that the
shearing-stress component and the rotation o are zero. Besides du,® and #° are also zero.
Hence, the distribution of the increment of displacement can be given by

au; 0 th O %
o)~ Lawe ) (0 o)) o
du, du,° 0 ¢ /\z—2C
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Substituting the coordinates of the point B into Eq. (61), we have

B
t = __—d“; (62)
(4
Since ¢=0, from Eq. (57) we have
. o
b= 1isme (63)
In regard to 3, when »=0, we have
. du-\ _ _ 0du. _
oo = tim (= 52) =~ = de.

Hence, substituting ¢=0 into the first and the third of Eq. (40), we have the following ex-
pressions:

de; = —(sin 8+ 1)

deg = —(sin 6+ 1)23

Hence,

Ay = lo (64)
Substituting ¢=0 and Eq. (64) into Eq. (59), we have Eq. (65).

by = —dee + 2(sin 6—1)4, (65)

3.3.3. Points on the Die Wall: The element ACP in this case is shown in Fig. 11.
Since du,=0 on the die wall, we have

dus 0 t t3—w \ [ r—rC ;
el =l ) o
duz [\duL | ~\tsto 1 z—2zC
— d%rA v' o . ‘
h= Ar . ‘ 7
and : :
Js =0 ’ _ (68).
Substituting du.*=0 and the coordinates of the point P into Eq. (66), we have
du,? = (t—w)(2P—2C) =0
Hence,
w = ts (69)

Finally, the distribution of the increment of displacement reduces to

vy 0 b 0 \/7r—oC
o)) e ) o
du, dus® 2t5 8y J\ 52—2C

3.4. Correction of the Conditions of Stress on the Surface of Upper Punch——Such JP
as to minimize the sum of square of deviation from the boundary conditions (52) can be
given by the loop-1 shown in Fig. 7. In our methods of calculations, dP is determined by
the increments da;=a,* —a, and db;=b;*—b; of the constants in Eqs. (41). The methods of
correction of the boundary conditions of stress on the upper punch will be described below
in the case where (ry, 0) is not a singular point.

The number of constants to which arbitrary values can be given is #n;=m-+n—>5. Hence,
we select #; numbers of nodes on the lower punch and let the components of the increments
of displacements of those nodes in the 7- and z-directions be du,,, and du,, (k=1,2, -, n,).
Then, the square of deviation from the boundary conditions (52) at each node can be expres-
sed as follows:

Sk = (E&Z——duz,kV + (du,x)? (71)
where

d%z,k
k=1

ne
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Next, the simultaneous equation (72) for da; and 49, is solved.
0Sx
Z( da;

Since 8Sy/da, elc., in Eq. (72) can not be calculated analytically, numerical calculations must
be carried out. After Aa; and 4b; have been obtained, the calculations on the loop-1 is
repeated by using the new values a;*4-4a; and b;*+ 4b;. In such manner, 4;* and b* which

)A + }_’.(a"s“)dbJ = —Si (72)

e
minimize Y} S, may be obtained.
k=1

a)
, W 0
d:
& 7
d3 I 3
N b)
\M
/
z
Fig. 11. Triangular Element when : ; §5 ' He T
P is on the Die Wall \ L::::‘_:N R& S
N N .

Fig. 12. Scheme of the Apparatus for the
Measurement of Die Wall Pressure

Experimental

1. Sample--—The powder of cristalline potassium chloride, 42—65 mesh, was used as a sample. The
powder was prepared in the same manner as had been described in the previous paper.!®

2. Measurements of the Yield Locus of Powder—Fig. 12-a is the scheme of the apparatus for measurmg
lateral pressure. The die with an inside diameter of 20.45 mm is divided into the three layers: d,; d,; d,.
Fig. 12-b shows the right half of d, in the magnified scale. The strain gauges g,, g, and g, were used to
measure the forces. The surfaces of die and punches contacting directly with powder were coated with an
alcohlic solution of Na-stearate and then dried to decrease the frictional force. The powder, 3.5913 g, was
filled into the die so that the bed was 5.5 mm thick at zero porosity.

The maximum principal stress ¢, produced within the bed of powder was calculated in accordance with
Eq. (73):29

= Py + (PU—hPL)hc

where Py and Py, are the upper and the lower punch pressures, respectively, 4. is the height of the center of
d, to the flat surface of lower punch and % is the thickness of the bed of powder. The thickness /# was measured
by use of the differential transformer. The minimum principal stress was calculated from the amount of
force detected by the strain gauge g;. Then, the loss of force due to the friction of guides was neglected.

