Chem. Pharm. Bull. 26(10)2941—2951(1978)

UDC 547.857.7'546.47.04.08:543.422.25.06

# Complexes between Nucleic Acid Bases and Bivalent Metal Ions. II.<sup>1)</sup> Complexes formed by Guanine or Cytosine, and Zinc(II)<sup>2)</sup>

Syoichi Shirotake and Takeichi Sakaguchi

Faculty of Pharmaceutical Sciences, Chiba University3)

(Received November 10, 1977)

The new 2:1 guaninium-zinc chloride, 2:1 cytosinium-zinc chloride, 1:1 cytosine-zinc hydroxy chloride, or 2:1 cytosine-zinc chloride complex was obtained from a diluted hydrochloric acid, 70% ethanol, or ethanol solution. The infrared and proton magnetic resonance spectra of these complexes were characterized to assign the binding site of zinc to guanine or cytosine. On the basis of these data, it was suggested that the N9 site of guanine was bound to zinc in the guaninium-zinc chloride complex, and that the N3 site of cytosine was coordinated with zinc in the 2:1 cytosine-zinc chloride and 1:1 cytosine-zinc hydroxy chloride. It was indicated that the N3 site of cytosine was protonated in the 2:1 cytosinium-zinc chloride complex.

Keywords—guanine; guaninium chloride; cytosine; cytosinium chloride; zinc complexes; infrared spectra; proton magnetic resonance spectra; lower-field shift; higher-field shift

## Introduction

It is of interest that nucleic acid contains various metal ions.<sup>4,5)</sup> Interaction of metal ions with nucleic acids includes binding to phosphate oxygen and that to bases of nucleic acids.<sup>6-11)</sup> Eichhorn and Shin<sup>11,12)</sup> suggested that Zn<sup>2+</sup> is bound to the bases when Zn<sup>2+</sup> takes part in the reversible winding and unwind-

ing of deoxyribonucleic acid (DNA), as shown in Fig. 1. Therefore, it is important to study the binding site of Zn<sup>2+</sup> to each individual base.

The present study was undertaken to investigate the interaction of guanine or cytosine with Zn²+, and to examine the resulting crystals of the new 2:1 guaninium-zinc chloride, 2:1 cytosinium-zinc chloride, 1:1 cytosine-zinc hydroxy chloride, and 2:1 cytosine-zinc chloride complexes. The binding site of Zn²+ to guanine or cytosine in the complexes is discussed on the basis of infrared (IR) and proton magnetic resonance (PMR) spectral data.

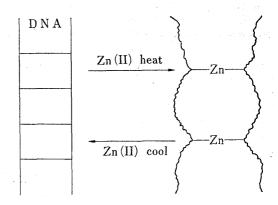



Fig. 1. Interaction of Zinc with DNA

<sup>1)</sup> Part I: S. Shirotake and T. Sakaguchi, Chem. Pharm. Bull. (Tokyo), 25, 3232 (1977).

Presented in part at the 94th Annual Meeting of the Pharmaceutical Society of Japan, Sendai, April, 1974.

<sup>3)</sup> Location: 1-33, Yayoi-cho, Chiba-shi, Chiba, 260, Japan.

<sup>4)</sup> H.S. Loring and D.S. Waritz, Science, 125, 646 (1957).

<sup>5)</sup> W.E.C. Wacker and B.L. Vallee, J. Biol. Chem., 234, 3257 (1959).

<sup>6)</sup> J. Shack, R.J. Jenkins, and J.M. Thompsett, J. Biol. Chem., 203, 373 (1953).

<sup>7)</sup> G. Felsenfeld and S. Huang, Biochim. Biophys. Acta, 34, 234 (1959).

<sup>8)</sup> J. Eisinger, R.G. Shulman, and W.E. Blumberg, *Nature* (London), 192, 963 (1961).
9) J. Eisinger, R.G. Shulman, and B.M. Szymanski, *J. Chem. Phys.*, 36, 1721 (1962).

<sup>10)</sup> W.F. Dove and N. Davidson, J. Mol. Biol., 5, 467 (1962).

<sup>11)</sup> G.L. Eichhorn and Y.A. Shin, J. Am. Chem. Soc., 90, 7323 (1968).

<sup>12)</sup> Y.A. Shin and G.L. Eichhorn, Biochemistry, 7, 1026 (1968).

