Chem. Pharm. Bull. 25(9)2312—2329(1977)

UDC 547.745.03.08:615.453.2.011.3.014.21

# Variation in the Molecular Weight Distribution of Polyvinylpyrrolidone by Ball-Milling

Nobuyoshi Kaneniwa and Akiko Ikekawa

School of Pharmaceutical Sciences, Showa University1)

(Received January 19, 1977)

Variation in the molecular weight distribution of polyvinylpyrrolidone (PVP) by ball-milling in various kinds of atmosphere in the absence and in the presence of various kinds of organic and inorganic additives was investigated.

A line broken at several points was obtained by the logarithmic plot of  $-\log R$  versus the molecular weight of PVP,  $M_{\rm u}$ , and equation (1) was applied in the limited range of  $M_{\rm u}$ , respectively, where R was the ratio of the weight of the polymers of molecular weight above  $M_{\rm u}$  to the total weight of the polymers, and k and n were parameters dependent on the experimental conditions and so on.

$$R = \exp\left(-kM_{\mathrm{u}}^{n}\right) \tag{1}$$

The existence of the critical molecular weight,  $M_c$ , was observed, at the region of  $M_u$  below which n was larger than 1.0 and formation of the polymers of  $M_u$  below  $M_c$  was considered to become more difficult with a decrease of  $M_u$ . The value of  $M_c$  was below  $4 \times 10^5$  and varied remarkably by the kind of the additive and by the ball-milling atmosphere.

Theoretical consideration was made on the molecular weight distribution of the polymers formed by chain scission of polymers by application of the mechanical stress, by assuming that chain scission was produced by activation of the bonds between atoms of the main chain by the mechanical stress and that these activated bonds were distributed at random and obeyed to Poisson's distribution law. It was suggested from the consideration mentioned above and from the investigation of the value of n in equation (1) and of the variation of R with the ball-milling time that, in many cases, random chain scission was most probable and that the density of the activated bonds over a polymer of low molecular weight was approximately equal to or higher than the density over a polymer of high molecular weight.

**Keywords**—organic and inorganic additives; ball-milling atmosphere; Poisson's distribution law; the mean density of the activated bonds over a polymer,  $\gamma$ ; the critical molecular weight,  $M_c$ ; the parameter n in equation (11); the parameters,  $\gamma_1$  and  $\gamma_2$  in equation (17); random chain scission

In the previous papers, polyvinylpyrrolidone (PVP) was ball-milled in various kinds of atmosphere in the presence of various kinds of organic and inorganic additives, and it was clarified that a decrease of molecular weight of PVP by ball-milling was influenced by the presence of the additive or by the ball-milling atmosphere.<sup>2,3)</sup>

In this paper, variation in the molecular weight distribution of PVP by ball-milling was investigated, and dependence of the variation on the presence of the additive or the ball-milling atmosphere was discussed.

#### **Theoretical**

It is well known that Rosin-Rammler's law expressed by equation (1) applies well to the particle size distribution of the crushed powders, where R is the ratio of the weight of

<sup>1)</sup> Location: Hatanodai 1-5-8, Shinagawa-ku, Tokyo.

<sup>2)</sup> N. Kaneniwa and A. Ikekawa, Chem. Pharm. Bull. (Tokyo), 21, 1539 (1973).

<sup>3)</sup> N. Kaneniwa and A. Ikekawa, Chem. Pharm. Bull. (Tokyo), 25, 1534 (1977).

the particles of the size above x to the total weight of the particles,  $x_e$  is the particle size for which R is equal to 1/e, and k and n are the parameters dependent on the ball-milling condition and so on.<sup>4,5)</sup>

$$R = \exp\left(-kx^n\right) = \exp\left\{-(x/x_0)^n\right\} \tag{1}$$

Equation (1) is expressed by equation (2), when n is equal to 1.0.

$$R = \exp\left(-kx\right) = \exp\left\{-\left(x/x_{\rm e}\right)\right\} \tag{2}$$

Gilvarry obtained equation (2) theoretically on the basis of the assumption that fracture of brittle solids was produced by activation of the flaws or cracks existent in a solid prior to application of the stress system, and that these activated points were distributed at random and obeyed to Poisson's distribution law.<sup>6)</sup>

Here, it is assumed that chain scission is produced by activation of a part of the bonds between atoms of the main chains by application of the mechanical stress to the polymers. It is also assumed that these activated bonds are distributed at random, that the density of the activated bonds over a polymer molecule is extremely small and that the activated bonds conform to Poisson's distribution law. By application of Gilvarry's discussion to the scission of the chains of the polymers by the mechanical stress under the assumptions mentioned above, equation (3) is obtained, where W(M) is the cumulative weight of the fragments with molecular weight up to M produced by applying mechanical stress to a polymer of the weight of  $W_o$ , and  $\gamma$  repersents the mean density of the activated bonds over a polymer molecule.

$$1 - W(M)/W_0 = e^{-\gamma M} (3)$$

On the other hand, equation (4) is obtained by substituting M for x in equation (1).

$$R = \exp\left(-kM^n\right) = \exp\left\{-\left(M/M_e\right)^n\right\} \tag{4}$$

In equation (4), R is the ratio of the cumulative weight of the fractions of molecular weight above M to the total weight of the polymers, and  $M_e$  is the molecular weight for which R is equal to 1/e. Equation (4) is identical with equation (3), if n is equal to 1.0 and  $\gamma$  is equal to  $1/M_e$ .

In the actual case, many polymer molecules of a wide molecular weight distribution are treated mechanically at the same time. Now,  $M_i$  is the molecular weight of the polymers of the i th fraction obtained by fractionating the original polymers according to the molecular weight. The mean density of the activated bonds over a polymer is expressed as a function of  $M_i$ ,  $\gamma(M_i)$ , if the mean density depends on the molecular weight of the original polymer, though they are distributed at random on one polymer. In this case, equation (5) is applied, where  $\phi_{M_i}$  is the number of moles of the polymers of the molecular weight of  $M_i$  in the original material.

$$R = 1 - W(M)/W_0 = \sum_{i} \phi_{M_i} M_i e^{-\gamma (M_i) \cdot M} / \sum_{i} \phi_{M_i} \cdot M_i$$
 (5)

### Results and Discussion

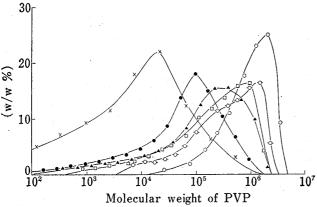
In the previous paper, the relation between molecular weight by viscometry,  $M_{\eta}$ , and intrinsic viscosity was obtained for the KH<sub>2</sub>PO<sub>4</sub>–Na<sub>2</sub>HPO<sub>4</sub> buffer solution of PVP of M<sub> $\eta$ </sub> between 7.5×10<sup>3</sup> and 10<sup>6</sup>, and in this paper, the value of  $M_{\eta}$  of PVP was obtained by viscometry using this relation.<sup>7)</sup>

In the previous papers, PVP K90 was ball-milled in various kinds of atmosphere in the absence of the additive or in the presence of various kinds of organic or inorganic additives,

<sup>4)</sup> K. Matsui, Funsai, No. 16, 68 (1971).

<sup>5)</sup> P.O. Rosin and E. Rammler, Kolloid-Z., 67, 16 (1934).

<sup>6)</sup> J.J. Gilvarry, J. Appl. Phys., 32, 391 (1961).


<sup>7)</sup> N. Kaneniwa and A. Ikekawa, Chem. Pharm. Bull. (Tokyo), 20, 1536 (1972).

and a decrease of  $M_{\eta}$  by ball-milling was investigated.<sup>2,3,7)</sup> These samples were fractionated by Sepharose 6B and the mean molecular weight of PVP in the *i* th fraction,  $M_{\eta_i}$ , was measured, and the variation in the molecular weight distribution of PVP was investigated.

In case of ball-milling in air, the peak in the molecular weight distribution curve shifted from the molecular weight of approximately  $10^6$  to lower molecular weight with the lapse of the ball-milling time in the presence of white alundum, p-hydroquinone or barbituric acid.<sup>2)</sup> This tendency was also observed in the presence of the fine powders of activated charcoal. But in case of the addition of the other powders or in the absence of the additive, the original peak at the molecular weight around  $10^6$  decreased, a new peak appeared at the lower molecular weight and increased by ball-milling.<sup>2)</sup>

The similar phenomenon was also observed in case of ball-milling in the atmosphere other than air, as shown in Fig. 1 and 2. In case of ball-milling in nitrogen in the presence of phenothiazine or ball-milling in the presence of chloranil in oxygen containing small quantity of the vapor of distilled water, the peak shifted from the molecular weight of approximately 106 to lower molecular weight with the lapse of the ball-milling time. But in the other cases, the peak at the molecular weight around 106 decreased, a new peak appeared at the lower molecular weight and increased by ball-milling. The above finding seems to suggest that there is a characteristic pattern in the way how the chains of PVP molecules are broken by ball-milling. Then, the variation of molecular weight of PVP by ball-milling was investigated.

30



20 10 10 10<sup>2</sup> 10<sup>3</sup> 10<sup>4</sup> 10<sup>5</sup> 10<sup>6</sup> 10<sup>7</sup> Molecular weight of PVP

Fig. 1. Variation in Molecular Weight Distribution of PVP by Ball-Milling in Nitrogen in the Precense of 10 w/w % of Phenothiazine

 $J_b$ =0.22,  $J_s$ =0.063) (referred to Table I). Ball-milling time (hr). ○, 0; -○-, 93; □, 115; **A**, 140; **⑤**, 175; ×, 211.

Fig. 2. Variation in Molecular Weight Distribution of PVP by Ball-Milling in Nitrogen in the Presence of 10 w/w % of Vitamin K<sub>3</sub>

 $J_b$ =0. 22,  $J_s$ =0.06°) (referred to Table I). Ball-milling time (hr). ○, 0; -○-, 125; △, 145; ♠, 166; ♠, 189; ⋄, 222; ×, 251.

#### 1) A Decrease of $M_e$ by Ball-Milling

As shown in Fig. 3, a line broken at two or three points was obtained by the logarithmic plot of  $-\log R$  versus  $M_{\rm u}$  obtained by equation (6).

$$M_{\rm u} = (M_{\eta \rm i} \cdot M_{\eta \rm i+1})^{1/2}$$

$$M_{\eta \rm i} > M_{\eta \rm i+1}$$
(6)

As shown in Fig. 4,  $M_e$  obtained by reading the value of  $M_u$  for R of 1/e on the  $\log(-\log R)$   $-\log M_u$  line decreased gradually by ball-milling. In case of the addition of virtamin  $K_3$ ,  $M_e$  was larger than  $M_\eta$  at the first stage and smaller than  $M_u$  at the last stage of ball-milling. (Fig. 5). The same tendency was also observed in case of the addition of zinc oxide, activated charcoal, talc or acridine, but this tendency was not so remarkable as the tendency in Fig. 5. In the other cases,  $M_e$  was identical or parallel to  $M_\eta$ , and the difference between them was

As shown in Fig. 6, equation (7) was applied to a decrease of  $M_{\rm e}$  by ball-milling in the wide range of  $M_{\rm e}$ , where  $t_{\rm ie}$  was the induction period after the lapse of which  $M_{\rm e}$  began to decrease, t was the ball-milling time, and  $k_{\rm me}$  and  $\beta_{\rm e}$  were the parameters dependent on the kind of the additive, ball-milling atmosphere and so on.

$$t \leq t_{\mathrm{ie}}$$
  $-dM_{\mathrm{e}}/dt = 0$   $t > t_{\mathrm{ie}}$   $-dM_{\mathrm{e}}/dt = k_{\mathrm{me}}M_{\mathrm{e}}^{\beta_{\mathrm{e}}}$ 

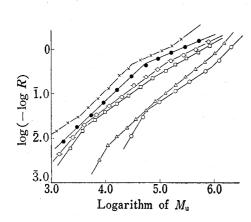



Fig. 3. Relation between R and  $M_{\rm u}$  for PVP Ball–Milled in Nitrogen in the Presence of 10 v/v % of Talc

 $J_b{=}0.22$ ,  $J_s{=}0.06^3$ ) (referred to Table I). Ball-milling time (hr).  $\bigcirc$ , 0;  $\triangle$ , 72;  $\square$ , 103;  $-\bigcirc$ -, 133;  $\bigcirc$ , 169;  $\times$ , 201.

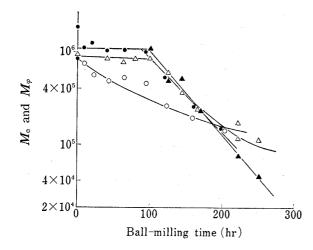



Fig. 5. Comparison of  $M_{\rm e}$  with  $M_{\eta}$  for PVP Ball-Milled in the Presence of 10 w/w % of Vitamin  $K_3$ 

| $J_{\rm b} = 0.22, J_{\rm s} = 0.06^{2,3}$ (referred | l to Table | I).                |
|------------------------------------------------------|------------|--------------------|
| Ball-milling atmosphere                              | $M_{ m e}$ | M                  |
| Nitrogen                                             | •          | Δ                  |
| Air                                                  | •          | $\overline{\circ}$ |
|                                                      |            |                    |

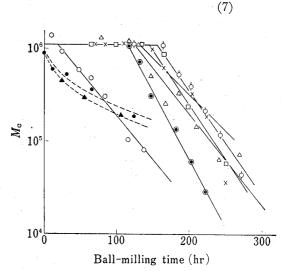



Fig. 4. Decrease of  $M_e$  of PVP by Ball-Milling in the Presence of Activated Charcoal (AC) in Various Kinds of Atmosphere  $J_b=0.22$ ,  $J_s=0.06^{2.3}$ ) (referred to Table I).

Ball-milling atmosphere Content of AC (w/w %) Kind of AC Absent Nitrogen. Absent Air. Granules  $N_2(H_2O)$ . 10 Granules 10  $N_2(H_2O_2)$ . Granules 15.1 Air. Fine powders 10 Air. Granules 15.1 Oxygen.

10

 $O_2(H_2O)$ .

Granules

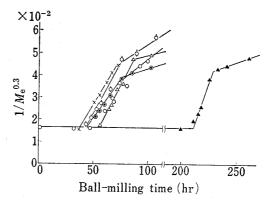



Fig. 6. Application of Equation (7) to a Decrease of  $M_e$  by Ball-Milling in the Presence of Chloranil in Various Kinds of Atmosphere

| $J_{\rm b} = 0.4$ | 3, $J_{\rm s} = 0.033$ ) (refe | rred to Table I). |
|-------------------|--------------------------------|-------------------|
| 1                 | Weight content of              | Ball-milling      |
| C                 | hloranil (w/w %)               | atmosphere        |
| ⊙,                | 5                              | $N_2(H_2C)$ .     |
| $\triangle$ ,     | 5                              | $N_2(H_2O_2)$ .   |
| 0,                | 5                              | Air.              |
| ▲,                | 10                             | Air.              |
| ×,                | 5                              | $O_2$ .           |
|                   | 5                              | O(HO)             |

It was reported in the previous paper that the same relation as equation (7) was applied to a decrease of  $M_{\eta}$  by ball-milling, though the parameters  $t_{i}$ ,  $M_{\eta}$ , k and  $\beta$  were in place of  $t_{ie}$ ,  $M_{e}$ ,  $k_{me}$  and  $\beta_{e}$ , respectively.<sup>2)</sup> Table I, II, III and IV show the numerical values of the parameters  $\beta_{e}$ ,  $t_{ie}$ ,  $k_{me}$ ,  $\beta$ ,  $t_{i}$  and k. The values of  $\beta$ ,  $t_{i}$  and k were quoted from the data in the previous papers.<sup>2,3)</sup> In case of the addition of vitamin  $K_{3}$ ,  $\beta_{e}$  was smaller than  $\beta$ , and this phenomenon seemed to be due to the fact in Fig. 5. In case of ball-milling in air in the presence of vitamin  $K_{3}$ , methylene blue or phenothiazine,  $t_{ie}$  was much larger than  $t_{i}$ . This fact suggests that the polymers of low molecular weight formed at the first stage of ball-milling largely influence on the viscosity of the aqueous solution of the ball-milled sample. But, in the other cases, the values of  $t_{ie}$  and  $\theta_{e}$  were similar to those of  $t_{i}$  and  $\theta_{e}$ , respectively. These facts seem to suggest that the values of molecular weight obtained by viscometry reported in the previous paper<sup>7)</sup> are adequate, in spite of the wide range of molecular weight.

Table I. Numerical Values of  $\beta_e$ ,  $t_{ie}$ ,  $k_{me}$ ,  $\beta$ ,  $t_i$  and k for Ball-Milling of PVP in the Presence of 10 v/v % of Inorganic Additives

 $J_b^{a} = 0.22, J_s^{b} = 0.06^{2,3,7}$ 

|                                | •          | ,            |              |                             |     |                     |                      |
|--------------------------------|------------|--------------|--------------|-----------------------------|-----|---------------------|----------------------|
| Additive                       | Atmosphere | $eta_{ m e}$ | $t_{ie}(hr)$ | $k_{\rm me}({\rm hr}^{-1})$ | β   | $t_{ m i}({ m hr})$ | k(hr-1)              |
| Absent                         | Nitrogen   | 1.3          | 0            | $2.3 \times 10^{-4}$        | 1.3 | 0                   | $3.0 \times 10^{-4}$ |
|                                | Air        | 1.3          | 0            | $2.7\times10^{-4}$          | 1.0 | 0                   | $1.6 \times 10^{-2}$ |
| White alundum (type 40)        | Nitrogen   | 1.6          | 0            | $3.9 \times 10^{-5}$        | 1.3 | 0                   | $6.7 \times 10^{-4}$ |
| (-JF - 20)                     | Air        | 1.4          | 0            | $1.3 \times 10^{-3}$        | 1.5 | 0                   | $5.9 \times 10^{-5}$ |
| Silica sands (type 3)          | Nitrogen   | 1.0          | 0            | $2.4 \times 10^{-2}$        | 1.3 | 0                   | $3.1 \times 10^{-4}$ |
| (-7 F 1,                       | Air        | 1.5          | . 0          | $3.6 \times 10^{-5}$        | 1.9 | 0                   | $4.7 \times 10^{-7}$ |
| Zinc oxide                     | Nitrogen   | 1.0          | 38           | $2.1 \times 10^{-2}$        | 1.4 | 35                  | $9.3 \times 10^{-5}$ |
|                                | Air        | 1.5          | 55           | $4.9 \times 10^{-5}$        | 1.5 | 40                  | $2.6 \times 10^{-5}$ |
| Barium sulfate                 | Air        | 1.3          | 34           | $6.1 \times 10^{-4}$        | 1.4 | 0                   | $1.0 \times 10^{-4}$ |
| Sodium chloride                | Nitrogen   | 1.3          | 30           | $6.1 \times 10^{-4}$        | 1.3 | 0                   | $3.3 \times 10^{-4}$ |
|                                | Air        | 1.3          | 32           | $8.3 \times 10^{-4}$        | 1.2 | 12                  | $2.0 \times 10^{-3}$ |
| Granules of activated charcoal | Air        | 1.0          | 152          | $2.5\!\times\!10^{-2}$      | 1.0 | 147                 | $2.4 \times 10^{-2}$ |
| Talc                           | Nitrogen   | 1.3          | 42           | $6.3 \times 10^{-4}$        | 1.4 | 24                  | $2.1 \times 10^{-4}$ |
|                                | Air        | × 1.0        | 66           | $2.6 \times 10^{-2}$        | 1.0 | 30                  | $1.6 \times 10^{-2}$ |

a) The ratio of the apparent volume of balls in the mill to the capacity of the mill.