(73)

19) J. Okada and Y. Fukumori, Chem. Pharm. Bull. (Tokyo), 22, 493 (1974).
20) Since the value of P[Py, 0.9, was fairly large, a sufficient degree of approximation can be obtained by
Eq. (73).
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A Mohr circle can be described in the Mohr diagram from one pair of the measured values of ¢, and o,.
The envelope of all the Mohr circles is the yield locus of powder. In practice, we determined a yield point
in the following manner:

Let the point of contact between the Mohr circle M; and the straight line which is tangent to the two
circles M; and Mi+; be A;,;: the suffix ¢ is the number given to the Mohr circles (obtained experimentally) in the
order of size. We regarded the middle point of A;,_;and A 4+, as the yield point on the Mohr circle M;.

AU
7777702002777 m

T ' N V
HPz <o\ Sk Iy
HE=> L] BB S
\ S Y
NI \
! %\% g 62 ‘ [’
= J ﬁ:i recorder
r ———
heatst trai
wbiz;ngeone__ Snf:::r ~lcontroller,

Fig. 13. Scheme of Apparatus for the Measurement of the Coefficients of Wall Friction

3. Measurements of the Coefficient of Wall Friction: Fig. 13 is the scheme of the apparatus for measur-
ing the coefficient of wall friction. The powder, 2 g, was filled into the die b with an inside diameter of 20.20
mm. The frictional force between the powder and the circular plate e of stainless stee! was measured by
means of the strain gauge k. The plate e is held by the slider d. A space to be adjusted to 0.1—0.2 mm
by the ring a was left between the upper surface of the plate e and the end of dieb. The loss of force due to
the friction in rolling of balls f was found negligible. The force normal to the sliding surface was measured
by use of the strain gauge j. The normal force was kept nearly constant by means of the controller during
the sliding of slider d. The displacements of the slider d and the upper punch ¢ were measured by use of
the differential transformers m and 1, respectively. The die b, the upper punch ¢ and the sliding plate e
were boiled in the solution of about 59, potassium hydroxide in the 1: 1 mixture of alcohl and water, washed
with distilled water and dried in the stream of dried air before measurements. Three kinds of sliding plates,
whose surfaces were polished with the sand cloths of 180, 400 and 600 meshes, were used for measurements.

When the tangential pressure acting on the sliding surface is plotted to the normal in the Mohr diagram,
we can obtain the wall yield locus, :

4. Measurements of the Py-e (porosity) Relations Compressions were carried out from one side by
the upper punch. The cylindrical die of an inside diameter of 20.11 mm were used. The rate of displacement
of upper punch was 0.046 mm/sec, which was adjusted to the velocity of sliding in the measurements of wall
friction as well as possible.

Result and Discussion

The experimental data required for the numerical calculations are the Mohr yield locus
(8), the wall yield locus and the %- o, relation (33). The results of measurements of those
mechanical properties and the simplified calculations will be described below.

1. The Mohr VYield Locus

Fig. 14 and 15 shows the results obtained by the compression at the constant rate of
displacement of upper punch, 0.046 mm/sec.
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Fig, 14. Mohr Circles of the Potassium o ( ‘g/cm )
Chloride Powder Fig. 15. Plots of g,/g, to 0,
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' ! t Fig. 17. Influence of the Rate of Displacement

of Upper Punch on the Relation between the
. Upper Punch Pressure and the Thickness of
Fig. 16. Increase of gy/¢, with Time Il;i?ser Bed and Py/Py (Pressure-transmission-

Py was kept constant, 1039 kg/cm?, continuously
after the compression at the constant rate of displace-
ment of upper punch, 0.046 mm/sec.

Rate of displacement of upper punch (mm/sec):

0, 0.825; @,0.0742.

Inside diameter of die (mm): 8.02. °

Weight of powder (g): 1.5.

Die wall was cleaned in the same manner as in Section 3
in Experimental.

Measured Mohr circles are shown in Fig. 14. The yield locus can be approximated
partially by the straight lines shown in Fig. 14.

Fig. 15 shows the relation between the ratio o4/0, of principal stresses and ¢,. The rela-
tion has a tendency similar to the results reported in the previous paper.?® However, the
values themselves of o,/0, are fairly smaller. The mechanical property of potassium chloride
powder such as shown in Fig. 16 contributes to the disagreement between the above two
results. Fig. 16 shows that ¢,/s, increases with time at the constant upper punch pressure
of 1039 kg/cm? and the increase continues even after 45 miniutes. Since the powder was
compressed at the constant pressure for 10 minutes in the previous investigation, o3/e, could
take the large values there.