#### Experimental

Materials—Guanine (Sigma Chemical Co., U.S.A.) was recrystallized from diluted HCl before use. Cytosine (Sigma Chemical Co.) was recrystallized from H<sub>2</sub>O. ZnCl<sub>2</sub> was from Koso Chemical Co., Tokyo. EtOH was dried over CaO and distilled before use.

Syntheses—Guaninium–Zinc Chloride (2/1) Complex (2:1 Guaninium–ZnCl<sub>4</sub>): Guanine (500 mg) was dissolved in 0.3 n HCl (100 ml) with stirring at 50°, ZnCl<sub>2</sub> (1.5 g) was added, the mixture was stirred at 70° for 2—3 hr, and the mixture was allowed to stand in a thermostat at 40°. After 3—5 days, colorless columnar crystals of 2:1 guaninium–ZnCl<sub>4</sub> were obtained. The complex decomposed at above 350°. When exposed to ultraviolet (UV) ray of 365 nm, the complex gave a blue fluorescence. Anal. Calcd. for ( $C_5H_6N_5O$ )<sub>2</sub>-ZnCl<sub>4</sub>·2H<sub>2</sub>O: C, 21.94; H, 2.95; N, 25.59; Zn, 11.94. Found: C, 21.80; H, 2.95; N, 25.78; Zn, 11.87.

Guaninium-Zinc Chloride (1/1) Complex (Guaninium-ZnCl<sub>3</sub>): The complex was prepared according to the method of Srinivasan and Taylor.<sup>13)</sup>

Guaninium–Copper Chloride (1/1) Complex (Guaninium–CuCl<sub>3</sub>): This complex was synthesized by the method of Carrabine and Sundaralingam.  $^{14,15}$ )

Cytosinium–Zinc Chloride (2/1) Complex (2:1 Cytosinium–ZnCl<sub>4</sub>): Cytosine (470 mg) was dissolved in 0.1 n HCl (100 ml) with stirring at 60°, ZnCl<sub>2</sub> (1 g) was added, the mixture was heated at 70° for 3 hr with stirring, and allowed to stand at room temperature. After 3—4 days, white columnar crystals of 2:1 cytosinium–ZnCl<sub>4</sub> were obtained. The complex decomposed at above 300°. Anal. Calcd. for  $(C_4H_6N_3O)_2ZnCl_4$ : C, 22.27; H, 2.81; N, 19.48; Zn, 15.14. Found: C, 22.11; H, 2.88; N, 19.49; Zn, 14.99.

Cytosine–Zinc Hydroxy Chloride (1/1) Complex (Cytosine–Zn(OH)Cl): Cytosine (470 mg) was dissolved in 70% EtOH (100 ml) with stirring at 60°, ZnCl<sub>2</sub> (1 g) was added, the mixture was boiled under reflux for 3—4 hr, and allowed to stand in a thermostat at 40°. After 2—3 days, colorless columnar crystals of cytosine–Zn(OH)Cl were obtained. The complex decomposed at above 350°. Anal. Calcd. for (C<sub>4</sub>H<sub>5</sub>N<sub>3</sub>O)Zn(OH)Cl: C, 21.08; H, 2.66; N, 18.44; Zn, 28.68. Found: C, 21.00; H, 2.59; N, 18.64; Zn, 28.53.

Cytosine–Zinc Chloride (2/1) Complex (2:1 Cytosine–ZnCl<sub>2</sub>): Cytosine (470 mg) was dissolved in EtOH (100 ml) with stirring at 65°, ZnCl<sub>2</sub> (1 g) was added, the mixture was boiled under reflux for 5 hr, and allowed to stand in a thermostat at 40°. After 2—3 days, white micro columnar crystals of 2:1 cytosine–ZnCl<sub>2</sub> were obtained. The complex decomposed at above 300°. Anal. Calcd. for  $(C_4H_5N_3O)_2ZnCl_2$ : C, 26.79; H, 2.82; N, 23.44; Zn, 18.23. Found: C, 26.83; H, 2.82; N, 23.37; Zn, 18.09.

Cytosine-Copper Chloride (2/1) Complex (2:1 Cytosine-CuCl<sub>2</sub>): The complex was prepared according to the method of Melzer.<sup>16)</sup>

Measurement of IR Spectra—The spectra of these complexes were measured on a Hitachi Model EPI-295 spectrophotometer, as a KBr disk or in 10% DCl+D<sub>2</sub>O (DCl) and EtOD solutions. The spectra in DCl and EtOD solutions were obtained by using As<sub>2</sub>Se<sub>3</sub> cell (0.1 mm).