Table II. Numerical Values of  $\beta_e$ ,  $t_{ie}$ ,  $k_{me}$ ,  $\beta$ ,  $t_{i}$  and k for Ball-Milling of PVP in the Presence of 10 w/w % of Organic Additives  $J_b = 0.22$ ,  $J_s = 0.06^{2,3}$  (referred to Table I)

β  $t_{\rm i}({\rm hr})$  $k(hr^{-1})$ Additive Atmosphere  $\beta_{\mathrm{e}}$  $t_{\rm ie}({\rm hr})$  $k_{\rm me}(hr^{-1})$ 1.0 103  $2.0 \times 10^{-2}$ 1.4 104  $1.4 \times 10^{-4}$ Nitrogen Vitamin K<sub>3</sub>  $4.3\times10^{-6}$ 1.0 90  $1.9 \times 10^{-2}$ 1.60 Air  $2.2 \times 10^{-2}$ 1.0 115  $1.8 \times 10^{-2}$ 1.0 112 Nitrogen Acridine  $6.2 \times 10^{-3}$ 28  $2.2\times10^{-2}$ 1.1 0 1.0 Air  $3.1\!\times\!10^{-2}$ 0  $4.7 \times 10^{-3}$ 1.1 60 Methylene blue 1.0 Air  $5.0\times10^{-1}$ 0.74 70 87  $2.2 \times 10^{-2}$ Phenothiazine Nitrogen 1.0  $9.4 \times 10^{-3}$  $1.1\!\times\!10^{-2}$ 40 105 1.0 Air 1.0  $1.6 \times 10^{-2}$ 1.0 0 1.0 0  $1.7 \times 10^{-2}$ Nitrogen p-Hydroquinone  $3.7\times10^{-5}$  $4.1 \times 10^{-5}$ 0 1.5 0 1.5Air  $2.1 \times 10^{-4}$  $1.7 \times 10^{-3}$ 1.4 0 0 Nitrogen 1.3Barbituric acid  $6.6 \times 10^{-5}$ 0  $2.1 \times 10^{-4}$ 1.5 Air 1.4

b) The ratio of the apparent volume of the samples in loose packing in the mill to the capacity of the mill.

Table III. Numerical Values of  $\beta_e$ ,  $t_{ie}$ ,  $k_{me}$ ,  $\beta$ ,  $t_i$  and k for Ball-Milling PVP in the Presence of Activated Charcoal (AC) in Various Kinds of Atmosphere  $J_{\rm b}\!=\!0.22,\,J_{\rm s}\!=\!0.06^{2,3)}$  (referred to Table I)

| Content of AC           | Kind of AC   | Atmosphere        | $eta_{ m e}$ | $t_{ m ie}({ m hr})$ | $k_{\mathrm{me}}(\mathrm{hr}^{-1})$ | β            | $t_{ m i}({ m hr})$ | k(hr-1)              |
|-------------------------|--------------|-------------------|--------------|----------------------|-------------------------------------|--------------|---------------------|----------------------|
| 10% w/w                 | Granules     | $N_2(H_2O)^{a)}$  | 1.0          | 116                  | $3.4 \times 10^{-2}$                | 1.0          | 110                 | $2.7 \times 10^{-2}$ |
| 10% w/w                 | Granules     | $N_2(H_2O_2)^{a}$ | 1.0          | 130                  | $2.6 \times 10^{-2}$                | 1.0          | 107                 | $1.7 \times 10^{-2}$ |
| $10\% \text{ v/v}^{b}$  | Granules     | Air               | 1.0          | 152                  | $2.5 \times 10^{-2}$                | 1.0          | 147                 | $2.6 \times 10^{-2}$ |
| $10\% \text{ v/v}^{b)}$ | Granules     | $O_2$             | 1.0          | 142                  | $2.2 \times 10^{-2}$                | 1.0          | 192                 | $2.4 \times 10^{-2}$ |
| 10% w/w                 | Granules     | $O_2(H_2O)^{a}$   | 1.0          | 164                  | $3.0 \times 10^{-2}$                | 2.0          | 167                 | $1.0 \times 10^{-7}$ |
| 10% w/w                 | Fine powders | Air               | 1.0          | 26                   | $2.4 \times 10^{-2}$                | $1.0^{-0.0}$ | 0                   | $2.5 \times 10^{-2}$ |

a) N<sub>2</sub>(H<sub>2</sub>O), in nitrogen containing the vapor of distilled water with the vapor pressure of 17 mmHg; N<sub>2</sub>(H<sub>2</sub>O<sub>2</sub>), in nitrogen containing the vapor of 30 w/w of the aqueous solution of hydrogen peroxide with the vapor pressure of 15 mmHg;

 $O_2(H_2O)$ , in oxygen containing the vapor of distilled water with the vapor pressure of 16 mmHg.

b) 10 v/v % = 15.1 w/w %, (v/v % by true volume).

TABLE IV. Numerical Values of  $\beta_e$ ,  $t_{ie}$ ,  $k_{me}$ ,  $\beta$ ,  $t_i$  and k for Ball-Milling PVP in the Presence of Chloranil in Various Kinds of Atmosphere  $J_b = 0.43, J_s = 0.03^{3}$  (referred to Table I)

| Weight content<br>of chloranil<br>(%) | Atmosphere          | $eta_{\scriptscriptstyle{\Theta}}$ | $t_{ m ie}({ m hr})$ | $k_{\mathrm{me}}(\mathrm{hr}^{-1})^{a}$ | β   | $t_{ m i}({ m hr})$ | $k(\mathrm{hr^{-1}})^{b)}$ |
|---------------------------------------|---------------------|------------------------------------|----------------------|-----------------------------------------|-----|---------------------|----------------------------|
| 5                                     | $N_2(H_2O)^{c)}$    | 1.2                                | 44                   | $2.2 \times 10^{-3}$                    | 1.2 | 45                  | $4.3 \times 10^{-3}$       |
| 5                                     | $N_2(H_2O_2)^{(c)}$ | 1.4                                | 55                   | $3.5 \times 10^{-3}$                    | 1.1 | 56                  | $3.8 \times 10^{-3}$       |
| 5                                     | Air                 | 1.2                                | 55                   | $3.5 \times 10^{-3}$                    | 1.2 | 47                  | $3.8 \times 10^{-3}$       |
| 5                                     | $O_2$               | 1.5                                | 39                   | $2.9 \times 10^{-3}$                    | 1.3 | 37                  | $3.8 \times 10^{-3}$       |
| 5                                     | $O_2(H_2O)^{c}$     | 1.3                                | 44                   | $3.0 \times 10^{-3}$                    | 1.3 | 37                  | $3.8 \times 10^{-3}$       |
| 10                                    | Air                 | 1.2                                | 209                  | $4.4 \times 10^{-3}$                    | 1.2 | 210                 | $4.8 \times 10^{-3}$       |

a) The values of  $k_{\rm me}$  are those for the case of the mean value of  $\beta_{\rm e}$  of 1.30.

b) The values of k are those for the case of the mean value of  $\beta$  of 1.25.

O<sub>2</sub>(H<sub>2</sub>O), in Oxygen containing the vapor of distilled water with the vapor pressure of 22 mmHg.

Table V. Numerical Values of n for PVP Ball-Milled in the Absence of the Additive  $J_{\rm b}\!=\!0.22,\,J_{\rm s}\!=\!0.06^{7)}$  (referred to Table I)

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     | Atmosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| _        | Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | Air |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |    | Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |  |  |
| <i>t</i> | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n          | t   | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n    | t  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n    |  |  |
| 0        | $1.2 \times 10^6 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 21  | $1.3 \times 10^6 \leq M_{\mathrm{u}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1  | 21 | $1.2 \times 10^6 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0  |  |  |
|          | $5.2 \times 10^4 \leq M_{\mathrm{u}} \leq 1.2 \times M_{\mathrm{u}} \leq 5.2 \times M_{\mathrm{u}}$ |            |     | $4.2 \times 10^4 \leq M_{\rm u} \leq 1.3 \times M_{\rm u} \leq 4.2 \times$ |      |    | $4.2 \times 10^4 \le M_u \le 1.2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |  |  |
| 11       | $1.2 \times 10^6 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1        | 54  | $1.2 \times 10^6 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.84 | 54 | $M_{ m u} \leq 4.2 > 1.2 	imes 10^6 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.84 |  |  |
|          | $4.1 \times 10^4 \leq M_{\mathrm{u}} \leq 1.2 \times M_{\mathrm{u}} \leq 4.1 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |     | $3.4 \times 10^4 \le M_u \le 1.2 \times 10^4 \le M_u \le 3.4 \times 10^4 $                                                                                                                                                                                                                                                                                                                       |      |    | $4.2 \times 10^4 \leq M_{\rm u} \leq 1.2 \times M_{\rm u} \leq 4.2 \times$ |      |  |  |
| 30       | $10^6 \leq M_{\mathrm{u}}$ $4.0 \times 10^4 \leq M_{\mathrm{u}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 103 | $1.2 \times 10^6 \leq M_{\mathrm{u}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.64 |    | $1.2 \times 10^6 \leq M_{\mathrm{u}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.75 |  |  |
|          | $M_{\rm u} \leq 4.0 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $10^4 1.4$ |     | $4.8 \times 10^4 \leq M_u \leq 1.2 \times 10^4$ $M_u \leq 4.8 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |    | $3.5 \times 10^4 \leq M_{\rm u} \leq 1.2 \times M_{\rm u} \leq 3.5 \times$ |      |  |  |
| 67       | $10^6 \leq M_{\mathrm{u}}$ $4.0 \times 10^4 \leq M_{\mathrm{u}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |  |  |
| 100      | $M_{\rm u} \leq 4.0 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $10^4 1.7$ |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |  |  |
| 123      | $6.7 \times 10^5 \le M_{\rm u}$<br>$3.8 \times 10^4 \le M_{\rm u} \le 6.7 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |  |  |
|          | $M_{\rm u} \leq 3.8 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |  |  |

t; Ball-milling time (hr), L; The range of  $M_{u*}$ 

N<sub>2</sub>(H<sub>2</sub>O), in nitrogen containing the vapor of distilled water with the vapor pressure of 22 mmHg; N<sub>2</sub>(H<sub>2</sub>O<sub>2</sub>), in nitrogen containing the vapor of 30 w/w % of the aqueous solution of hydrogen peroxide with the vapor pressure of 13 mmHg;

Table VI. The Numerical Values of n for PVP Ball-Milled in the Presence of the Inorganic Additives

 $J_{\rm b}{=}0.22,\,J_{\rm s}{=}0.06^{2,3)}$  (referred to Table I)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                            | Atmos             | sphere          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------|-------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Additive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | Nitrogen                                   |                   |                 | Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t   | L                                          | n                 | $\widetilde{t}$ | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n     |
| White alundum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9   |                                            | 0.69              | 7               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.98  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21  |                                            | 0.63              | 31              | $1.2 \times 10^5 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.73  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46  | $1.3 \times 10^4 \leq M_{\rm u}$           | 0.73              |                 | $M_{\rm u} \leq 1.2 \times 10^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 1.3 \times 10^4$           | 0.49              | 61              | $10^5 \leq M_{\mathrm{u}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.83  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98  | $10^5 \leq M_{\mathrm{u}}$                 | 0.66              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 1.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $1.1 \times 10^4 \leq M_{\rm u} \leq 10^5$ | 0.93              | 103             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 1.1 \times 10^4$           | 0.61              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Silica sands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15  | $3.6 \times 10^4 \leq M_{\rm u}$           | 0.73              | 14              | $3.4 \times 10^5 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 3.6 \times 10^4$           | 1.3               |                 | $M_{\rm u} \leq 3.4 \times 10^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 1.7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36  | $3.5 \times 10^4 \leq M_{\mathrm{u}}$      | 0.61              | 53              | $9.1 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.68  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 3.5 \times 10^4$           | 1.4               |                 | $M_{\rm u} \leq 9.1 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56  | $2.4 \times 10^4 \leq M_{\rm u}$           | 0.49              | 100             | $9.5 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\mathrm{u}} \leq 2.4 \times 10^4$      | 1.4               |                 | $M_{\rm u} \leq 9.5 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75  | $4.2 \times 10^4 \leq M_{\rm u}$           | 0.53              | 202             | $8.5 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.38  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 4.2 \times 10^4$           | 1.6               |                 | $M_{\rm u} \leq 8.5 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.8   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 | $3.3 \times 10^4 \leq M^n$                 | 0.42              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 3.3 \times 10^4$           | 1.6               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 129 | $2.0 \times 10^4 \leq M_{\rm u}$           | 0.36              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 2.0 \times 10^4$           | 1.8               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 160 | $2.0 \times 10^4 \leq M_{\rm u}$           | 0.33              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 2.0 \times 10^4$           | 1.4               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 201 | $7.0 \times 10^4 \leq M_{\rm u}$           | 0.31              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 7.0 \times 10^4$           | 0.66              |                 | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +1    |
| 7::4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10  | 5 0 104 Z 1/4                              | 0.07              |                 | F 4. 104 < 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00  |
| Zinc oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15  | $5.0 \times 10^4 \le M_{\rm u}$            | 0.87              | 59              | $5.4 \times 10^4 \le M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.99  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0 | $M_{\rm u} \leq 5.0 \times 10^4$           | $\frac{1.1}{1.0}$ | . 00            | $M_{\rm u} \leq 5.4 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36  | $5.5 \times 10^4 \leq M_{\rm u}$           | 1.2               | 80              | $4.0 \times 10^4 \le M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.89  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 5.5 \times 10^4$           | 1.6               | 100             | $M_{\rm u} \leq 4.0 \times 10^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56  | $1.1 \times 10^5 \leq M_{\rm u}$           | $1.1_{1.7}$       | 106             | $3.0 \times 10^4 \le M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.63  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 1.1 \times 10^5$           | 1.7               | 170             | $M_{\rm u} \leq 3.0 \times 10^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75  | $8.0 \times 10^4 \le M_{\rm u}$            | 0.78              | 172             | $5.0 \times 10^4 \le M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.44  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 | $M_{\rm u} \leq 8.0 \times 10^4$           | 1.7               | 001             | $M_{\rm u} \leq 5.0 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 | $2.8 \times 10^4 \le M_{\rm u}$            | 0.47              | 201             | $5.0 \times 10^4 \le M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.44  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 | $M_{\rm u} \leq 2.8 \times 10^4$           | 1.0               |                 | $M_{\rm u} \leq 5.0 \times 10^{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 129 | $4.6 \times 10^4 \leq M_{\rm u}$           | 0.55              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 | $M_{\rm u} \leq 4.6 \times 10^4$           | 1.6               |                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| <br>And the second s | 160 | $2.7 \times 10^4 \le M_{\rm u}$            | 0.43              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 001 | $M_{\rm u} \leq 2.7 \times 10^4$           | 1.4               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 201 | $2.4 \times 10^4 \le M_{\rm u}$            | 0.40              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 2.4 \times 10^4$           | 1.5               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| <br>Barium sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8   | $1.1 \times 10^5 \leq M_{\mathrm{u}}$      | 1.1               | * *             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 1.1 \times 10^5$           | 1.8               |                 | and the second s |       |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33  | $7.0\times10^4 \leq M_{\rm u}$             | 0.89              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| and the second s     |     | $M_{\rm u} \leq 7.0 \times 10^4$           | 1.6               | •               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55  | $7.0 \times 10^4 \leq M_{\rm u}$           | 0.74              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w.j.e |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $M_{\rm u} \leq 7.0 \times 10^4$           | 1.3               |                 | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78  | $6.4 \times 10^4 \leq M_{\rm u}$           | 0.62              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -   | $M_{\rm u} \leq 6.4 \times 10^4$           | 1.5               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101 | $8.6 \times 10^4 \leq M_{\rm u}$           | 0.52              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                            | 1.3               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 202 | $4.0 \times 10^4 \leq M_{\rm u}$           | 0.40              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| the state of the s     |     | $M_{\rm u} \leq 4.0 \times 10^4$           |                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