Clearly, the increase in ¢4/0, can bring about a decrease in the pressure-transmission-
ratio P [Py. Fig. 17 shows effects of the rate of displacement of upper punch on Py /Py and the
thickness-pressure relations. As may be expected from Fig. 16, the ratio P, /Py takes larger
values at the high velocity than at the low one.

2. The Coefficient of Wall Friction

Fig. 18 shows some examples of records of the coefficient p of wall friction. The upper
and lower lines shows py and the displacement of slider, respectively. Both the displace-
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0.2t = of Wall Friction
1 8 Py (kg/cm?):
1 g a: 52 ;b: 208; c: 413; d: 619; e: 1089.
0.1 1 p- Rate of displacement of the slider (mm/sec): 0.040.
=% Mesh of sand cloth: 400.
do 2
0 L 1 1 L | Q
0 10 20

Time (sec)

ment and time are zero when the sliding begins. In Fig. 18, Py is normal pressure, u, is the coef-
ficient of kinetic friction and p,, is the coefficient of static friction, p,, when the time is zero.

The smoth sliding is produced when Py=>52 and 1089 kg/cm? (Fig. 18-a, €). When
Py=208, 413 and 619 (Fig. 18. b-d), the phenomenon called ‘stick-slip’ occurrs:2V the rest-
ing stage and the rapid slip appear by turns as can be found from the displacement-
time relations. ‘ ‘

Fig. 19 is the scheme of the stick-slip’. Bowden and Tabor?V indicated that in Fig.
19 the point A corresponds to p, and the mean value of uy* and py®, which are the values
of uy at A and B respectively, corresponds to p,. When Py=619, the value of u, in the
‘stick-slip’ obtained by following Bowden and Tabor is 0.336. This value agrees well with

21) F.P. Bowden and D. Tabor, “The Friction and Lubrication of Solids,” Clarendon Press, Oxford, 1954.
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Fig. 19. ‘Stick-slip’ PN(gg PR

Fig. 20. Plots of pw to Px

Mesh of sand cloth: 400.
Os tx; @y Usor

the value, 0.342, in the kinetic friction which appears tempotarily at the beginning of sliding
(Fig. 18-d). \

In Fig. 20, y, and p,, are plotted to Py. When Py is lower than 100—200, the smooth
sliding occurrs. When Py is in the range of about 200—600, the ‘stick-slip’ appears and then
py takes the large value equal to about 0.85. In this range, the amplitudes of vibration in
the ‘stick-slip’ are shown in Fig. 20. In the range of pressure lower than about 600, y, takes
larger values than g, though it has been observed in various cases. When Py is larger than
about 600-—700, the smooth sliding occurrs again and g, decreases gradiially with the increase
in Py. '

0.6 0.6f
0.5 : 0.5r

' Q
0.4‘W¢—¢\¢\§\ : 0.4- A’%“o\o ¢\<§\

Hy /8/.0—_ O\o\o\b\é\:’\é\ du: /6,g ﬁ\.\é\(ﬁ)\é\
0.3 ¥ O~ 0~ 0.3 © "o~

7/
0.2 . 0.2
0.1+ 0.1+
! g l L J 1 [N 1 1 n L t 1 1 L ! ! 1 L t
0 500 1000 - 0 500 1000
Py(kg/em®) - Py (kg/cm?)

Fig. 21. Influence of the Roughness Fig. 22. Effeéts of the Roughness of
of the Surface of the Sliding Plate the Surface of the Sliding Plate on
on Pk Hrs0 ’

Mesh of sand cloth: Mesh of sand cloth:
0O, 600; @, 400; O, 180, , 0, 6005 @,400; O,180.

. Fig. 21 and 22 show the effects of the roughness of the surface of sliding plate on y, and
Ueo, Tespectively. Although py in the case of 400 mesh takes almost the same values as py in the
case of 600 mesh, uy in the case of 180 mesh is larger over all the range than in the other
cases. .
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Fig. 23. Schematic Diagram of the Process of
Wall Friction

Py (kg/em?)

A <100—200 smooth sliding
B 200—600 stick-slip
C >600—700 smooth sliding

20

10

0 I | I ! { L !
0 200 400 600 8001000
Py (kg/cm2 )

Fig. 25. Pressure-porosity Relations of Potas-
sium Chloride Powder
Weight of powder (g):

@, 3.918; O, 7.835; @, 15.671; ¢, 23.506.
—I,—V—;—O:.extrapolated to zero weight (see Fig. 26).