Measurement of PMR Spectra—Guanine, guaninium chloride (guanine hydrochloride), and guaninium zinc chloride complexes were each dissolved to  $0.1\,\mathrm{m}$  concentration (for the ligand in the complexes) in 20% DCl+D<sub>2</sub>O, CF<sub>3</sub>COOH (trifluoracetic acid (TFA)), or (CD<sub>3</sub>)<sub>2</sub>SO (dimethyl sulfoxide (DMSO)- $d_6$ ). Cytosine, cytosinium chloride (cytosine hydrochloride), and the 2:1 cytosinium–ZnCl<sub>4</sub>, cytosine–Zn(OH)Cl, and 2:1 cytosine–ZnCl<sub>2</sub> complexes were each dissolved to  $0.1\,\mathrm{m}$  concentration (for the ligand in the complexes) in D<sub>2</sub>O, TFA, DMSO- $d_6$ , or DMSO- $d_6$ +4% H<sub>2</sub>O. Their chemical shifts were measured on a JEOL Model NM4H–100 spectrometer operated at 100 MHz, at 24°. Internal references used were DSS (in D<sub>2</sub>O, 20% DCl+D<sub>2</sub>O, or TFA) and TMS (in DMSO- $d_6$  or DMSO- $d_6$  +4% H<sub>2</sub>O). PMR solvents used were commercial products (from Sigma Chemical Co.).

## Results and Discussion

New guaninium—, cytosinium—, or cytosine—zinc chloride complexes were obtained from an acidic or ethanol solution. IR and PMR spectra of these complexes were characterized to assign the binding site of zinc to guanine or cytosine.

#### **Infrared Spectra**

Guanine– $\mathbb{Z}n^{2+}$  Complexes—The IR spectrum of 2:1 guaninium– $\mathbb{Z}nCl_4$  was characterized by investigating the characteristic bands on complexation of the guaninium– $\mathbb{Z}nCl_3$  and  $\mathbb{Z}nCl_3$  in which the metal is bound to N(9) position of the guanine ring protonated at N(3) and N(7).<sup>13–15)</sup>

<sup>13)</sup> L. Srinivasan and M.R. Taylor, Chem. Commun., 1970, 1668.

<sup>14)</sup> J.A. Carrabine and M. Sundaralingam, J. Am. Chem. Soc., 92, 369 (1970).

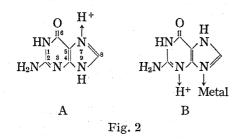
<sup>15)</sup> M. Sundaralingam and J.A. Carrabine, J. Mol. Biol., 61, 287 (1971).

<sup>16)</sup> M.S. Melzer, Chem. Commun., 1967, 1052.

Table I. Relevant Infrared Absorption Bands of Guanine, Guaninium Chloride, and Guaninium-Metal Complexes in KBr Disk (in 300-3500 cm<sup>-1</sup> region)