|                                                                                                                                                                                                                                 |     |                                                       | Atn  | osphere | ;                                      |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------|------|---------|----------------------------------------|----------------|
| Additive                                                                                                                                                                                                                        |     | Nitrogen                                              |      |         | Air                                    |                |
|                                                                                                                                                                                                                                 | ť   | L                                                     | n    | t       | L                                      | $\overline{n}$ |
| Sodium chloride                                                                                                                                                                                                                 | 9   | $1.3 \times 10^5 \leq M_{\mathrm{u}}$                 | 1.2  | 8       | $8.0 \times 10^4 \leq M_{\rm u}$       | 1.0            |
|                                                                                                                                                                                                                                 |     | $M_{ m u} \leq 1.3 	imes 10^5$                        | 1.7  |         | $M_{\rm u} \leq 8.0 \times 1$          | $0^4$ 2.0      |
|                                                                                                                                                                                                                                 | 18  | $2.0 \times 10^5 \leq M_{\rm u}$                      | 1.1  | 33      | $7.2 \times 10^4 \leq M_{\rm u}$       | 0.96           |
|                                                                                                                                                                                                                                 |     | $M_{ m u} \leq 2.0 	imes 10^5$                        | 1.5  |         | $M_{\rm u} \leq 7.2 \times 1$          | $0^4$ 2.2      |
|                                                                                                                                                                                                                                 | 36  | $2.0 \times 10^5 \leq M_{\mathrm{u}}$                 | 0.85 | 55      | $7.0 \times 10^4 \leq M_{\rm u}$       | 0.90           |
|                                                                                                                                                                                                                                 |     | $M_{ m u} \leq 2.0 	imes 10^5$                        | 1.0  |         | $M_{\rm u} \leq 7.0 \times 1$          | $0^4$ 1.8      |
| •                                                                                                                                                                                                                               | 57  | $7.0 \times 10^4 \leq M_{\rm u}$                      | 0.72 | 75      | $5.0 \times 10^4 \leq M_{\rm u}$       | 0.53           |
|                                                                                                                                                                                                                                 |     | $M_{\rm u} \leq 7.0 \times 10^4$                      | 1.0  |         | $M_{\rm u} \leq 5.0 \times 10^{-3}$    | $0^4$ 1.2      |
|                                                                                                                                                                                                                                 | 75  | $8.0 \times 10^4 \leq M_{\rm u}$                      | 0.79 | 105     | $5.0 \times 10^4 \leq M_{\rm u}$       | 0.54           |
|                                                                                                                                                                                                                                 |     | $M_{\rm u} \leq 8.0 \times 10^4$                      | 1.6  |         | $M_{\rm u} \leq 5.0 \times 10^{-5}$    | $0^4$ 1.4      |
| •                                                                                                                                                                                                                               | 95  | $9.0 \times 10^4 \leq M_{\rm u}$                      | 0.65 | 131     | $4.8 \times 10^4 \leq M_{\rm u}$       | 0.66           |
|                                                                                                                                                                                                                                 |     | $M_{\rm u} \leq 9.0 \times 10^4$                      | 1.2  |         | $M_{\rm u} \leq 4.8 \times 10^{-3}$    | $0^4$ 1.6      |
|                                                                                                                                                                                                                                 | 121 | $5.0 \times 10^4 \leq M_{\rm u}$                      | 0.57 | 199     | $2.5 \times 10^4 \leq M_{\rm u}$       | 1.1            |
| •,                                                                                                                                                                                                                              |     | $M_{\rm u} \leq 5.0 \times 10^4$                      | 2.1  |         | $M_{\rm u} \leq 2.5 \times 10^{-3}$    | $0^4$ 3.0      |
| *                                                                                                                                                                                                                               | 153 | $1.1 \times 10^5 \leq M_{\mathrm{u}}$                 | 0.38 |         |                                        |                |
|                                                                                                                                                                                                                                 |     | $4.0 \times 10^4 \le M_{\rm u} \le 1.1 \times 10^5$   | 0.83 |         |                                        |                |
| ,                                                                                                                                                                                                                               |     | $M_{\rm u} \leq 4.0 \times 10^4$                      | 2.1  |         |                                        |                |
|                                                                                                                                                                                                                                 | 201 | $3.5 \times 10^4 \leq M_{\rm u}$                      | 0.54 |         |                                        |                |
|                                                                                                                                                                                                                                 |     | $1.6 \times 10^4 \leq M_{\rm u} \leq 3.5 \times 10^4$ | 1.3  |         |                                        |                |
|                                                                                                                                                                                                                                 |     | $M_{ m u} \leq 1.6 	imes 10^4$                        | 2.8  |         |                                        |                |
| Talc                                                                                                                                                                                                                            | 72  | $8.0 \times 10^4 \le M_{\rm u}$                       | 0.99 | 72      |                                        | 0.86           |
| ± * * *                                                                                                                                                                                                                         |     | $M_{\rm u} \leq 8.0 \times 10^4$                      | 1.1  |         |                                        | 0.00           |
| e de la companya de<br>La companya de la co | 103 | $6.0 \times 10^4 \leq M_{\rm u}$                      | 0.73 | 106     | $10^4 \!\! < \!\! M_{ m u}$            | 0.56           |
|                                                                                                                                                                                                                                 |     | $M_{\rm u} \leq 6.0 \times 10^4$                      | 0.86 |         | $M_{ m u} \leq M_{ m u}$               |                |
|                                                                                                                                                                                                                                 | 133 | $8.0\times10^4 \leq M_{\rm u}$                        | 0.60 | 131     | $1.2 \times 10^4 \leq M_{\rm u}$       | 0.49           |
|                                                                                                                                                                                                                                 |     | $M_{\rm u} \leq 8.0 \times 10^4$                      | 0.96 |         | $M_{\rm u} \leq 1.2 \times 10^{\circ}$ |                |
|                                                                                                                                                                                                                                 | 169 | $5.0 \times 10^4 \leq M_{\rm u}$                      | 0.52 | 166     | $1.3 \times 10^4 \leq M_{\rm u}$       | 0.35           |
|                                                                                                                                                                                                                                 |     | $M_{\rm u} \leq 5.0 \times 10^4$                      | 1.1  |         | $M_{\rm u} \leq 1.3 \times 10$         |                |
|                                                                                                                                                                                                                                 | 201 | $4.3\times10^4 \leq M_{\rm u}$                        | 0.57 | 204     | $1.9 \times 10^4 \leq M_{\rm u}$       | 0.31           |
| •                                                                                                                                                                                                                               |     | $M_{\rm u} \leq 4.3 \times 10^4$                      | 1.1  |         | $M_{\rm u} \leq 1.9 \times 10$         |                |

TABLE VII. The Numerical Values of n for PVP Ball-Milled in the Presence of Organic Additives  $J_{\rm b}\!=\!0.22,\,J_{\rm s}\!=\!0.06^{2,3)}\;({\rm referred\ to\ Table\ I})$ 

|                        |     |                                               | Atm            | osphere         |                         |                         |                  |                |
|------------------------|-----|-----------------------------------------------|----------------|-----------------|-------------------------|-------------------------|------------------|----------------|
| Additive               |     | Nitrogen                                      |                |                 |                         | Air                     |                  |                |
|                        | t   | L                                             | $\overline{n}$ | $\widetilde{t}$ |                         | L                       |                  | $\overline{n}$ |
| Vitamin K <sub>3</sub> | 125 | $2.5 \times 10^4 \leq M_{\rm u}$              | 0.91           | . 8             | 105-                    | $\leq M_{ m u}$         |                  | 1.0            |
|                        |     | $M_{\rm u} \leq 2.5 \times 10^4$              | 1.9            |                 | $2.0 \times 10^4$       |                         | $10^{5}$         | 0.73           |
|                        | 145 | $3.0 \times 10^4 \leq M_{\rm u}$              | 1.0            |                 | 9.1                     | $M_{\rm u} < 2$         | $.0 \times 10^4$ | 1.4            |
|                        |     | $M_{\mathrm{u}} \leq 3.0 \times 10^{4}$       | 2.3            | 21              | $10^{5}$                | $<\!M_{ m u}$           |                  | 0.84           |
|                        | 166 |                                               | 0.59           |                 |                         | $\leq M_{ m u} \leq$    | $10^{5}$         | 0.52           |
|                        | 189 | $10^5 \leq M_{ m u}$                          | 0.59           |                 |                         | $M_{ m u} \leq$         |                  | 1.5            |
|                        |     | $4.6 \times 10^4 \leq M_{\rm u} \leq 10^5$    |                | 41              | 10 <sup>4</sup> ≤       |                         |                  | 0.87           |
|                        | n   | $M_{ m u} \leq 4.6 	imes 10^4$                |                |                 |                         | $M_{ m u} \leq$         | $10^{4}$         | 3.3            |
|                        | 222 | $9.2 \times 10^4 \leq M_{\mathrm{u}}$         |                |                 | $5.6 \times 10^{4}$     | $\leq M_{ m u}$         |                  | 0.75           |
|                        |     | $2.4 \times 10^4 \le M_u \le 9.2 \times 10^4$ |                |                 | 10⁴≤                    | $\leq M_{\rm u} \leq 5$ | $6 \times 10^4$  | 0.55           |
|                        |     | $M_{ m u} \leq 2.4 	imes 10^4$                |                | V               |                         | $M_{ m u} \leq$         | $10^{4}$         | 1.6            |
|                        | 251 | $8.2 \times 10^4 \leq M_{\rm u}$              | 0.46           | 95              | $5.5 \times 10^{4} \le$ | $\leq M_{ m u}$         |                  | 0.76           |
|                        |     | $1.6 \times 10^4 \le M_u \le 8.2 \times 10^4$ |                |                 |                         |                         | $5 \times 10^4$  |                |
|                        |     | $M_{\rm u} \leq 1.6 \times 10^4$              | 0.32           | 123             | $3.2 \times 10^{4} \le$ |                         |                  |                |
|                        |     |                                               |                |                 |                         |                         | $2 \times 10^4$  |                |

|                |                 | •                                                                                       | Atmos                                      | phere           |                                                                                 |                     |
|----------------|-----------------|-----------------------------------------------------------------------------------------|--------------------------------------------|-----------------|---------------------------------------------------------------------------------|---------------------|
| Additive       |                 | Nitrogen                                                                                |                                            |                 | Air                                                                             |                     |
|                | $\widetilde{t}$ | Ĺ                                                                                       | $\overline{n}$                             | $\widetilde{t}$ | L                                                                               | n                   |
|                |                 |                                                                                         |                                            | 160             | $3.2 \times 10^4 \leq M_{\rm u}$ $M_{\rm u} \leq 3.2 \times 10^4$               | $0.4^{\circ}_{0.6}$ |
|                |                 |                                                                                         |                                            | 200             | $4.0 \times 10^4 \leq M_{\rm u}$ $M_{\rm u} \leq 4.0 \times 10^4$               | $0.4 \\ 0.7$        |
| Acridine       | 125             | $2.1\times10^{5} \leq M_{\rm u}$ $M_{\rm u} \leq 2.1\times10^{5}$                       | 0.89<br>0.66                               | 8               | $1.6 \times 10^{5} \leq M_{\mathrm{u}}$ $M_{\mathrm{u}} \leq 1.6 \times 10^{5}$ | $\frac{1.2}{2.4}$   |
|                | 145             | $1.3 \times 10^{5} \leq M_{\rm u}$ $M_{\rm u} \leq 1.3 \times 10^{5}$                   | 0.90<br>0.70                               | 22              | $8.2 \times 10^4 \le M_{\rm u}$<br>$M_{\rm u} \le 8.2 \times 10^4$              | $\frac{1.2}{2.8}$   |
|                | 166             |                                                                                         | 0.79                                       | 43              | $8.0 \times 10^4 \leq M_{\rm u}$                                                | 0.9                 |
| e e            | 198             | $1.5 \times 10^5 \le M_{\rm u}$<br>$4.5 \times 10^4 \le M_{\rm u} \le 1.5 \times 10^5$  | $0.75 \\ 0.78$                             | 74              | $M_{\rm u} \leq 8.0 \times 10^4$ $5.0 \times 10^4 \leq M_{\rm u}$               | $\frac{1.6}{0.7}$   |
|                | 000             | $M_{\rm u} \leq 4.5 \times 10^4$                                                        | $0.50 \\ 0.56$                             | 101             | $M_{\rm u} \leq 5.0 \times 10^4$ $4.6 \times 10^4 \leq M_{\rm u}$               | $\frac{1.6}{0.5}$   |
|                | 222             | $1.2 \times 10^{5} \le M_{\rm u} 2.5 \times 10^{4} \le M_{\rm u} \le 1.5 \times 10^{4}$ | 0.30                                       |                 | $M_{\rm u} \leq 4.6 \times 10^4$                                                | 1.5                 |
|                | 251             | $M_{\rm u} \le 2.5 \times 10^4$<br>$6.5 \times 10^4 \le M_{\rm u}$                      | $0.56 \\ 0.55$                             | 207             | $2.8 \times 10^4 \leq M_{\rm u}$ $M_{\rm u} \leq 2.8 \times 10^4$               | 0.73                |
|                | 231             | $1.4 \times 10^4 \le M_u \le 6.5 \times 10^4$                                           | 0.97                                       |                 |                                                                                 |                     |
| 75 17 17 17    |                 | $M_{\rm u} \leq 1.4 \times 10^4$                                                        | 0.67                                       | 8               | $8.0 \times 10^4 \leq M_{\rm u}$                                                | 1.                  |
| Methylene blue |                 |                                                                                         |                                            | 43              | $M_{\rm u} \le 8.0 \times 10^4$<br>$1.1 \times 10^5 \le M_{\rm u}$              | 1.5                 |
|                |                 |                                                                                         |                                            | 74              | $M_{\rm u} \leq 1.1 \times 10^5$<br>$1.1 \times 10^5 \leq M_{\rm u}$            | 1.                  |
|                |                 |                                                                                         |                                            | 101             | $M_{\rm u} \le 1.1 \times 10^5$<br>$8.0 \times 10^4 \le M_{\rm u}$              | 1.4                 |
|                |                 |                                                                                         |                                            |                 | $M_{\rm u} \leq 8.0 \times 10^4$                                                | 2.                  |
| •              |                 |                                                                                         |                                            | 207             | $7.5 \times 10^4 \leq M_{\rm u}$ $M_{\rm u} \leq 7.5 \times 10^4$               | 0.61.               |
| Phenothiazine  | 93              | $3.0 \times 10^5 \leq M_{\rm u}$                                                        | 0.90                                       | 21              | $2.8 \times 10^4 \leq M_{\rm u}$ $M_{\rm u} \leq 2.8 \times 10^4$               | 0.<br>1.            |
|                |                 | $8.0 \times 10^4 \le M_u \le 3.0 \times 10^5$<br>$M_u \le 8.0 \times 10^4$              | $0.60 \\ 0.86$                             | 41              | $7.3 \times 10^4 \leq M_{\rm u}$                                                | 1.                  |
|                | 115             | $8.4 \times 10^4 \le M_{\rm u}$<br>$10^4 \le M_{\rm u} \le 8.4 \times 10^4$             | $0.72 \\ 0.62$                             | 65              | $M_{\rm u} \leq 7.3 \times 10^4$                                                | 1.<br>1.            |
|                |                 | $M_{ m u} \leq 10^4$                                                                    | 0.86                                       | 95              | $4.8 \times 10^4 \le M_{\rm u}$                                                 | 1.                  |
|                | 140             | $6.4 \times 10^4 \le M_{\rm u}$ $M_{\rm u} \le 6.4 \times 10^4$                         | $0.73 \\ 0.54$                             | 123             | $M_{\rm u} \leq 4.8 \times 10^4$ $2.3 \times 10^4 \leq M_{\rm u}$               | 0.                  |
|                | 175             | $4.0 \times 10^4 \le M_{\rm u}$ $M_{\rm u} \le 4.0 \times 10^4$                         | 0.75                                       | 160             | $M_{\rm u} \leq 2.3 \times 10^4$                                                | $\frac{2}{1}$ .     |
|                | 211             | $M_{\rm u} \leq 4.0 \times 10$                                                          | 0.50                                       | 200             | $5.1 \times 10^4 \le M_{\rm u}$                                                 | 0.                  |
| ¥1.            |                 |                                                                                         |                                            | 10              | $M_{\rm u} \leq 5.1 \times 10^4$                                                | 1.<br>1.            |
| p-Hydroquinone | 7               | $1.3 \times 10^5 \le M_{\rm u}$<br>$M_{\rm u} \le 1.3 \times 10^5$                      | $\frac{1.4}{2.3}$                          | 10              | $1.2 \times 10^5 \leq M_{\rm u}$ $M_{\rm u} \leq 1.2 \times 10^5$               | 2.                  |
|                | 20              | $4.0 \times 10^5 \le M_{\rm u}$<br>$6.0 \times 10^4 \le M_{\rm u} \le 4.0 \times 10^5$  | $\begin{array}{c} 1.3 \\ 0.93 \end{array}$ | 19              | $1.2 \times 10^5 \le M_{\rm u}$<br>$M_{\rm u} \le 1.2 \times 10^5$              | $\frac{1}{2}$ .     |
|                | •               | $M_{\rm u} \leq 6.0 \times 10^4$                                                        | 2.3                                        | 42              |                                                                                 | 1.                  |
|                | 35              | $9.0 \times 10^4 \leq M_{\rm u}$ $M_{\rm u} \leq 9.0 \times 10^4$                       |                                            | 65              | · <del>-</del>                                                                  | 0.                  |
|                | 72              |                                                                                         | 0.52                                       | 93<br>200       |                                                                                 | 1.<br>1.            |
|                | 100             | $10^5 \leq M_{\mathrm{u}}$                                                              | 0.50                                       |                 | $M_{\rm u} \leq 5.5 \times 10^4$                                                |                     |
|                | 150             |                                                                                         | 0.47                                       |                 |                                                                                 |                     |
|                | 203             | $M_{\rm u} \leq 1.2 \times 10^5$                                                        | 1.1<br>0.58                                |                 |                                                                                 |                     |
|                |                 | $M_{\rm u} \leq 3.3 \times 10^6$                                                        |                                            |                 |                                                                                 |                     |

|                 |                 | Atmosphere                       |      |                 |     |     |  |  |  |
|-----------------|-----------------|----------------------------------|------|-----------------|-----|-----|--|--|--|
| Addtive         |                 | Nitrogen                         |      |                 | Air |     |  |  |  |
|                 | $\widetilde{t}$ | L                                | n    | $\widetilde{t}$ | L   | n   |  |  |  |
| Barbituric acid | 7               | . /                              | 0.75 | 8               |     | 1.3 |  |  |  |
| 4.              | 20              |                                  | 0.60 | 23              |     | 1.0 |  |  |  |
|                 | 35              | $5.7 \times 10^4 \leq M_{\rm u}$ | 0.57 | 42              |     | 0.7 |  |  |  |
|                 |                 | $M_{\rm u} \leq 5.7 \times 10^4$ | 0.84 | 62              |     | 0.7 |  |  |  |
|                 | 47              | $5.5 \times 10^4 \leq M_{\rm u}$ | 0.51 | 91              |     | 0.5 |  |  |  |
| ě :             |                 | $M_{\rm u} \leq 5.5 \times 10^4$ |      | 200             |     | 1.2 |  |  |  |
|                 | 72              | $4.0 \times 10^4 \leq M_{\rm u}$ | 0.68 |                 |     |     |  |  |  |
|                 |                 | $M_{\rm u} \leq 4.0 \times 10^4$ | 1.7  |                 |     |     |  |  |  |
|                 | 121             | $4.1 \times 10^4 \leq M_{\rm u}$ | 0.62 |                 |     |     |  |  |  |
|                 |                 |                                  | 1.7  |                 |     |     |  |  |  |
| P .             | 151             | $3.8 \times 10^4 \le M_{\rm u}$  | 0.69 |                 |     |     |  |  |  |
|                 |                 | $M_{\rm u} \leq 3.8 \times 10^4$ | 2.2  |                 |     |     |  |  |  |
|                 | 203             |                                  | 0.77 |                 |     |     |  |  |  |
|                 |                 | $M_{\rm u} \leq 3.5 \times 10^4$ |      |                 |     |     |  |  |  |