Inside diameter of die (mm): 20.11.

Fig. 24. Yield Locus and Wall Yield Loci of
Potassium Chloride Powder
Mesh of sand cloth:

e 400 (px); 2 400 (pr50); - —=-=: 180 (so)-
——— yield locus of powder.

50

1

40

301 g/

e(%)

20} 8/36/00

10+ 9/

| | | 1
0 3.918 7.835 ° 15.671 23.506
w(g)

Fig. 26. Relations between ¢ and W under the
Constant Upper Punch Pressure
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Fig. 23 is the scheme of the process of wall friction. (As regards the deformation of
potassium chloride particle, refer to our previous paper!®). In A, the large decrease in the
apparent volume was observed during the sliding: especially large at the beginning of slid-
ing. This is due to the large porosity of the bed of powder (Fig. 25). In such a loose
packing structure, the rolling of particle must be possible. In B, the area of contact between
particle and particle, or particle and metal plate, is large.® Hence, the shift and rolling
of particle must be impossible. In C, potassium chloride was extruded as thin layer (shown
by a). This suggests that the material can slip on the surface within particles, as shown by
b. The sliding on the surface of metal plate should also occur in C, since uy is affected by
the roughness of surface of sliding plate (Fig. 21 and 22). Besides, the results shown in Fig.
15 means that g,/g, in A is smaller than that in B or C.

The yield locus of powder and the wall yield loci are together shown in Fig. 24.

3. The h- o, relation

Fig. 25 shows the effects of the weight W of powder filled into die on the Py-e (porosity)
relations. From these Py-¢ relations, we can obtain the relation between ¢ and W at any
constant upper punch pressure. Results are shown in Fig. 26.

Fig. 26 shows that we can assume the e-W relations to be linear: this assumption is
different from that in the previous paper.’® The porosities at the zero weight, e,,;, obtained
by extrapolation method are shown in Fig. 25. Identifying Py as ¢, and calculating % ac-
cording to Eq. (74):

l“eext,o

h=

1—eext (74)
we can determine the - ¢, relation. The results are shown in Fig. 27, where the dotted line
corresponds to the zero porosity. In Eq. (74), €.y, is the value of e., when a,=0.

4. The Resuits of Numerical Calculations

The fundamental theory, the models of numerical calculations and the mechanical pro-
perties of potassium chloride powder have already been described. In practice, if we were
to carry out the calculations, for example, in which (ry, 0) and (7, %) were regarded as sin-
gular points or in which the velocity dependences of the coefficients of wall friction and inter-
nal friction and the k- o, relation were introduced, the calculations on computors would
become very time-consuming. Besides, we have not yet given sufficient considerations to
the stability of models and the convergence of solution in such the complicated calculations.
Hence, the calculations were carried out on the base of assumptions for simplication.

4.1 The Pressure-transmission-ratio (P1/Pv) We reported in the previous paper?
that the change in P[Py accompanying an increase in Py had the interesting patterns in the
various powders. Hence, we tried to calculate Pp,/Py numerically.

The calculations of Py/Py were carried out under the following assumptions:

(1) The points (7w, 0) and (7w, %) are not singular.

(2) The arbitrary constants in Eq. (41) are as follows:

;=0 (i=3, 4, b)
b;=0 (=4, 5, 6)

(8) The thickness % of the bed of powder takes the value obtained by numerically solving
Eq. (75) for A.

W= pfh I 2”J:W<1—em)ydme dz | (75)

0 Jo

where p is the true density of potassium chloride powder equal to 1.988.

22) J. Okada and Y, Fukumori, Chem. Phaym. Bull. (Tokyo), 23, 326 (1975).
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The results of calculations are shown in Fig. 28 with %/(2 ry) as abscissa against log(Py/
Py) as ordinate. It is seen that the pressure-transmission-ratio takes the maximum value
on the way of compression. In the case of 400 mesh, although the values at Py=>50 kg/cm?
are on the straight line shown in Fig. 28, those at Py=900 are on the curved line. Further,
it 1s found that the wall friction have the remarkable effect on Pp/Py.