Table VIII. The Numerical Values of n for PVP Ball–Milled in the Presence of Activated Charcoal (AC) in Various Kinds of Atmosphere

 $J_{\rm b}\!=\!0.22,\,J_{\rm s}\!=\!0.06^{2,3)}$  (referred to Table I)

|                 | Kind of AC Granules<br>Content of AC $10\%$<br>Atmosphere $N_2(H_2O)$ | :    |                     | Kind of AC Granules<br>Content of AC $10\%$<br>Atmosphere $N_2(H_2O_2)$ |      |  |
|-----------------|-----------------------------------------------------------------------|------|---------------------|-------------------------------------------------------------------------|------|--|
| $\widetilde{t}$ | L                                                                     | n    | $\widetilde{t}^{*}$ | L                                                                       | n    |  |
| 118             | $1.5 \times 10^6 \leq M_{\mathrm{u}}$                                 | 1.2  | 78                  | $1.8 \times 10^6 \leq M_{\mathrm{u}}$                                   | 1.3  |  |
|                 | $M_{ m u} \leq 1.5 	imes 10^6$                                        | 0.68 |                     | $M_{ m u} \leq 1.8 	imes 10^6$                                          | 0.81 |  |
| 131             | $8.4 \times 10^5 \leq M_{\rm u}$                                      | 1.2  | 115                 | $1.4 \times 10^6 \leq M_{\mathrm{u}}$                                   | 1.3  |  |
|                 | $1.1 \times 10^4 \le M_u \le 8.4 \times 10^5$                         | 0.57 |                     | $4.8 \times 10^4 \le M_{\rm u} \le 1.4 \times 10^6$                     | 0.75 |  |
|                 | $M_{\rm u} \leq 1.1 \times 10^4$                                      | 0.85 |                     | $M_{\mathrm{u}} \leq 4.8 \times 10^4$                                   | 1.0  |  |
| 146             | $4.5 \times 10^5 \leq M_{\rm u}$                                      | 1.2  | 127                 | $1.5 \times 10^6 \leq M_{\mathrm{u}}$                                   | 1.2  |  |
|                 | $2.0 \times 10^4 \le M_u \le 4.5 \times 10^5$                         | 0.56 |                     | $2.0 \times 10^4 \le M_u \le 1.5 \times 10^6$                           | 0.57 |  |
|                 | $M_{\rm u} \leq 2.0 \times 10^4$                                      | 1.6  |                     | $M_{\rm u} \leq 2.0 \times 10^4$                                        | 0.99 |  |
| 162             | $4.5 \times 10^5 \leq M_{\rm u}$                                      | 1.2  | 145                 | $10^6 \leq M_{ m u}$                                                    | 1.3  |  |
|                 | $2.0 \times 10^4 \le M_u \le 4.5 \times 10^5$                         | 0.56 |                     | $2.3 \times 10^4 \le M_{\rm u} \le 10^6$                                | 0.57 |  |
| •               | $M_{ m u} \leq 2.0 	imes 10^4$                                        | 1.8  |                     | $M_{\rm u} \leq 2.3 \times 10^4$                                        | 1.2  |  |
| 181             | $2.4 \times 10^5 \leq M_{\rm u}$                                      | 0.70 | 164                 | $4.6 \times 10^4 \le M_{\rm u}$                                         | 0.50 |  |
|                 | $2.0 \times 10^4 \le M_u \le 2.4 \times 10^5$                         | 0.51 |                     | $M_{\rm u} \leq 4.6 \times 10^4$                                        | 1.4  |  |
|                 | $M_{\mathrm{u}} \leq 2.0 \times 10^4$                                 | 1.4  | 184                 | $1.1 \times 10^6 \leq M_{\mathrm{u}}$                                   | 1.2  |  |
| 202             | $2.5 \times 10^5 \leq M_{\rm u}$                                      | 0.71 |                     | $2.5 \times 10^4 \le M_{\rm u} \le 1.1 \times 10^6$                     | 0.51 |  |
|                 | $1.2 \times 10^4 \le M_u \le 2.5 \times 10^5$                         | 0.44 |                     | $M_{ m u} \leq 2.5 \times 10^4$                                         | 1.3  |  |
|                 | $M_{ m u} \leq 1.2 	imes 10^4$                                        | 1.5  | 211                 | $10^6 \leq M_{ m u}$                                                    | 1.0  |  |
| 221             | $10^4 \leq M_{ m u}$                                                  | 0.46 |                     | $3.3 \times 10^4 \leq M_{\rm u} \leq 10^6$                              | 0.51 |  |
|                 | $M_{ m u}{\le}$ 104                                                   | 1.6  |                     | $M_{\rm u} \leq 3.3 \times 10^4$                                        | 1.8  |  |
|                 |                                                                       |      | 241                 | $3.2 \times 10^4 \leq M_{\rm u}$                                        | 0.44 |  |
|                 |                                                                       |      |                     | $M_{\rm u} \leq 3.2 \times 10^4$                                        | 1.8  |  |
|                 |                                                                       |      | 269                 | $1.2 \times 10^6 \leq M_{\mathrm{u}}$                                   | 0.73 |  |
|                 | $\{x_i,x_{i,j}\}_{i=1}^n$                                             |      |                     | $4.2 \times 10^{4} \le M_{\rm u} \le 1.2 \times 10^{6}$                 | 0.49 |  |
|                 |                                                                       |      |                     | $M_{\rm u} \leq 4.2 \times 10^4$                                        | 2.0  |  |

|    |                 | Kind of AC Granules<br>Content of AC 15.1%<br>Atmosphere Air | Kind of AC Fine powders Content of AC 10% Atmosphere Air |               |                                         |      |  |  |  |  |
|----|-----------------|--------------------------------------------------------------|----------------------------------------------------------|---------------|-----------------------------------------|------|--|--|--|--|
|    | $\widetilde{t}$ | L                                                            | n                                                        | $\widehat{t}$ | L                                       | n    |  |  |  |  |
| 6  | 55              |                                                              | 0.88                                                     | 8             | $1.5 \times 10^5 \leq M_{\rm u}$        | 1.0  |  |  |  |  |
| 9  | 8               |                                                              | 0.77                                                     |               | $M_{\rm u} \leq 1.5 \times 10^5$        | 1.9  |  |  |  |  |
| 13 | 80              |                                                              | 0.81                                                     | 22            | $1.4 \times 10^5 \leq M_{\mathrm{u}}$   | 0.99 |  |  |  |  |
| 16 | 64              |                                                              | 0.72                                                     |               | $M_{\mathrm{u}} \leq 1.4 \times 10^5$   | 1.4  |  |  |  |  |
| 19 | 8               | $2.1 \times 10^4 \leq M_{\rm u}$                             | 0.72                                                     | 46            | $1.4 \times 10^5 \leq M_{\rm u}$        | 1.1  |  |  |  |  |
|    |                 | $M_{\rm u} \leq 2.1 \times 10^4$                             | 2.3                                                      |               | $M_{ m u} \leq 1.4 	imes 10^5$          | 1.5  |  |  |  |  |
| 25 | 51              | $2.6 \times 10^4 \leq M_{\rm u}$                             | 0.57                                                     | 63            | $1.7 \times 10^5 \leq M_{\rm u}$        | 0.72 |  |  |  |  |
|    |                 | $M_{\rm u} \leq 2.6 \times 10^4$                             | 1.4                                                      |               | $M_{ m u} \leq 1.7 \times 10^5$         | 1.6  |  |  |  |  |
|    |                 |                                                              |                                                          | 80            | $1.8 \times 10^5 \leq M_{\rm u}$        | 0.64 |  |  |  |  |
|    |                 | •                                                            |                                                          |               | $M_{\mathrm{u}} \leq 1.8 \times 10^{5}$ | 1.5  |  |  |  |  |
|    |                 |                                                              | * * .                                                    | 113           | $7.3 \times 10^4 \leq M_{\rm u}$        | 1.1  |  |  |  |  |
|    |                 |                                                              | *                                                        |               | $M_{\rm u} \leq 7.3 \times 10^4$        | 2.5  |  |  |  |  |
|    |                 |                                                              | •                                                        | 136           | $7.3 \times 10^4 \leq M_{\mathrm{u}}$   | 0.90 |  |  |  |  |
|    |                 | •                                                            |                                                          |               | $M_{\rm u} \leq 7.3 \times 10^4$        | 2.7  |  |  |  |  |

|                 | Kind of AC Granules<br>Content of AC 15.1%<br>Atmosphere Oxygen |      |                 | Kind of AC Granules<br>Content of AC 10%<br>Atmosphere O <sub>2</sub> (H <sub>2</sub> O) | . ·  |
|-----------------|-----------------------------------------------------------------|------|-----------------|------------------------------------------------------------------------------------------|------|
| $\widetilde{t}$ | L                                                               | n    | $\widetilde{t}$ | L                                                                                        | n    |
| 69              | $7.5 \times 10^5 \leq M_{\rm u}$                                | 1.1  | 122             | $1.3 \times 10^6 \leq M_{\mathrm{u}}$                                                    | 1.2  |
|                 | $3.0 \times 10^4 \le M_u \le 7.5 \times 10^5$                   | 0.91 |                 | $1.7 \times 10^4 \le M_u \le 1.3 \times 10^6$                                            | 0.74 |
|                 | $M_{\rm u} \leq 3.0 \times 10^4$                                | 1.4  |                 | $M_{\mathrm{u}} \leq 1.7 \times 10^4$                                                    | 1.2  |
| 82              | $3.0 \times 10^4 \leq M_{\rm u}$                                | 0.89 | 164             | $1.3 \times 10^6 \leq M_{\rm u}$                                                         | 1.2  |
|                 | $M_{\rm u} \leq 3.0 \times 10^4$                                | 1.2  |                 | $2.8 \times 10^4 \le M_{\rm u} \le 1.3 \times 10^6$                                      | 0.70 |
| 112             | $3.0 \times 10^4 \leq M_{\rm u}$                                | 0.90 |                 | $M_{\mathrm{u}} \leq 2.8 \times 10^4$                                                    | 1.2  |
|                 | $M_{\rm u} \leq 3.0 \times 10^4$                                | 1.4  | 184             | $8.2 \times 10^5 \leq M_{\mathrm{u}}$                                                    | 1.4  |
| 148             | $7.2 \times 10^5 \leq M_{\mathrm{u}}$                           | 1.0  |                 | $2.1 \times 10^4 \le M_{\rm u} \le 8.2 \times 10^5$                                      | 0.69 |
|                 | $M_{\rm u} \leq 7.2 \times 10^5$                                | 0.80 |                 | $M_{\rm u} \leq 2.1 \times 10^4$                                                         | 1.9  |
| 164             | $4.7 \times 10^5 \leq M_{\rm u}$                                | 1.4  | 202             | $4.4 \times 10^5 \leq M_{\mathrm{u}}$                                                    | 1.8  |
|                 | $1.3 \times 10^4 \le M_u \le 4.7 \times 10^5$                   | 0.73 |                 | $5.2 \times 10^4 \le M_{\rm u} \le 4.4 \times 10^5$                                      | 0.90 |
|                 | $M_{\mathrm{u}} \leq 1.3 \times 10^4$                           | 1.4  |                 | $M_{\rm u} \leq 5.2 \times 10^4$                                                         | 2.5  |
| 204             | $1.7 \times 10^4 \leq M_{\rm u}$                                | 0.70 | 221             | $6.2 \times 10^5 \leq M_{\mathrm{u}}$                                                    | 1.1  |
|                 | $M_{\rm u} \leq 1.7 \times 10^4$                                | 1.7  |                 | $2.4 \times 10^4 \le M_{\rm u} \le 6.2 \times 10^5$                                      | 0.55 |
| 224             | $2.0 \times 10^4 \leq M_{\rm u}$                                | 0.62 |                 | $M_{\rm u} \leq 2.4 \times 10^4$                                                         | 1.8  |
|                 | $M_{\rm u} \leq 2.0 \times 10^4$                                | 1.8  | 241             | $6.0 \times 10^5 \leq M_{\mathrm{u}}$                                                    | 0.94 |
| 248             | $8.0 \times 10^3 \leq M_{\rm u}$                                | 0.72 |                 | $1.4 \times 10^4 \le M_{\rm u} \le 6.0 \times 10^5$                                      | 0.48 |
|                 | $M_{\rm u} \leq 8.0 \times 10^3$                                | 2.8  |                 | $M_{\mathrm{u}} \leq 1.4 \times 10^4$                                                    | 1.6  |
|                 |                                                                 |      | 271             | $2.4 \times 10^5 \leq M_{ m u}$                                                          | 0.94 |
| *               |                                                                 |      |                 | $1.4 \times 10^4 \le M_{\rm u} \le 2.4 \times 10^5$                                      | 0.52 |
|                 |                                                                 |      |                 | $M_{\mathrm{u}} \leq 1.4 \times 10^4$                                                    | 1.8  |
|                 |                                                                 |      |                 |                                                                                          |      |

#### 2) Relation between R and $M_{\rm u}$

A line broken at several points was obtained by the logarithmic plot of  $(-\log R)$  versus  $M_{\rm u}$ , as ahown in Fig. 3. The value of  $M_{\rm u}$  at the broken point and the gradient of each of the straight lines in the range of various molecular weights, n, are shown in Table V, VI, VII, VIII and IX. These Tables show the existence of the critical molecular weight,  $M_{\rm c}$ , at the region of molecular weight above which, n is around or below 1.0, and at the region of molecular weight below which, n is larger than 1.0. The value of  $M_{\rm c}$  in the absence of the additive was influenced little by the ball-milling atmosphere.

Table IX. Numerical Values of n for PVP Ball-Milled in the Presence of Chloranil  $J_b{=}0.43,\,J_s{=}0.03^{3)}$  (referred to Table I)

|                                                                         | Content of chlor<br>Atmosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | anil $5\%$ $N_2(H_2O)$                                                                                                                                                                                                                                                                                       | Content<br>Atmosp                                                                                                                                                                                                                | of chloranil<br>ohere N <sub>2</sub> (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $5\%$ $I_2O_2)$                                                                                                                                                                                                                                                          | C                                                             | ontent of chloranil<br>Atmosphere Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>t</i>                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n                                                                                                                                                                                                                                                                                                            | t                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n                                                                                                                                                                                                                                                                        | t                                                             | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 43 \$                                                                   | $5.5 \times 10^5 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2                                                                                                                                                                                                                                                                                                          | 55 1.1×10 <sup>6</sup>                                                                                                                                                                                                           | $\leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                                                                                                                                                                                                                      | 31 7                                                          | $.8 \times 10^5 \leq M_{\mathrm{u}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                         | $1.6 \times 10^4 \leq M_{\rm u} \leq 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.5 \times 10^5 \ 0.65$                                                                                                                                                                                                                                                                                     | $6.0 \times 10^4$                                                                                                                                                                                                                | $\leq M_{\rm u} \leq 1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×10 <sup>6</sup> 0.98                                                                                                                                                                                                                                                    | 1.                                                            | $.3 \times 10^4 \leq M_{\rm u} \leq 7.8 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $.6 \times 10^4 \ 1.5$                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  | $M_{\rm u} \leq 6.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\times 10^{4} 2.2$                                                                                                                                                                                                                                                      |                                                               | $M_{\rm u} \leq 1.3 >$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 51                                                                      | $1.3 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.68                                                                                                                                                                                                                                                                                                         | $62\ 4.7 \times 10^{5}$                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.93                                                                                                                                                                                                                                                                     | 47 4                                                          | $.7 \times 10^5 \leq M_{\mathrm{u}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $.3 \times 10^4 \ 1.4$                                                                                                                                                                                                                                                                                       | $1.1 \times 10^4$                                                                                                                                                                                                                | $\leq M_{\rm u} \leq 4.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          | 8.                                                            | $.6 \times 10^3 \leq M_{\rm u} \leq 4.7 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 55                                                                      | $2.5 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.70                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  | $M_{\rm u} \leq 1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |                                                               | $M_{\rm u} \leq 8.6 >$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>-</b> 0 (                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.5 \times 10^4 \ 1.3$                                                                                                                                                                                                                                                                                      | $66 6.0 \times 10^{5}$                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                     | 61 6.                                                         | $.4 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 59 .                                                                    | $3.8 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.64                                                                                                                                                                                                                                                                                                         | $1.6 \times 10^{*}$                                                                                                                                                                                                              | $\leq M_{\rm u} \leq 6.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          | 07.0                                                          | $M_{\rm u} \leq 6.4 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 61                                                                      | $M_{\mathrm{u}} \leq 3$ $4.5 \times 10^4 \leq M_{\mathrm{u}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.8 \times 10^4 \ 1.3$<br>0.58                                                                                                                                                                                                                                                                              | 60 2 0 104                                                                                                                                                                                                                       | $M_{\rm u} \leq 1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          | 67 8.                                                         | $0 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 04 4                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36 $1.4$ $1.4$                                                                                                                                                                                                                                                                                             | $69\ 2.9 \times 10^4$                                                                                                                                                                                                            | $\leq M_{\rm u}$ $M_{\rm u} \leq 2.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2                                                                                                                                                                                                                                                                      | 79 7                                                          | $M_{\mathrm{u}} \leq 8.0 >$ $.7 \times 10^{4} \leq M_{\mathrm{u}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 73 !                                                                    | $5.0 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.56                                                                                                                                                                                                                                                                                                         | $75 \ 3.5 \times 10^4$                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1                                                                                                                                                                                                                                                                      | . 13 1                                                        | $M_{\rm u} \leq 7.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $6.0 \times 10^4 \ 1.8$                                                                                                                                                                                                                                                                                      | 10 0.0 × 10                                                                                                                                                                                                                      | $M_{\rm u} \leq 3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          | 81 9                                                          | $.5 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 85 5                                                                    | $5.0 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.57                                                                                                                                                                                                                                                                                                         | $84\ 2.8 \times 10^4$                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.58                                                                                                                                                                                                                                                                     |                                                               | $.5 \times 10 \le M_{\rm u}$<br>$.5 \times 10^4 \le M_{\rm u} \le 9.5 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $6.0 \times 10^4 \ 1.7$                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                  | $M_{\rm u} \leq 2.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |                                                               | $M_{\rm u} \leq 2.5 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 101                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36                                                                                                                                                                                                                                                                                                         | $102\ 4.1 \times 10^4$                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          | 91 5.                                                         | $.2 \times 10^4 \leq M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                         | $M_{ m u} \leq 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.3 \times 10^4 \ 1.6$                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                  | $M_{\rm u} \leq 4.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |                                                               | $.4 \times 10^4 \leq M_{\rm u} \leq 5.2 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          |                                                               | $M_{\rm u} \leq 1.4 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          | 99 4                                                          | $.8 \times 10^4 \leq M_{\mathrm{u}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          | 1.                                                            | $.4 \times 10^4 \leq M_u \leq 4.8 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $10^4 \ 1.8$                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          | 1.                                                            | $.4 \times 10^{4} \leq M_{\rm u} \leq 4.8 \times M_{\rm u} \leq 1.4 $                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          |                                                               | $M_{\mathrm{u}} \leq 1.4 >$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                         | Content of chlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ranil 10%<br>e Air                                                                                                                                                                                                                                                                                           | Content<br>Atn                                                                                                                                                                                                                   | of chlorani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 5%                                                                                                                                                                                                                                                                     |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                         | Content of chlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ranil 10%<br>e Air                                                                                                                                                                                                                                                                                           | Content Atn                                                                                                                                                                                                                      | of chlorani<br>nosphere C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 5%<br><sub>2</sub>                                                                                                                                                                                                                                                     |                                                               | $M_{ m u} \leq 1.4 	imes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                         | Atmospher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Air                                                                                                                                                                                                                                                                                                        | Atn                                                                                                                                                                                                                              | L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02                                                                                                                                                                                                                                                                       | t c                                                           | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(F_{ m u})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 <sup>4</sup> 1.5<br>10%<br>H <sub>2</sub> O)                                                                                                                                                                                                                                                                                                                                                                                         |
| 199                                                                     | Atmospher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n 1.4                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} \text{Atn} \\ \hline t \\ 36 \ 1.4 \times 10^6 \le \\ \end{array} $                                                                                                                                           | L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n 1.3                                                                                                                                                                                                                                                                    | t 42 5.                                                       | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(F)$ L $.5 	imes 10^4 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 <sup>4</sup> 1.5<br>10%<br>1 <sub>2</sub> O)<br>n                                                                                                                                                                                                                                                                                                                                                                                    |
| 199                                                                     | Atmosphere L $1.4 \times 10^6 \leq M_u$ $8.4 \times 10^4 \leq M_u \leq 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n 1.4                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} \text{Atn} \\ \hline t \\ 36 \ 1.4 \times 10^6 \le \\ \end{array} $                                                                                                                                           | $L$ $M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n 1.3 10 <sup>6</sup> 0.74                                                                                                                                                                                                                                               | 42 5.                                                         | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(F_{ m u})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10%<br>H <sub>2</sub> O)<br>n<br>1.2<br>(104 0.75                                                                                                                                                                                                                                                                                                                                                                                       |
| 199 2                                                                   | Atmospher $L$ $1.4 \times 10^6 \leq M_u$ $8.4 \times 10^4 \leq M_u \leq 1$ $M_u \leq 8$ $9.0 \times 10^5 \leq M_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n 1.4 .4×10 <sup>8</sup> 0.78 8.4×10 <sup>4</sup> 1.8 1.2                                                                                                                                                                                                                                                    | Atn $t$ $36 \ 1.4 \times 10^{6} \le 2.5 \times 10^{4} \le 4$                                                                                                                                                                     | nosphere C $L$ $\leq M_{\rm u}$ $\leq M_{\rm u} \leq 1.4 \times$ $M_{\rm u} \leq 2.5 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4                                                                                                                                                                                                                       | t<br>42 5.                                                    | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(F)$ $L$ $.5 	imes 10^4 \leq M_{ m u}$ $.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 10^4 \ 1.5 \\ \hline 10\% \\ \text{H}_2\text{O}) \\ \hline \\ n \\ \hline \\ 1.2 \\ 10^4 \ 0.75 \\ 10^4 \ 1.8 \\ \end{array}$                                                                                                                                                                                                                                                                                         |
| 199 2                                                                   | $L$ 1.4×10 $^6 \le M_u$ 8.4×10 $^4 \le M_u \le 1$ $M_u \le 8$ 9.0×10 $^5 \le M_u$ 7.8×10 $^4 \le M_u \le 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Air $n$ 1.4 $.4 \times 10^8 \ 0.78$ $3.4 \times 10^4 \ 1.8$ $1.2$ $1.0 \times 10^5 \ 0.78$                                                                                                                                                                                                                 | Atm $t$ 36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤ 47 1.8×10 <sup>6</sup> ≤                                                                                                                                                  | hosphere C $L$ $\leq M_{\rm u}$ $\leq M_{\rm u} \leq 1.4 \times$ $M_{\rm u} \leq 2.5 \times$ $\leq M_{\rm u}$ $\leq M_{\rm u} \leq 1.8 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70                                                                                                                                                                                        | 42 5 1 47 2.                                                  | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(F)$ L $.5 	imes 10^4 \leq M_{ m u}$ $.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $M_{ m u} \leq 1.8 	imes$ $.8 	imes 10^4 \leq M_{ m u}$ $M_{ m u} \leq 2.8 	imes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10%<br>10%<br>1 <sub>2</sub> O)<br>n<br>1.2<br>10 <sup>4</sup> 0.75<br>10 <sup>4</sup> 1.8<br>0.84<br>10 <sup>4</sup> 1.6                                                                                                                                                                                                                                                                                                               |
| 199 2                                                                   | $L$ 1.4×10 $^{6} \le M_{\rm u}$ 8.4×10 $^{4} \le M_{\rm u} \le 1$ $M_{\rm u} \le 1$ 9.0×10 $^{5} \le M_{\rm u}$ 7.8×10 $^{4} \le M_{\rm u} \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Air $n$ 1.4 $.4 \times 10^{8} 0.78$ $3.4 \times 10^{4} 1.8$ 1.2 $0.0 \times 10^{5} 0.78$ $3.8 \times 10^{4} 1.4$                                                                                                                                                                                           | Atn $t$ 36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤  47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤                                                                                                                           | complete C L $M_{\rm u}$ $M_{\rm u} \leq 1.4 \times M_{\rm u} \leq 2.5 \times M_{\rm u}$ $M_{\rm u} \leq 1.8 \times M_{\rm u} \leq 2.8 \times M_{\rm u} \leq 2$                                                                     | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6                                                                                                                                                                 | 42 5 1 47 2.                                                  | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(F)$ $L$ $0.5 	imes 10^4 \leq M_{ m u}$ $0.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $0.8 	imes 10^4 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 10^4 \ 1.5 \\ \hline \hline 10\% \\ 1_2 \\ \hline n \\ \hline 1.2 \\ 10^4 \ 0.75 \\ 10^4 \ 1.8 \\ 0.84 \\ 10^4 \ 1.6 \\ 0.73 \\ \end{array}$                                                                                                                                                                                                                                                                          |