TasLe I. Calculated Values of the Constants
in Eqgs. (43) when Py=2
. a 1.984105
\l/ as 0.0
b as —0.583780
a4 1.506932
as —0.884962
b1 0.0
be —0.385488
i bs , 4.681024
L by —11.661135
OT L L bs 11.694262
0 500 1000 b —4,138283
a1 (kg/cm?)
Fig. 27. Relation between 4 and o,
100
100
70
S
< 5
] S
a, oY
>
™ 30
20
10 ' ] L . 1 : 1 : !
0 1 2 3 10O 1 ) 3
B/ (2ry) (—) B/ (2ry) (—)
Fig. 28. Results of Calculations of PL/Py Fig. 29. Data of PL/Py Plotted according

1,4,7,10: 400 mesh, uy.

(=—=—~: drawn through the values at Py=>50, 900)
2,5, 8, 11: 400 mesh, pg,.

(——: drawn through the values at Py=>50, 900)
3,6,9,12: 180 mesh, .
13: 180 mesh, uy.
1, 2, 3: corresponding to the case where (W, 27,,)=(0.25
g, 8.02 mm), (3.918 g, 20.11 mm) and so on.

to the Janssen’s Equation: In (PL/Py)=
—4 pwK(2/(2rw)) where K is Rankine’s
Constant

Rate of displacement of upper punch (mm/sec): 0.332.
Inside diameter of die 27y (mm): 8.02.
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Data reported in the previous paper?® are shown in Fig. 29. All the plots exist between
the two lines which correspond to pyK=0.1 and 0.24. However, it is difficult to compare
the results of calculations by our model with the experimental data in detail, because in our
calculations the effects of the velocity of sliding and the rate of displacement of upper punch
on py and the k- ¢; relation, respectively, efc., are not considered. If described about py,
ww is generally affected by the velocity of sliding, which takes the values between zero at
(rw, h) and the rate of displacement of upper punch at (ry, 0) in practice.

Tasre II. The Displacements of the Nodes on the Lower
Punch and the Square of Deviation
k 7 du,x 103 du, Sk x 107
1 0 0.0 —0.11758 4.1546
—_ 1 0.3792 —0.11771 -
2 2 0.5837 —0.11804 3.7575
— 3 0.5234 —0.11839 —
3 4 0.2857 —0.11858 2.0865
— 5 0.1220 —0.11854 —
4 6 0.1983 —0.11833 0.4978
— 7 0.4386 —0.11811 —
5 8 0.5701 —0.11804 3.5907
— 9 0.3119 —0.11820 —
6 10 0.0 —0.1189% 5.4110
r
0 EIB 10
\_.
du, X10°
4 ' 2 0 —2 = 4 -6
T T T \\Fi\ﬂ-\$~~ T T T T
\,\ N 5\\\\\\\
I \“\ /\\ \\\
AN
r=1 ,9/ 3 5 7
/ ,,/ />’/
10-//1//:;///'
T ,/’
,/ //‘/
i\ 2 /// —
7
’7'/ 1/ i '15
7y
(O
\\\\\\ ' \‘\‘ L20
L L 1 l\\\\l\\\ 2 1 L i ] 1 i
© 2=22.17
Fig. 30. Calculated Values of dus
2=22.17: the measured thickness of the bed of powder
der Py=0. = Q
I-lilril—u: du, of the nodes whose 7-coordinate is unity 2= 22.17 < 22 '05Q~C‘)
and so on. _—_—l____T e e B
Fig. 31. Calculated Distribution of

oy (kg/cm?)

2=22.17: the surface of lower punch at Py=0.
5=22.05: the surface of lower punch at Py=2.
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4.2. The Distribution of Stress——In this section, the results of calculations in the case
that any singular points are neither in the bed of powder nor on the boundary will be de-
scribed. Calculations were carried out only in the case that Py changes from zero to 2 kg/
cm?  The wall yield locus obtained from p, (180 mesh) was used.

For the unknown stress field where Py=0, the following assumptions were set up:

(1) oy is zero everywhere in the bed of powder.

(2) ¢ takes the same value as that when Py=2 everywhere in the bed of powder.

The calculated values of the constants in Eq. (41) and the displacements of nodes on
the lower punch are shown in Table I and II, respectively.

Fig. 30 and 31 show du, and the distribution of ¢y, respectively. In Fig. 31, it is inter-
esting that the region where oy takes the lower value than that in the neighbourhood and
the region where oy takes the higher value appear, though they have already been observed
experimentally.2,® Although such regions appeared about the point (0, 8.5 7y) in the case
where calculations were carried out at Py=>500 under the assumptions in section (4.1), they
appear about the middle of the bed when the displacements must satisfy the boundary con-
ditions (51)—(53).
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