| 199 2                                                                   | Atmosphere  L  1.4 × 10 <sup>6</sup> $\leq M_{\rm u}$ 8.4 × 10 <sup>4</sup> $\leq M_{\rm u} \leq 1$ $M_{\rm u} \leq 8$ 9.0 × 10 <sup>5</sup> $\leq M_{\rm u}$ 7.8 × 10 <sup>4</sup> $\leq M_{\rm u} \leq 9$ $M_{\rm u} \leq 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Air $n$ 1.4 $.4 \times 10^{6} 0.78$ $3.4 \times 10^{4} 1.8$ 1.2 $0.0 \times 10^{5} 0.78$ $3.8 \times 10^{4} 1.4$ $0.81$                                                                                                                                                                                    | Atm  t  36 $1.4 \times 10^6 \le 2.5 \times 10^4 \le 47$ $1.8 \times 10^6 \le 2.8 \times 10^4 \le 50$ 50 $10^6 \le 6$                                                                                                             | complete C L $M_{\rm u}$ $M_{\rm u} \leq 1.4 \times M_{\rm u} \leq 2.5 \times M_{\rm u} \leq 1.8 \times M_{\rm u} \leq 2.8 \times M_{\rm $                                                                | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73                                                                                                                                                         | 42 5.<br>1.<br>47 2.<br>51 6.                                 | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(F)$ $L$ $.5 	imes 10^4 \leq M_{ m u}$ $.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $M_{ m u} \leq 1.8 	imes$ $.8 	imes 10^4 \leq M_{ m u}$ $M_{ m u} \leq 2.8 	imes$ $.0 	imes 10^4 \leq M_{ m u}$ $M_{ m u} \leq 6.0 	imes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 10^4 \ 1.5 \\ \hline \hline 10\% \\ 1_2 \\ \hline 1.2 \\ 10^4 \ 0.75 \\ 1.6 \\ 0.84 \\ 10^4 \ 1.6 \\ 0.73 \\ 10^4 \ 1.3 \\ \end{array}$                                                                                                                                                                                                                                                                               |
| 199 ;<br>210 ;<br>215 ;                                                 | Atmosphere  L  1.4 × 10 $^{6} \le M_{\rm u}$ 8.4 × 10 $^{4} \le M_{\rm u} \le 1$ $M_{\rm u} \le 1$ 9.0 × 10 $^{5} \le M_{\rm u}$ 7.8 × 10 $^{4} \le M_{\rm u} \le 1$ $M_{\rm u} \le 7$ 7.4 × 10 $^{4} \le M_{\rm u}$ $M_{\rm u} \le 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Air $n$ 1.4 $.4 \times 10^{8} 0.78$ $3.4 \times 10^{4} 1.8$ $1.2$ $0.0 \times 10^{5} 0.78$ $3.8 \times 10^{4} 1.4$ $0.81$ $3.4 \times 10^{4} 1.3$                                                                                                                                                          | Atm  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤  47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤  50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤                                                                               | complete Considering the constant $L$ $M_u \leq 1.4 \times M_u \leq 2.5 \times M_u$ $M_u \leq 1.8 \times M_u \leq 2.8 \times M_u$ $M_u \leq M_u \leq$                                                                                                                                                                                                                                                                                                                                       | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57                                                                                                                                 | 42 5.<br>1.<br>47 2.<br>51 6.                                 | $M_{ m u} {\le} 1.4 	imes$ Content of chloranil Atmosphere $O_2(F)$ L $.5 	imes 10^4 {\le} M_{ m u}$ $.8 	imes 10^4 {\le} M_{ m u} {\le} 5.5 	imes$ $.8 	imes 10^4 {\le} M_{ m u}$ $.0 	imes 10^4 {\le} M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 10^4 \ 1.5 \\ \hline 10\% \\ H_2O) \\ \hline \\ n \\ \hline \\ 1.2 \\ 10^4 \ 0.75 \\ 10^4 \ 1.8 \\ 0.84 \\ 10^4 \ 1.6 \\ 0.73 \\ 10^4 \ 1.3 \\ 0.67 \end{array}$                                                                                                                                                                                                                                                      |
| 199 ;<br>210 ;<br>215 ;<br>218 ;                                        | Atmosphere  L  1.4 × 10 $^{6} \le M_{\rm u}$ 8.4 × 10 $^{4} \le M_{\rm u} \le 1$ $M_{\rm u} \le 1$ 9.0 × 10 $^{5} \le M_{\rm u}$ 7.8 × 10 $^{4} \le M_{\rm u} \le 1$ $M_{\rm u} \le 1$ 7.4 × 10 $^{4} \le M_{\rm u}$ $M_{\rm u} \le 1$ 3.8 × 10 $^{5} \le M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Air  n  1.4 $.4 \times 10^8 \ 0.78$ $3.4 \times 10^4 \ 1.8$ $1.2$ $0.0 \times 10^5 \ 0.78$ $3.8 \times 10^4 \ 1.4$ $0.81$ $3.4 \times 10^4 \ 1.3$ $3.4 \times 10^4 \ 1.3$ $3.4 \times 10^4 \ 1.3$                                                                                                          | Atm  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤ 47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤ 50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤                                                                                 | complete Considering the constant $L$ $M_u \leq 1.4 \times M_u \leq 2.5 \times M_u \leq M_u \leq 1.8 \times M_u \leq 2.8 \times M_u \leq M_u \leq M_u \leq M_u \leq 3.5 \times M_u \leq 3$ | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57<br>10 <sup>4</sup> 0.89                                                                                                         | 42 5. 1. 47 2. 51 6. 56 8.                                    | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(F)$ L $.5 	imes 10^4 \leq M_{ m u}$ $.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $.8 	imes 10^4 \leq M_{ m u}$ $.0 	imes 10^4 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 10^4 \ 1.5 \\ \hline 10\% \\ 1_2 \\ \hline 10^4 \ 0.75 \\ 10^4 \ 0.75 \\ 10^4 \ 1.8 \\ 0.84 \\ 10^4 \ 1.6 \\ 0.73 \\ 10^4 \ 1.3 \\ \end{array}$                                                                                                                                                                                                                                                                       |
| 199 ;<br>210 ;<br>215 ;<br>218 ;                                        | Atmosphere L  1.4 × 10 $^{6} \le M_{\rm u}$ 8.4 × 10 $^{4} \le M_{\rm u} \le 8$ 9.0 × 10 $^{5} \le M_{\rm u}$ 7.8 × 10 $^{4} \le M_{\rm u} \le 9$ 7.4 × 10 $^{4} \le M_{\rm u}$ Mu $\le 7$ 8.8 × 10 $^{5} \le M_{\rm u}$ 9.0 × 10 $^{4} \le M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Air  n  1.4 $.4 \times 10^{8} 0.78$ $3.4 \times 10^{4} 1.8$ 1.2 $.0 \times 10^{5} 0.78$ $3.8 \times 10^{4} 1.4$ $0.81$ $3.4 \times 10^{4} 1.3$ $3.1 \times 10^{5} 1.3$                                                                                                                                     | Atm  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤  47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤  50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤                                                                               | complete C L $M_{\rm u}$ $M_{\rm u} \leq 1.4 \times M_{\rm u} \leq 2.5 \times M_{\rm u} \leq 1.8 \times M_{\rm u} \leq 2.8 \times M_{\rm u} \leq M_{\rm u} \leq M_{\rm u} \leq 3.5 \times M$                                                                            | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57<br>10 <sup>4</sup> 0.89<br>0.47                                                                                                 | 42 5. 1. 47 2. 51 6. 56 8.                                    | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(\Gamma)$ $L$ $0.5 	imes 10^4 \leq M_{ m u}$ $0.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $0.8 	imes 10^4 \leq M_{ m u}$ $0.8 	imes 10^4 \leq M_{ m u}$ $0.0 	imes 10^4 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 10^4 \ 1.5 \\ \hline \hline 10\% \\ 1_2 \\ \hline \\ 1.2 \\ 10^4 \ 0.75 \\ 10^4 \ 1.8 \\ 0.84 \\ 10^4 \ 1.6 \\ 0.73 \\ 10^4 \ 1.3 \\ 0.67 \\ 10^4 \ 1.3 \\ 0.58 \\ \end{array}$                                                                                                                                                                                                                                       |
| 199 3<br>210 9<br>215 3<br>218 3                                        | Atmosphere L  1.4 × 10 $^{6} \le M_{\rm u}$ 8.4 × 10 $^{4} \le M_{\rm u} \le 8$ 9.0 × 10 $^{5} \le M_{\rm u}$ 7.8 × 10 $^{4} \le M_{\rm u} \le 9$ 7.4 × 10 $^{4} \le M_{\rm u}$ 8.8 × 10 $^{5} \le M_{\rm u}$ 9.0 × 10 $^{4} \le M_{\rm u}$ 9.0 × 10 $^{4} \le M_{\rm u} \le 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e Air  1.4 $.4 \times 10^{8} 0.78$ $.4 \times 10^{4} 1.8$ 1.2 $.0 \times 10^{5} 0.78$ $.8 \times 10^{4} 1.4$ $0.81$ $.4 \times 10^{4} 1.3$ $2.1$ $.8 \times 10^{5} 1.3$ $.0 \times 10^{4} 2.2$                                                                                                               | Atm  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤  47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤  50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤  55 2.0×10 <sup>4</sup> ≤                                                     | complete C L $M_{\rm u}$ $M_{\rm u} \leq 1.4 \times M_{\rm u} \leq 2.5 \times M_{\rm u} \leq 1.8 \times M_{\rm u} \leq 2.8 \times M_{\rm u} \leq M_{\rm u} \leq 3.5 \times M_{\rm u} \leq M_{\rm u} \leq M_{\rm u} \leq 3.5 \times M_{\rm u} \leq M_{\rm u} \leq 3.5 \times M_{\rm u} \leq M_{\rm u} \leq 3.5 \times M_{$                                                                       | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57<br>10 <sup>4</sup> 0.89<br>0.47<br>10 <sup>4</sup> 0.63                                                                         | 42 5. 1. 47 2. 51 6. 56 8. 64 8.                              | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(F)$ $L$ $0.5 	imes 10^4 \leq M_{ m u}$ $0.5 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $0.5 	imes 10^4 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                  |
| 199 3<br>210 9<br>215 3<br>218 3                                        | Atmosphere L  1.4 × 10 $^{6} \le M_{\rm u}$ 8.4 × 10 $^{4} \le M_{\rm u} \le 1$ $M_{\rm u} \le 8$ 9.0 × 10 $^{5} \le M_{\rm u}$ 7.8 × 10 $^{4} \le M_{\rm u} \le 9$ $M_{\rm u} \le 7$ 7.4 × 10 $^{4} \le M_{\rm u}$ $M_{\rm u} \le 7$ 8.8 × 10 $^{5} \le M_{\rm u}$ 9.0 × 10 $^{4} \le M_{\rm u} \le 3$ $M_{\rm u} \le 9$ 2.0 × 10 $^{5} \le M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Air  1.4  .4×10 <sup>8</sup> 0.78 $3.4\times10^4$ 1.8  1.2 $3.0\times10^5$ 0.78 $3.8\times10^4$ 1.4  0.81 $3.4\times10^4$ 1.3  2.1 $3.8\times10^5$ 1.3 $3.0\times10^4$ 2.2  1.3                                                                                                                            | Atm  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤ 47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤ 50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤                                                                                 | complete Considering the constant of the cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57<br>10 <sup>4</sup> 0.89<br>0.47<br>10 <sup>4</sup> 0.63<br>0.52                                                                 | 42 5. 1. 47 2. 51 6. 56 8. 64 8.                              | Content of chloranil Atmosphere $O_2(F)$ L $0.5 \times 10^4 \leq M_u$ $0.8 \times 10^4 \leq M_u \leq 5.5 \times 10^4 \leq M_u$ $0.0 \times 10^4 \leq M_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 10^4 \ 1.5 \\ \hline \hline 10\% \\ 1_2 \\ 10^4 \ 0.75 \\ 10^4 \ 1.8 \\ 0.84 \\ 10^4 \ 1.6 \\ 0.73 \\ 10^4 \ 1.3 \\ 0.67 \\ 10^4 \ 1.3 \\ 0.58 \\ 10^4 \ 1.4 \\ 0.40 \\ \end{array}$                                                                                                                                                                                                                                  |
| 199 ; 210 ; 215 ; 218 ; 224 ; 2                                         | Atmosphere L  1.4 × 10 $^{8}$ ≤ $M_{\rm u}$ 8.4 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 8 9.0 × 10 $^{5}$ ≤ $M_{\rm u}$ 7.8 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 9 $M_{\rm u}$ ≤ 7 7.4 × 10 $^{4}$ ≤ $M_{\rm u}$ $M_{\rm u}$ ≤ 7 $M_{\rm u}$ ≤ 7 $M_{\rm u}$ ≤ 9 $M_{\rm u}$ ≤ 2 $M_{\rm u}$ ≤ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Air  n  1.4 $.4 \times 10^{8} 0.78$ $3.4 \times 10^{4} 1.8$ $1.2$ $0.0 \times 10^{5} 0.78$ $3.8 \times 10^{4} 1.4$ $0.81$ $3.4 \times 10^{4} 1.3$ $3.0 \times 10^{5} 1.3$ $3.0 \times 10^{4} 2.2$ $3.0 \times 10^{5} 0.72$                                                                                 | Atn  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤ 47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤ 50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤ 55 2.0×10 <sup>4</sup> ≤ 61 5.6×10 <sup>4</sup> ≤ 61                            | complete Considering the constant of the cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57<br>10 <sup>4</sup> 0.89<br>0.47<br>10 <sup>4</sup> 0.63<br>0.52<br>10 <sup>4</sup> 0.91                                         | t<br>42 5.<br>1.<br>47 2.<br>51 6.<br>56 8.<br>64 8.<br>75 5. | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(\Gamma)$ $L$ $0.5 	imes 10^4 \leq M_{ m u}$ $0.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $0.8 	imes 10^4 \leq M_{ m u}$ $0.0 	imes 10^4 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 10^4 \ 1.5 \\ \hline \hline 10\% \\ 1_2 \\ \hline \\ 10^4 \ 1.2 \\ \hline \\ 10^4 \ 0.75 \\ \hline \\ 10^4 \ 1.6 \\ \hline \\ 0.73 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.4 \\ \hline \\ 0.40 \\ \hline \\ 10^4 \ 1.1 \\ \hline \end{array}$                                                                                                       |
| 199 ; 210 ; 215 ; 218 ; 224 ; 232 ; 232 ; 3                             | Atmosphere L  1.4 × 10 $^{6} \le M_{\rm u}$ 8.4 × 10 $^{4} \le M_{\rm u} \le 1$ $M_{\rm u} \le 8$ 9.0 × 10 $^{5} \le M_{\rm u}$ 7.8 × 10 $^{4} \le M_{\rm u} \le 9$ $M_{\rm u} \le 7$ 7.4 × 10 $^{4} \le M_{\rm u}$ $M_{\rm u} \le 7$ 8.8 × 10 $^{5} \le M_{\rm u}$ 9.0 × 10 $^{4} \le M_{\rm u} \le 3$ $M_{\rm u} \le 9$ 2.0 × 10 $^{5} \le M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Air  n  1.4 $.4 \times 10^8$ 0.78 $.4 \times 10^4$ 1.8  1.2 $.0 \times 10^5$ 0.78 $.8 \times 10^4$ 1.4  0.81 $.4 \times 10^4$ 1.3  2.1 $.8 \times 10^5$ 1.3 $.0 \times 10^4$ 2.2  1.3 $.0 \times 10^5$ 0.72  0.39                                                                                          | Atm  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤  47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤  50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤  55 2.0×10 <sup>4</sup> ≤                                                     | complete Considering the constant of the cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57<br>10 <sup>4</sup> 0.89<br>0.47<br>10 <sup>4</sup> 0.63<br>0.52<br>10 <sup>4</sup> 0.91<br>0.44                                 | t<br>42 5.<br>1.<br>47 2.<br>51 6.<br>56 8.<br>64 8.<br>75 5. | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(\Gamma)$ $L$ $0.5 	imes 10^4 \leq M_{ m u}$ $0.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $0.8 	imes 10^4 \leq M_{ m u}$ $0.0 	imes 10^4 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 10^4 \ 1.5 \\ \hline \hline 10\% \\ 1_2 \\ \hline \\ 10^4 \ 1.2 \\ \hline \\ 10^4 \ 0.75 \\ \hline \\ 10^4 \ 1.6 \\ \hline \\ 0.73 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.4 \\ \hline \\ 0.40 \\ \hline \\ 10^4 \ 1.1 \\ \hline \end{array}$                                                                                                       |
| 199 ; 210 ; 215 ; 218 ; 224 ; 232 ; 232 ; 3                             | Atmosphere L  1.4 × 10 $^{6}$ ≤ $M_{\rm u}$ 8.4 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 8 9.0 × 10 $^{5}$ ≤ $M_{\rm u}$ 7.8 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 7 7.4 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 7 8.8 × 10 $^{5}$ ≤ $M_{\rm u}$ 9.0 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 9 2.0 × 10 $^{5}$ ≤ $M_{\rm u}$ $M_{\rm u}$ ≤ 2 1.2 × 10 $^{5}$ ≤ $M_{\rm u}$ $M_{\rm u}$ ≤ 2 1.2 × 10 $^{5}$ ≤ $M_{\rm u}$ $M_{\rm u}$ ≤ 1 3.6 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Air  n  1.4 $.4 \times 10^8$ 0.78 $.4 \times 10^4$ 1.8  1.2 $.0 \times 10^5$ 0.78 $.8 \times 10^4$ 1.4  0.81 $.4 \times 10^4$ 1.3  2.1 $.8 \times 10^5$ 1.3 $.0 \times 10^4$ 2.2  1.3 $.0 \times 10^5$ 0.72  0.39                                                                                          | Atn  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤ 47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤ 50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤ 55 2.0×10 <sup>4</sup> ≤ 61 5.6×10 <sup>4</sup> ≤ 61                            | cosphere C $L$ $(M_u)$ $(M_u) \le 1.4 \times M_u \le 2.5 \times M_u$ $(M_u) \le 1.8 \times M_u \le 2.8 \times M_u$ $(M_u) \le M_u \le 3.5 \times M_u$ $(M_u) \le 3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57<br>10 <sup>4</sup> 0.89<br>0.47<br>10 <sup>4</sup> 0.63<br>0.52<br>10 <sup>4</sup> 0.91<br>0.44<br>10 <sup>4</sup> 0.86         | t<br>42 5.<br>1.<br>47 2.<br>51 6.<br>56 8.<br>64 8.<br>75 5. | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(\Gamma)$ $L$ $0.5 	imes 10^4 \leq M_{ m u}$ $0.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $0.8 	imes 10^4 \leq M_{ m u}$ $0.0 	imes 10^4 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 10^4 \ 1.5 \\ \hline \hline 10\% \\ 1_2 \\ \hline \\ 10^4 \ 1.2 \\ \hline \\ 10^4 \ 0.75 \\ \hline \\ 10^4 \ 1.6 \\ \hline \\ 0.73 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.4 \\ \hline \\ 0.40 \\ \hline \\ 10^4 \ 1.1 \\ \hline \end{array}$                                                                                                       |
| 199 3<br>210 9<br>215 3<br>218 3<br>224 2<br>232 3                      | Atmosphere L  1.4 × 10 $^{6} \le M_{\rm u}$ 8.4 × 10 $^{4} \le M_{\rm u} \le 8$ 9.0 × 10 $^{5} \le M_{\rm u}$ 7.8 × 10 $^{4} \le M_{\rm u} \le 9$ 7.4 × 10 $^{4} \le M_{\rm u}$ 9.0 × 10 $^{5} \le M_{\rm u}$ 1.2 × 10 $^{5} \le M_{\rm u}$ 1.3 6 × 10 $^{4} \le M_{\rm u} \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Air  1.4 $.4 \times 10^8$ 0.78 $.4 \times 10^4$ 1.8  1.2 $.0 \times 10^5$ 0.78 $.8 \times 10^4$ 1.4 0.81 $.4 \times 10^4$ 1.3 2.1 $.8 \times 10^5$ 1.3 $.0 \times 10^4$ 2.2 1.3 $.0 \times 10^5$ 0.72 0.39 $.2 \times 10^5$ 0.83                                                                           | Atm  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤  47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤  50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤  61 5.6×10 <sup>4</sup> ≤  65 6.0×10 <sup>4</sup> ≤  72 6.3×10 <sup>4</sup> ≤ | cosphere C $L$ $(M_u)$ $(M_u) \le 1.4 \times M_u \le 2.5 \times M_u$ $(M_u) \le 1.8 \times M_u \le 2.8 \times M_u$ $(M_u) \le M_u \le 3.5 \times M_u$ $(M_u) \le 3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57<br>10 <sup>4</sup> 0.89<br>0.47<br>10 <sup>4</sup> 0.63<br>0.52<br>10 <sup>4</sup> 0.91<br>0.44<br>10 <sup>4</sup> 0.86<br>0.39 | t<br>42 5.<br>1.<br>47 2.<br>51 6.<br>56 8.<br>64 8.<br>75 5. | Content of chloranil Atmosphere $O_2(F)$ L $.5 \times 10^4 \leq M_u$ $.8 \times 10^4 \leq M_u \leq 5.5 \times M_u \leq 1.8 \times M_u \leq 1.8 \times M_u \leq 1.8 \times M_u \leq 0.8 \times M$ | $\begin{array}{c} 10^4 \ 1.5 \\ \hline \hline 10\% \\ 1_2 \\ \hline \\ 10^4 \ 1.2 \\ \hline \\ 10^4 \ 0.75 \\ \hline \\ 10^4 \ 1.6 \\ \hline \\ 0.73 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.4 \\ \hline \\ 0.40 \\ \hline \\ 10^4 \ 1.1 \\ \hline \\ 0.20 \\ \hline \end{array}$ |
| 199 3<br>210 5<br>215 5<br>218 3<br>224 2<br>232 3                      | Atmosphere L  1.4 × 10 <sup>8</sup> $\leq M_u$ 8.4 × 10 <sup>4</sup> $\leq M_u$ 9.0 × 10 <sup>5</sup> $\leq M_u$ 7.8 × 10 <sup>4</sup> $\leq M_u$ $\leq M_u$ $\leq M_u$ $\leq M_u$ $\leq M_u$ $\leq M_u$ 9.0 × 10 <sup>4</sup> $\leq M_u$ $\leq $ | e Air  1.4 $.4 \times 10^8$ 0.78 $.4 \times 10^4$ 1.8  1.2 $.0 \times 10^5$ 0.78 $.8 \times 10^4$ 1.4  0.81 $.4 \times 10^4$ 1.3  2.1 $.8 \times 10^5$ 1.3 $.0 \times 10^4$ 2.2  1.3 $.0 \times 10^5$ 0.72  0.39 $.2 \times 10^5$ 0.83 $.6 \times 10^4$ 1.4  0.50 $.2 \times 10^5$ 0.61                      | Atm  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤  47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤  50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤  61 5.6×10 <sup>4</sup> ≤  65 6.0×10 <sup>4</sup> ≤  72 6.3×10 <sup>4</sup> ≤ | cosphere C $L$ $\langle M_{\rm u}$ $\langle M_{\rm u} \leq 1.4 \times M_{\rm u} \leq 2.5 \times M_{\rm u}$ $\langle M_{\rm u} \leq 1.8 \times M_{\rm u} \leq 2.8 \times M_{\rm u}$ $\langle M_{\rm u} \leq 3.5 \times M_{\rm u}$ $\langle M_{\rm u} \leq 3.5 \times M_{\rm u}$ $\langle M_{\rm u} \leq 3.6 \times M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57<br>10 <sup>4</sup> 0.89<br>0.47<br>10 <sup>4</sup> 0.63<br>0.52<br>10 <sup>4</sup> 0.91<br>0.44<br>10 <sup>4</sup> 0.86<br>0.39 | t<br>42 5.<br>1.<br>47 2.<br>51 6.<br>56 8.<br>64 8.<br>75 5. | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(\Gamma)$ $L$ $0.5 	imes 10^4 \leq M_{ m u}$ $0.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $0.8 	imes 10^4 \leq M_{ m u}$ $0.0 	imes 10^4 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 10^4 \ 1.5 \\ \hline \hline 10\% \\ 1_2 \\ \hline \\ 10^4 \ 1.2 \\ \hline \\ 10^4 \ 0.75 \\ \hline \\ 10^4 \ 1.6 \\ \hline \\ 0.73 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.4 \\ \hline \\ 0.40 \\ \hline \\ 10^4 \ 1.1 \\ \hline \\ 0.20 \\ \hline \end{array}$ |
| 199 ; 210 ; 215 ; 218 ; 3 ; 224 ; 2 ; 3 ; 3 ; 2 ; 3 ; 3 ; 3 ; 3 ; 3 ; 3 | Atmosphere L  1.4 × 10 $^{6}$ ≤ $M_{\rm u}$ 8.4 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 8 9.0 × 10 $^{5}$ ≤ $M_{\rm u}$ 7.8 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 7 7.4 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 7 8.8 × 10 $^{5}$ ≤ $M_{\rm u}$ 9.0 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 3 $M_{\rm u}$ ≤ 9 1.2 × 10 $^{5}$ ≤ $M_{\rm u}$ 1.2 × 10 $^{5}$ ≤ $M_{\rm u}$ 3.6 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 1 $M_{\rm u}$ ≤ 3 1.2 × 10 $^{5}$ ≤ $M_{\rm u}$ 4.0 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 1 $M_{\rm u}$ ≤ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Air  1.4 $.4 \times 10^8$ 0.78 $.4 \times 10^4$ 1.8  1.2 $.0 \times 10^5$ 0.78 $.8 \times 10^4$ 1.4  0.81 $.4 \times 10^4$ 1.3  2.1 $.8 \times 10^5$ 1.3 $.0 \times 10^4$ 2.2  1.3 $.0 \times 10^5$ 0.72  0.39 $.2 \times 10^5$ 0.83 $.6 \times 10^4$ 1.4  0.50 $.2 \times 10^5$ 0.61 $.0 \times 10^4$ 1.5 | Atm  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤  47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤  50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤  61 5.6×10 <sup>4</sup> ≤  65 6.0×10 <sup>4</sup> ≤  72 6.3×10 <sup>4</sup> ≤ | cosphere C $L$ $\langle M_{\rm u}$ $\langle M_{\rm u} \leq 1.4 \times M_{\rm u} \leq 2.5 \times M_{\rm u}$ $\langle M_{\rm u} \leq 1.8 \times M_{\rm u} \leq 2.8 \times M_{\rm u}$ $\langle M_{\rm u} \leq 3.5 \times M_{\rm u}$ $\langle M_{\rm u} \leq 3.5 \times M_{\rm u}$ $\langle M_{\rm u} \leq 3.6 \times M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57<br>10 <sup>4</sup> 0.89<br>0.47<br>10 <sup>4</sup> 0.63<br>0.52<br>10 <sup>4</sup> 0.91<br>0.44<br>10 <sup>4</sup> 0.86<br>0.39 | t<br>42 5.<br>1.<br>47 2.<br>51 6.<br>56 8.<br>64 8.<br>75 5. | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(\Gamma)$ $L$ $0.5 	imes 10^4 \leq M_{ m u}$ $0.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $0.8 	imes 10^4 \leq M_{ m u}$ $0.0 	imes 10^4 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 10^4 \ 1.5 \\ \hline \hline 10\% \\ 1_2 \\ \hline \\ 10^4 \ 1.2 \\ \hline \\ 10^4 \ 0.75 \\ \hline \\ 10^4 \ 1.6 \\ \hline \\ 0.73 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.4 \\ \hline \\ 0.40 \\ \hline \\ 10^4 \ 1.1 \\ \hline \\ 0.20 \\ \hline \end{array}$ |
| 199 ; 210 ; 215 ; 218 ; 3 ; 224 ; 2 ; 3 ; 3 ; 241 ; 4                   | Atmosphere L  1.4 × 10 $^{6}$ ≤ $M_{\rm u}$ 8.4 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 8 9.0 × 10 $^{5}$ ≤ $M_{\rm u}$ 7.8 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 7 7.4 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 7 8.8 × 10 $^{5}$ ≤ $M_{\rm u}$ 9.0 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 3 $M_{\rm u}$ ≤ 9 1.2 × 10 $^{5}$ ≤ $M_{\rm u}$ 1.2 × 10 $^{5}$ ≤ $M_{\rm u}$ 1.2 × 10 $^{5}$ ≤ $M_{\rm u}$ 4.0 × 10 $^{4}$ ≤ $M_{\rm u}$ ≤ 1 $M_{\rm u}$ ≤ 4 4.9 × 10 $^{4}$ ≤ $M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Air  1.4 $.4 \times 10^8$ 0.78 $.4 \times 10^4$ 1.8  1.2 $.0 \times 10^5$ 0.78 $.8 \times 10^4$ 1.4  0.81 $.4 \times 10^4$ 1.3  2.1 $.8 \times 10^5$ 1.3 $.0 \times 10^4$ 2.2  1.3 $.0 \times 10^5$ 0.72  0.39 $.2 \times 10^5$ 0.83 $.6 \times 10^4$ 1.4  0.50 $.2 \times 10^5$ 0.61                      | Atm  t  36 1.4×10 <sup>6</sup> ≤ 2.5×10 <sup>4</sup> ≤  47 1.8×10 <sup>6</sup> ≤ 2.8×10 <sup>4</sup> ≤  50 10 <sup>6</sup> ≤ 3.5×10 <sup>4</sup> ≤  61 5.6×10 <sup>4</sup> ≤  65 6.0×10 <sup>4</sup> ≤  72 6.3×10 <sup>4</sup> ≤ | cosphere C $L$ $\langle M_{\rm u}$ $\langle M_{\rm u} \leq 1.4 \times M_{\rm u} \leq 2.5 \times M_{\rm u}$ $\langle M_{\rm u} \leq 1.8 \times M_{\rm u} \leq 2.8 \times M_{\rm u}$ $\langle M_{\rm u} \leq 3.5 \times M_{\rm u}$ $\langle M_{\rm u} \leq 3.5 \times M_{\rm u}$ $\langle M_{\rm u} \leq 3.6 \times M_{\rm u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3<br>10 <sup>6</sup> 0.74<br>10 <sup>4</sup> 1.4<br>1.2<br>10 <sup>6</sup> 0.70<br>10 <sup>4</sup> 1.6<br>0.73<br>10 <sup>6</sup> 0.57<br>10 <sup>4</sup> 0.89<br>0.47<br>10 <sup>4</sup> 0.63<br>0.52<br>10 <sup>4</sup> 0.91<br>0.44<br>10 <sup>4</sup> 0.86<br>0.39 | t<br>42 5.<br>1.<br>47 2.<br>51 6.<br>56 8.<br>64 8.<br>75 5. | $M_{ m u} \leq 1.4 	imes$ Content of chloranil Atmosphere $O_2(\Gamma)$ $L$ $0.5 	imes 10^4 \leq M_{ m u}$ $0.8 	imes 10^4 \leq M_{ m u} \leq 5.5 	imes$ $0.8 	imes 10^4 \leq M_{ m u}$ $0.0 	imes 10^4 \leq M_{ m u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 10^4 \ 1.5 \\ \hline 10\% \\ 1_2 \\ \hline \\ 10^4 \ 1.2 \\ \hline \\ 10^4 \ 0.75 \\ \hline \\ 10^4 \ 1.6 \\ \hline \\ 0.73 \\ \hline \\ 10^4 \ 1.3 \\ \hline \\ 0.58 \\ \hline \\ 10^4 \ 1.4 \\ \hline \\ 0.40 \\ \hline \\ 10^4 \ 1.1 \\ \hline \end{array}$                                                                                                                                                        |

Vol. 25 (1977)

## 2)-i The Value of Mc in the Presence of Inorganic Additives

In case of ball-milling in nitrogen, n was around or below 1.0 in all the range of molecular weight in the presence of white alundum or talc. The value of  $M_c$  in the presence of sillca sands was approximately identical with the value in the absence of the additive. But in the presence of the other additives,  $M_c$  was larger than the value in the absence of the additive at the first stage after the lapse of the induction period and decreased gradually by ball-milling.

In case of ball-milling in air, n was around or below 1.0 in all the range of molecular weight in the presence of white alundum. The value of  $M_c$  in the presence of talc or the granules of activated charcoal was smaller than the value in the asbence of the additive. The value of  $M_c$  in the presence of zinc oxide was nearly identical with the value in the absence of the additive. The value of  $M_c$  in the presence of the other additives at the first stage of ball-milling was larger than the value in the absence of the additive.

# 2)-ii The Value of Mc in the Presence of Organic Additives

In case of ball-milling in nitrogen,  $M_{\rm e}$  was approximately identical with the value in the absence of the additive at the first stage after the lapse of the induction period, but n was below 1.0 in all the range of  $M_{\rm u}$  for PVP ball-milled for more than 50 hours from the time of the induction period in the presence of vitamin  $K_3$ . In the presence of acridine or phenothiazine, n was smaller than 1.0 in all the range of  $M_{\rm u}$ , and the same tendency was observed at the first stage of ball-milling in the presence of barbituric acid. But, in the presence of p-hydroquinone,  $M_{\rm e}$  was larger than the value in the absence of the additive.

In case of ball-milling in air in the presence of vitamin  $K_3$ , n was around or below 1.0 in all the range of  $M_u$  after the lapse of the induction period. In the presence of acridine or methylene blue,  $M_c$  was larger than the value in the absence of the additive at the first stage after the lapse of the induction period and decreased gradually by ball-milling. In the presence of phenothiazine,  $M_c$  was nearly identical with the value in the absence of the additive, and in the presence of p-hydroquinone,  $M_c$  was larger than the value in the absence of the additive. A straight line was obtained by the logarithmic plot of  $-\log R$  versus  $M_u$  in the presence of barbituric acid, and n was larger than 1.0 at the first stage of ball-milling.

# 2)-iii Influence of the Ball-Milling Atmosphere on $M_c$

In case of ball-milling in various kinds of atmosphere in the presence of the granules of activated charcoal, n was around or below 1.0 in all the range of  $M_{\rm u}$  at the first stage, and  $M_{\rm c}$  was smaller than or nearly identical with the value in the absence of the additive for PVP ball-milled for more than 20 hours from the time of the induction period. In the presence of the fine powders of activated charcoal in air,  $M_{\rm c}$  was larger than the value in the absence of the additive. (Table VIII)

In the presence of chloranil in various kinds of atmosphere,  $M_{\rm e}$  was nearly identical or smaller than the value in the absence of the additive at the first stage of ball-milling from the time of the induction period (Table IX).

Equation (8) is obtained by differentiating equation (4) with ball-milling time, t.

$$-\partial R/\partial M_{\rm u} = nkM_{\rm u}^{(n-1)}R\tag{8}$$

In equation (8),  $-\partial R/\partial M_{\rm u}$  is the ratio of the weight of the polymers of molecular weight between  $M_{\rm u}$  and  $M_{\rm u}+\partial M_{\rm u}$  to the total weight of the polymers. When n is larger than 1.0,  $-1/R(\partial R/\partial M_{\rm u})$  decreases with a decrease of  $M_{\rm u}$ . Accordingly, it is considered that the weight of the polymers in each fraction decreases with a decrease of molecular weight in the range of  $M_{\rm u}$  below  $M_{\rm c}$ .

Baramboim investigated a decrease of molecular weight of several kinds of polymers by the mechanical treatment and found that the molecular weight approached to the limited value between  $4 \times 10^3$  and  $1.1 \times 10^4$ .<sup>8)</sup> It was reported in the previous paper that the molecular weight of PVP varied from  $9.7 \times 10^5$  to a lower value and approached to  $4 \times 10^3$  by ball-milling.<sup>7)</sup> But an appreciable decrease of molecular weight was not observed by ball-milling PVP of  $7.5 \times 10^3$  of mean molecular weight, even after ball-milling for 200 hours.<sup>9)</sup> In many cases in the absence and in the presence of various kinds of the additives, the molecular weight distribution of PVP approached to the narrow distribution with the peak of a fixed low molecular weight by ball-milling, as reported in the previous papers<sup>2,7,9)</sup> and as shown in Fig. 1 and 2. Blundel, *et al.* also found the similar phenomenon by investigating molecular weight distribution of the polyethylene crystals degraded by nitric acid etching, and considered that there was a surprising regularity in the break-down pattern, indicative of certain discrete length which must be related to the way the chains were arranged in the crystals.<sup>10)</sup> These findings are considered to be related to the existence of  $M_c$ .

## 3) Variation of R with the Ball-Milling Time

The values of  $(-\log R)$  for  $10^6$ ,  $5\times10^5$ ,  $10^5$ ,  $5\times10^4$  and  $10^4$  of  $M_{\rm u}$  were obtained by reading the values on the log  $(-\log R)$ -log  $M_{\rm u}$  line. As shown in Fig. 7, equation (9) was applied to the variation of R with the ball-milling time, t, where  $k_{\rm t}$ ,  $k_{\rm t}'$ ,  $\gamma_1$  and  $\gamma_2$  were parameters dependent on the ball-milling condition and so on, and  $t_{\rm c}$  was the time at which the line obtained by the logarithmic plot of  $(-\log R)$  versus  $(t-t_{\rm ie})$  broke.

$$t < t_{\rm c}$$
  $R = \exp \{-k_{\rm t}(t - t_{\rm ie})^{\gamma_{\rm i}}\}$   
 $t \ge t_{\rm c}$   $R = \exp \{-k_{\rm t}'(t - t_{\rm ie})^{\gamma_{\rm i}}\}$  (9)

Table X, XI, XII, XIII and XIV show the numerical values of the parameters  $t_c$ ,  $\gamma_1$  and  $\gamma_2$ . When a straight line was obtained by the logarithmic plot of  $(-\log R)$  versus  $(t-t_{ie})$ , the gradient of the line was considered to be  $\gamma_2$  (Fig. 8).

In case of ball-milling in nitrogen in the presence of white alundum or barbituric acid,  $\gamma_2$  decreased with a decrease of  $M_{\rm u}$ . In the presence of sodium chloride in nirtogen or in the presence of the granules of activated charcoal in air,  $\gamma_2$  was independent of  $M_{\rm u}$ . But, in the other cases,  $\gamma_2$  increased with a decrease of  $M_{\rm u}$  in the range of  $M_{\rm u}$  above  $5\times10^4$ .

Equation (10) was obtained by differentiating equation (9) with ball-milling time, t.

$$-\partial R/\partial t = \gamma_2 \cdot k_t'(t - t_{ie})^{(\gamma_2 - 1)}R \tag{10}$$

In equation (10),  $-\partial R/\partial t$  is the ratio of the weight of the polymers whose molecular weight varies from the value above  $M_{\rm u}$  to the value below  $M_{\rm u}$  by the mechanical treatment for the

Table X. Numerical Values of  $\gamma_1$ ,  $\gamma_2$  and  $t_c$  for Ball-Milling PVP in the Absence of the Additive  $J_b{=}0.22$ ,  $J_s{=}0.06^{7}$  (referred to Table I)

|                 |                     | 7.7        |                | Atmo                | sphere |                |                             | -      |            |
|-----------------|---------------------|------------|----------------|---------------------|--------|----------------|-----------------------------|--------|------------|
| $M_{ m u}$      |                     | Nitrogen   |                |                     | Air    |                | ,                           | Oxygen |            |
|                 | $t_{ m c}({ m hr})$ | $\gamma_1$ | γ <sub>2</sub> | $t_{ m e}({ m hr})$ | γ1     | γ <sub>2</sub> | $t_{\rm e}({\rm hr})^{(a)}$ | γ1     | $\gamma_2$ |
| 106             | 56                  | 0          | 0.47           |                     |        | 0.24           | 53                          |        | 0.50       |
| $5 \times 10^5$ | 43                  | 0.04       | 0.46           |                     |        | 0.28           | 53                          |        | 0.53       |
| $10^{5}$        | 42                  | 0.25       | 0.77           | 51                  | 0.37   | 0.52           | 53                          |        | 0.74       |
| $5 \times 10^4$ | 55                  | 0.40       | 0.90           | 53                  | 0.38   | 0.63           | 53                          |        | 0.86       |
| 104             |                     |            |                |                     |        |                | 53                          |        | 0.37       |

a) The value of  $\gamma_1$  in case of ball-milling in oxygen could not be obtained, as the data were not sufficient for the calculation. But the same tendency as observed in nitrogen or air was also obtained for  $\gamma_1$  in oxygen.

<sup>8)</sup> N.K. Baramboim, Dokl. Akad. Nauk SSSR, 114, 568 (1957); Zhur. Fiz. Khim., 32, 433 (1958).

<sup>9)</sup> N. Kaneniwa and A. Ikekawa, Yakuzaigaku, 31, 201 (1971).

<sup>10)</sup> D.J. Blundell, A. Keller, and I.M. Ward, Polymer Letters, 4, 781 (1966).

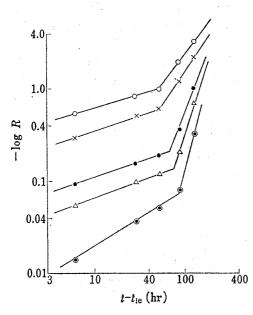



Fig. 7. Relation between R and Ball-Milling Time for Ball-Milling PVP in Nitrogen in the Presence of 10% of Phenotiazine

 $\begin{array}{l} t_{\rm ie} = 87 \; (\rm hr), \, J_b = 0.22, \, J_s = 0.06^3) \\ (\rm referred \; to \; Table \; I). \\ M_u: \, \bigcirc, \, 10^6; \, \times, \, 5 \times 10^5; \, \bigoplus, \, 10^5; \, \triangle, \, 5 \times 10^4; \\ \quad \odot, \, 10^4. \end{array}$ 

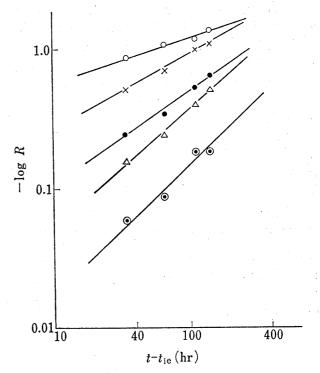



Fig. 8. Relation between R and Ball-Milling Time for Ball-Milling PVP in Air in the Presence of 10% v/v of Talc

 $t_{\rm ie} = 66$  (hr),  $J_{\rm b} = 0.22$ ,  $J_{\rm s} = 0.06^2$ ) (referred to Table I).  $M_{\rm u}$ :  $\bigcirc$ ,  $10^6$ ;  $\times$ ,  $5 \times 10^5$ ;  $\bigcirc$   $10^5$ ;  $\triangle$ ,  $5 \times 10^4$ ;  $\bigcirc$ ,  $10^4$ .

Table XI. The Numerical Values of  $\gamma_1, \gamma_2$  and  $t_c$  for Ball-Milling PVP in the Presence of Inorganic Powders

 $J_{\rm b}\!=\!0.22,\,J_{\rm s}\!=\!0.06^{2,3)}$  (referred to Table I)

| Additive          |                      | v              | Vhite al   | undun               | ı          |            | Silica                | sands     |                     | Zinc     | oxide      |                |
|-------------------|----------------------|----------------|------------|---------------------|------------|------------|-----------------------|-----------|---------------------|----------|------------|----------------|
| Atmosphere        | N                    | itroger        | 1          |                     | Air        |            | Nitroger              | n Air     | 1                   | Vitroger | <u> </u>   | Air            |
| $M_{ m u}$        | $t_{c}(\mathrm{hr})$ | γ <sub>1</sub> | $\gamma_2$ | $t_{ m e}({ m hr})$ | $\gamma_1$ | $\gamma_2$ | <b>γ</b> <sub>2</sub> | <b>72</b> | $t_{ m c}({ m hr})$ | γ1       | $\gamma_2$ | γ <sub>2</sub> |
| 106               | 21                   | 0.36           | 1.0        | 30                  | 0.37       | 0.81       | 0.46                  | 0.53      | 108                 | 0.20     | 0.98       | 0.43           |
| $5 \times 10^{5}$ | 24                   | 0.38           | 1.1        | 30                  | 0.49       | 0.90       | 0.59                  | 0.74      | 126                 | 0.50     | 1.1        | 0.53           |
| $10^{5}$          | 26                   | 0.51           | 0.99       | 48                  | 0.72       | 1.3        | 0.86                  | 1.1       |                     |          | 1.2        | 0.84           |
| $5 \times 10^4$   |                      |                | 0.73       | 42                  | 0.62       | 1.5        | 0.97                  | 1.1       |                     |          | 1.6        | 0.90           |
| 104               |                      |                | 0.75       | 41                  | 0.51       | 2.1        | 1.6                   |           |                     |          | 1.5        | ι,             |

| Additive<br>Atmosphere | Barium<br>sulfate<br>Air |                     | Sodii<br>Vitrogen | ım chl     | oride<br>—<br>Air | Ta Nitroger | <u> </u>   |  |  |
|------------------------|--------------------------|---------------------|-------------------|------------|-------------------|-------------|------------|--|--|
| $M_{ m u}$             | $\gamma_2$               | $t_{ m c}({ m hr})$ | γ1                | $\gamma_2$ | $\gamma_2$        | $\gamma_2$  | $\gamma_2$ |  |  |
| 106                    | 0.66                     | 145                 | 0.29              | 2.3        | 0.77              | 0.85        | 0.30       |  |  |
| $5 \times 10^5$        | 0.76                     | 125                 | 0.35              | 1.7        | 0.99              | 1.0         | 0.57       |  |  |
| $10^{5}$               | 0.98                     | 115                 | 0.55              | 1.9        | 1.5               | 1.4         | 0.70       |  |  |
| $5 \times 10^{4}$      | 1.8                      | 95                  | 0.53              | 1.7        | 1.6               | 1.5         | 0.88       |  |  |
| 104                    | 2.0                      |                     |                   | 2.7        | 0.18              | 1.5         | 0.90       |  |  |

Table XII. The Numerical Values of  $\gamma_1, \gamma_2$  and  $t_c$  for Ball-Milling PVP in the Presence of 10% of Organic Powders

 $J_b = 0.22, J_s = 0.06^{2,3}$  (refered to Table I)

| Addit             | ive                | V     | itamin         | $K_3$          |                     | . A     | Acridin    | ie I       | Methylene<br>blue |                     | I          | heno       | thiazin             | .e         |                |
|-------------------|--------------------|-------|----------------|----------------|---------------------|---------|------------|------------|-------------------|---------------------|------------|------------|---------------------|------------|----------------|
| Atmo              | sphere I           | Vitro | gen            | Air            | 1                   | litroge | n          | Air        | Air               | N                   | itroge     | n          |                     | Air        |                |
| $M_{\mathrm{u}}$  | $t_{ m e}({ m hi}$ | ) γ1  | γ <sub>2</sub> | γ <sub>2</sub> | $t_{ m c}({ m hr})$ | γι      | $\gamma_2$ | $\gamma_2$ | $\gamma_2$        | $t_{ m e}({ m hr})$ | $\gamma_1$ | $\gamma_2$ | $t_{ m c}({ m hr})$ | $\gamma_1$ | γ <sub>2</sub> |
| 10 <sup>6</sup>   | 150                | 0     | 0.83           | 0.42           | 152                 | 0.12    | 0.78       | 0.73       | 1.1               | 140                 | 0.29       | 1.3        | 155                 |            | 0.35           |
| $5 \times 10^{5}$ | 150                | 0     | 1.1            | 0.47           | 157                 | 0.09    | 1.2        | 0.84       | 1.2               | 140                 | 0.34       | 1.5        | 155                 |            | 0.87           |
| $10^{5}$          |                    |       | 1.3            | 0.66           | 154                 | 0       | 1.6        | 1.4        | 1.2               | 160                 | 0.33       | 2.9        | 155                 |            | 1.3            |
| $5 \times 10^{4}$ |                    |       | 1.3            | 0.66           | 157                 | 0       | 1.7        | 1.7        | 1.3               | 160                 | 0.36       | 3.0        | 155                 |            | 1.4            |
| 104               |                    |       | 1.2            | 0.66           | 146                 | 0.14    | 1.6        | 2.4        |                   | 170                 | 0.65       | 3.5        |                     |            | 0.76           |

|            | $\operatorname{id}$ | ric ac              | rbitu      | Ba         |                       |            | ne   | quinor                | Hydro      | p-         | re                  | Additi             |
|------------|---------------------|---------------------|------------|------------|-----------------------|------------|------|-----------------------|------------|------------|---------------------|--------------------|
|            | Air                 |                     | n          | litroge    | N                     |            | Air  |                       | n          | itroge     | here N              | Atmos              |
| $\gamma_2$ | γ1                  | $t_{ m c}({ m hr})$ | <b>7</b> 2 | $\gamma_1$ | $t_{\rm c}({\rm hr})$ | $\gamma_2$ | γ1   | $t_{\rm c}({\rm hr})$ | $\gamma_2$ | $\gamma_1$ | $t_{ m c}({ m hr})$ | $M_{\mathfrak{u}}$ |
| <br>0.62   |                     |                     | 1.6        | 0.32       | 46                    | 1.7        | 0.21 | 34                    | 0.49       |            |                     | 106                |
| 0.81       |                     |                     | 1.6        | 0.37       | 48                    | 1.8        | 0.19 | 32                    | 1.5        | 0.52       | 40                  | $5 \times 10^5$    |
| 2.3        | 1.3                 | <b>6</b> 8          | 1.3        | 0.58       | 46                    | 1.8        | 0.09 | 20                    | 1.5        |            |                     | $10^{5}$           |
| 2.6        | 1.1                 | 90                  | 1.2        | 0.72       | 54                    | 2.0        | 0.55 | 18                    | 1.8        |            |                     | $5 \times 10^4$    |
|            |                     | ;                   | 0.23       |            |                       | 0.50       |      |                       | 2.8        |            |                     | $10^{4}$           |

Table XIII. The Numerical Values of  $\gamma_1$ ,  $\gamma_2$  and  $t_c$  for Ball-Milling PVP in the Presence of Activated Charcoal (AC) in Various Kinds of Atmosphere

 $J_{\rm b}\!=\!0.22,\,J_{\rm s}\!=\!0.06^{2,3)}$  (referred to Table I)

| Kind of<br>Content<br>Atmost | t of AC             | $10\%$ $N_2(H_2O)$ |                | $egin{array}{l} 	ext{Granules} \ 10\% \ 	ext{N}_2(	ext{H}_2	ext{O}_2) \end{array}$ | Granules Fi<br>15.1%<br>Air | ne powders<br>10%<br>Air | $\begin{array}{c} \text{Granules} \\ 15.1\% \\ \text{O}_2 \end{array}$ | Granules $10\%$ $O_2(\mathrm{H_2O})$ |
|------------------------------|---------------------|--------------------|----------------|------------------------------------------------------------------------------------|-----------------------------|--------------------------|------------------------------------------------------------------------|--------------------------------------|
| $M_{ m u}$                   | $t_{ m e}({ m hr})$ | γ <sub>1</sub>     | γ <sub>2</sub> | $\gamma_2$                                                                         | γ <sub>2</sub>              | <b>7</b> 2               | $\gamma_2$                                                             | γ <sub>2</sub>                       |
| 10 <sup>6</sup>              |                     |                    | 0.53           | 0.36                                                                               | 1.0                         | 0.70                     | 0.37                                                                   | 0.98                                 |
| $5 \times 10^5$              | 162                 | 0.55               | 1.1            | 0.43                                                                               | 1.0                         | 0.96                     | 0.68                                                                   | 0.97                                 |
| $10^{5}$                     | 166                 | 0.51               | 1.4            | 0.48                                                                               | 1.1                         | 1.5                      | 1.1                                                                    | 1.3                                  |
| $5 \times 10^4$              | 166                 | 0.54               | 1.8            | 0.51                                                                               | 1.0                         | 1.1                      | 1.1                                                                    | 1.3                                  |
| 10 <sup>4</sup>              | 163                 | 0.21               | 2.6            | 0                                                                                  | 1.5                         | 7                        | 0.96                                                                   | 1.5                                  |

Table XIV. The Numerical Values of  $\gamma_1$ ,  $\gamma_2$  and  $t_c$  for Ball–Milling PVP in the Presence of Chloranil in Various Kinds of Atmosphere

 $J_{\rm b} = 0.43$ ,  $J_{\rm s} = 0.03^{\rm 3}$  (referred to Table I)

| Content of<br>chloranil<br>Atmosphere | $5\%$ $N_2(H_2O)$ | 5%<br>N <sub>2</sub> (H <sub>2</sub> O <sub>2</sub> ) | 5%<br>Air      |                | 10%<br>Air |            | 5%         | _                   | $\underbrace{ \overset{5\%}{\text{O_2(\text{H}_2\text{O})}}}_{}$ |            |
|---------------------------------------|-------------------|-------------------------------------------------------|----------------|----------------|------------|------------|------------|---------------------|------------------------------------------------------------------|------------|
| $M_{ m u}$                            | $\gamma_2$        | $\gamma_2$                                            | γ <sub>2</sub> | $t_{ m c(hr)}$ | γ1         | $\gamma_2$ | $\gamma_2$ | $t_{ m c}({ m hr})$ | γ1                                                               | $\gamma_2$ |
| 106                                   | 0.68              | _                                                     | 0.32           |                |            |            | 0.66       | 54                  | 0.40                                                             | 0.55       |
| $5 \times 10^5$                       | 0.67              |                                                       | 0.56           |                | 1.5        |            | 0.69       | 56                  | 0.43                                                             | 0.79       |
| $10^{5}$                              | 0.98              | 1.0                                                   | 1.0            | 227            | 1.4        | 0.68       | 0.91       | 59                  | 0.57                                                             | 1.1        |
| $5 \times 10^4$                       | 0.98              | 1.1                                                   | 1.5            | 224            | 2.2        | 0.86       | 0.99       | 62                  | 0.42                                                             | $^{2.4}$   |
| 104                                   | 0.47              | 0.61                                                  | 0.80           |                |            | 0.39       | 0.99       | 64                  | 0.39                                                             |            |

time,  $\partial t$ , to the total weight of the polymers. The value of  $-(1/R)(\partial R/\partial t)$  increases with the lapse of the ball-milling time when  $\gamma_2$  is larger than 1.0, and decreases when  $\gamma_2$  is smaller than 1.0. Equation (10) seems to suggest that the mean density of the activated bonds on a polymer molecule,  $\gamma$ , increases with a decrease of molecular weight of PVP, when  $\gamma_2$  increases with a decrease of  $M_u$ , and that the opposite is the case when  $\gamma_2$  decreases with a decrease of  $M_u$ .

Table XV. The Numerical Values of  $M_c$ , and  $n_o$ ,  $R_{71}$  and  $R_{72}$  for Ball-Milling PVP in the Presence of Inorganic or Organic Powders

| $J_{b}=$ | 0.22, | $T_{\rm s} = 0.06^{2,3,7}$ | (referred | to | Table | $\mathbf{I}$ | į |
|----------|-------|----------------------------|-----------|----|-------|--------------|---|
|----------|-------|----------------------------|-----------|----|-------|--------------|---|

| Additive               | Atmosphere | $M_{ m c}$            | $n_{o}$   | $R_{71}$ | $R_{72}$ |
|------------------------|------------|-----------------------|-----------|----------|----------|
| Absent                 | Nitrogen   | $(4-6) \times 10^4$   | 0.9       |          | 1.9      |
| Absent                 | Air        | $(3-5) \times 10^4$   | 0.7       |          | 2.6      |
| Absent                 | Oxygen     | $(3-4) \times 10^4$   | 0.7       |          | 1.7      |
| White alundum          | Nitrogen   |                       | 0.7 - 0.8 |          | 0.72     |
| White alundum          | Air        |                       | 1.0       | 1.7      | 1.8      |
| Silica sands           | Nitrogen   | $(2-4) \times 10^4$   | 0.9       | 9        | 2.1      |
| Silica sands           | Air        | $3.5 \times 10^{5}$   | 1.0 - 1.2 | P        | 1.4      |
| Zinc oxide             | Nitrogen   | $(5-6) \times 10^4$   | 1.1—1.2   |          | 1.6      |
| Zinc oxide             | Air        | $(4-6) \times 10^4$   | 1.0       |          | 2.1      |
| Barium sulfate         | Air        | $7 \times 10^4$       | 0.9 - 1.1 |          | 2.8      |
| Sodium chloride        | Nitrogen   | $2 \times 10^5$       | 0.9 - 1.0 | 1.8      | 0.74     |
| Sodium chloride        | Air        | $(7-8) \times 10^4$   | 1.0       |          | 2.1      |
| Talc                   | Nitrogen   |                       | 1.0-1.2   |          | 1.7      |
| Talc                   | Air        |                       | 0.9       |          | 2.9      |
| Vitamin K <sub>3</sub> | Nitrogen   | $(2.5-3) \times 10^4$ | 0.9—1.0   |          | 2.2      |
| Vitamin K <sub>3</sub> | Air        |                       | 0.7 - 1.0 |          | 1.6      |
| Acridine               | Nitrogen   |                       | 0.6 - 1.0 |          | 2.2      |
| Acridine               | Air        | $8 \times 10^4$       | 1.0       |          | 2.3      |
| Methylene blue         | Air        | $10^{5}$              | 1.1       |          | 1.2      |
| Phenothiazine          | Nitrogen   |                       | 0.6 - 1.0 | 1.2      | 2.3      |
| Phenothiazine          | Air        | $(2-5) \times 10^4$   | 0.9—1.0   |          | 4.0      |
| <i>p</i> -Hydroquinone | Nitrogen   | $(1-2) \times 10^5$   | 1.0 - 1.4 |          | 1.2      |
| p-Hydroquinone         | Air        | $(1-2) \times 10^5$   | 1.2-1.3   |          | 1.2      |
| Barbituric acid        | Nitrogen   |                       | 0.8       | 2.3      | 0.76     |
| Barbituric acid        | Air        |                       | 1.2-1.3   |          | 4.3      |

Table XVI. The Numerical Values of  $M_c$ ,  $n_o$ ,  $R_{71}$  and  $R_{72}$  for Ball-Milling PVP in the Presence of Activated Charcoal (AC) or Chloranil

| Additive Conte    | nt of additi | ve Atmosphere  | $M_{ m c}$            | $n_{0}$       | $R_{71}$    | $R_{r_2}$ |
|-------------------|--------------|----------------|-----------------------|---------------|-------------|-----------|
| AC (Granules)     | 10           | $N_2(H_2O)$    | $(1-2) \times 10^4$   | 0.7           | $1.0^{a_0}$ | 3.4       |
| AC (Granules)     | 10           | $N_2(H_2O_2)$  | , ,                   | $0.6-1.1^{b}$ |             | 1.4       |
| AC (Granules)     | 15.1         | Air            |                       | 0.8           |             | 1.0       |
| AC (Fine powders) | 10           | Air            | $1.4 	imes 10^5$      | 1.0           |             | 1.5       |
| AC (Granules)     | 15.1         | $O_2$          | $(1-2) \times 10^4$   | 0.8 - 1.0     |             | 3.2       |
| AC (Granules)     | 10           | $O_2(H_2O)$    | $(2-3) \times 10^4$   | 0.7 - 0.9     |             | 1.3       |
| Chloranil         | 5            | $N_2(H_2O)$    | $(1-2.5) \times 10^4$ | 0.7           |             | 1.4       |
| Chloranil         | 5            | $N_2(H_2O_2)$  | 104                   | 0.6 - 1.0     |             |           |
| Chloranil         | 5            | Air            |                       | 0.9 - 1.0     |             | 4.7       |
| Chloranil         | 10           | Air            | $(7-8) \times 10^4$   | 0.8           | $1.5^{a_0}$ |           |
| Chloranil         | 5            | O <sub>2</sub> | $(2-3.5) \times 10^4$ | 0.8           |             | 1.5       |
| Chloranil         | 5            | $O_2(H_2O)$    | $(3-9) \times 10^4$   | 0.9           | 1.1         | 4.3       |

a) In these cases, the ratio of  $\gamma_1$  for PVP of  $M_{\rm u}$  of  $5\times10^4$  to  $\gamma_1$  for PVP of  $M_{\rm u}$  of  $5\times10^5$  was shown for the data of  $\gamma_1$  for PVP of  $M_{\rm u}$  of  $10^6$  could not be obtained.

b) The value of  $n_0$  was approximately 0.6 for PVP of molecular weight,  $M_u$ , above  $2 \times 10^4$  and 1.1 for PVP of  $M_u$  below  $2 \times 10^4$ . AC,  $J_b = 0.22$ ,  $J_s = 0.06^{2.8}$ ; Chloranii,  $J_b = 0.43$ ,  $J_s = 0.03^3$  (referred to Table I).

### 4) Discussion on the Way How the Chains are broken

Though equation (5) is very complicated, it is suggested from this equation that, in case of the random chain scission, the parameter n in equation (4) is larger than 1.0, when  $\gamma(M_i)$  increases with an increase of  $M_i$ , and that n is smaller than 1.0 in the opposite case. The parameter n varied with the ball-milling time, as shown in Table V, VI, VII, VIII and IX. The value of n in the range of  $M_u$  above  $M_c$  after ball-milling for an infinitely short time from the time of the induction period,  $n_0$ , was obtained by extrapolating the log  $n-(t-t_{ie})$  curve. Table XV and XVI show the numerical values of  $n_0$  and the ratio of the value of  $\gamma_1$  or  $\gamma_2$  for PVP of  $M_u$  of  $5\times 10^4$  to the value for PVP of  $M_u$  of  $10^6$ ,  $R_{\gamma_1}$  or  $R_{\gamma_2}$ , respectively. The following suggestion seems to be reasonable from the comparison of  $n_0$  and  $R_{\gamma_1}$  or  $R_{\gamma_2}$ .

In case of ball-milling in air in the presence of barbituric acid,  $n_0$  was little larger than 1.0 and  $R_{r_2}$  was larger than 1.0. In this case, the probability of chain scission at the center of a polymer may be a little higher than the probability near the end of a polymer. But, in the other cases,  $n_0$  was around or below 1.0, and  $R_{r_1}$  and  $R_{r_2}$  were approximately equal to or larger than 1.0. In case of ball-milling in nitrogen in the presence of white alundum,  $n_0$  was smaller than 1.0, and  $\gamma_1$  increased with a decrease of  $M_u$ , as shown in Table XI. In these cases, random chain scission is most probable and the value of  $\gamma$  for PVP of low molecular weight seems to be approximately equal to or larger than the value for PVP of high molecular weight.

Roughly speaking, the following tendency was observed. The peak in the molecular weight distribution curve of PVP shifted from approximately  $10^6$  to lower molecular weight by ball-milling and the value of  $\beta_e$  was large, when  $R_{r_2}$  was around or below 1.0 or when the probability of chain scission at the center seemed to be a little larger than the probability near the end of a polymer.

#### Experimental

The ball-milled samples reported in the previous papers were used.<sup>2,3,7)</sup> The molecular weight distribution of PVP in the supernatant obtained by centrifugal separation of KH<sub>2</sub>PO<sub>4</sub>·Na<sub>2</sub>HPO<sub>4</sub> buffer solution (pH: 6.3, ionic strength; 0.05) of the ball-milled sample was investigated by gel permeation method and by viscometry reported in the previous papers.<sup>2,7)</sup>