| Guanine         | Tentative assignment                 | Guaninium<br>chloride | 2:1 G-Zn <sup>a</sup> ) | 1:1 G-Zn <sup>b)</sup> | 1:1 G-Cu <sup>c)</sup> |
|-----------------|--------------------------------------|-----------------------|-------------------------|------------------------|------------------------|
|                 | uOH                                  | 3450 s                | 3420 s                  |                        | 3500 s                 |
| 3320 s          | $v\mathrm{NH}_2$                     | $3390 \mathrm{\ s}$   | 3380 s                  | 3375 s                 | 3350 s                 |
|                 | $\nu \mathrm{NH_2}$                  | 3330 s                | 3330 s                  | 3300 s                 | 3290 s                 |
|                 | $\nu \mathrm{NH_2}^2$                |                       | 3250 m                  | 3250 s                 | 3240 s                 |
| 3160 s          | $v\mathrm{NH}_2^2$                   | $3170 \mathrm{\ s}$   | 3170 s                  | 3180 s                 | 3185 s                 |
| the second      |                                      | 3040 s                | $3050\mathrm{sh}$       | $3050\mathrm{sh}$      | 3060 s                 |
| 3000 s          | vNH, CH                              | 3000 s                | 3010m                   | $3000\mathrm{sh}$      | 3000 sh                |
| 2900 s          | $\nu NH$                             | 2920 s                | 2925 s                  | 2920 m                 | 2925 m                 |
| 2850 s          | vNH                                  | 2875 s                | 2020 5                  | 2020111                | 2020111                |
| 2000 5          | vN(3)-H                              | 20103                 | 2825 m                  | 2830 m                 | 2825 m                 |
|                 | 711(0) 11                            | 2750 s                | 2760m                   | 2760 m                 | 2760 m                 |
| 2700 s          | u N(9)-H                             | 2600 m                | 2700111                 | 2100 III               | 2100III                |
| 1705 s          | vC=O                                 | 1715 s                | 1720 s                  | 1734 s                 | 1732 s                 |
| 1680 s          |                                      | 1668 s                |                         |                        |                        |
| 1000 S          | $\delta NH_2$ scissoring $\nu C=N^+$ |                       | 1665 s                  | 1685 s                 | 1670 s                 |
|                 | $\nu$ C=N+ $\nu$ C=N+                | $1615 \mathrm{s}$     | 1642m<br>1612m          | 1632m                  | 1635m                  |
| 1507            |                                      | 1504                  |                         | 1608m                  | 1620m                  |
| 1587 m          | vC=C+vC=N                            | 1594 s                | 1595 m                  | 1592m                  | 1592m                  |
| 1578m           | $\nu$ C=C+ $\nu$ C=N                 | 1580m                 | 1580m                   | 1580 m                 | 1580 m                 |
| 1563 m          | $\delta \mathrm{NH}$                 | $1560\mathrm{m}$      | 1557 m                  | 1557m                  | 1562m                  |
|                 |                                      |                       | $1545  \mathrm{sh}$     | $1543\mathrm{sh}$      | $1543\mathrm{sh}$      |
|                 | $\delta { m NH}$                     | 1518m                 | 1517 m                  | 1515m                  | 1520 m                 |
| 1477 m          | Ring vib.                            | 1470 m                | 1475 m                  | 1476m                  | 1482m                  |
| 1464 m          | Ring vib.                            |                       | 1455 m                  | 1452 m                 | 1450m                  |
| 1418m           | Ring vib.                            | 1395 m                | 1399 m                  | $1390\mathrm{sh}$      | 1390 w                 |
| 1375 m          | Ring vib.                            | 1370 m                | 1370 m                  | 1374m                  | 1374m                  |
|                 | Ring vib.                            | 1340 m                | 1336 w                  | $1340\mathrm{w}$       | $1320\mathrm{w}$       |
|                 |                                      |                       | 1310 w                  | $1309\mathrm{w}$       | 1304 w                 |
| 1263 m          | $\nu$ C $-$ N                        |                       | 1255 w                  | 1255 w                 | 1257 w                 |
|                 | $\nu$ C-N                            | $1240\mathrm{w}$      | 1236 w                  | 1236 w                 | 1240 w                 |
| 1215m           | Ring vib.                            | 1182m                 | 1200 w                  | 1203 m                 | 1202m                  |
| 1172m           | Ring vib.                            | 1145 w                | 1154m                   | 1156m                  | 1156m                  |
| 1100 sh         | $\delta NH_2$ rocking                | 1070 w                | 1095 w                  | 1080 w                 | 1080 w                 |
| 1042 w          | orving rocking                       | 1047 w                | 1039 w                  | 1038 w                 | 1048 w                 |
| 1042 W          | Ring vib.                            | 1041 W                | 972 w                   |                        |                        |
|                 |                                      | 930 w                 |                         | 973 w                  | 972w                   |
| 880 m           | Ring vib.                            | 930 W                 | 930 w                   | 930 w                  | 929 w                  |
|                 | δNH                                  | 0.50                  | $885  \mathrm{sh}$      | 889 w                  | 900 w                  |
| 851m            | $\delta \mathrm{NH}$                 | 850 m                 | 857 m                   | 849m                   | 850 w                  |
| <b>5</b> 04     | $\delta$ NH                          | 840 m                 | 834m                    | $830  \mathrm{sh}$     | $830\mathrm{sh}$       |
| 781m            | $\delta$ CH,                         | 774m                  | 769m                    | 765 m                  | 765 m                  |
| $730\mathrm{w}$ |                                      | $741\mathrm{w}$       | $735\mathrm{w}$         | $730\mathrm{w}$        | $730\mathrm{sh}$       |
|                 | Ring vib.                            | $713\mathrm{w}$       | $726\mathrm{w}$         | $720\mathrm{sh}$       | $718\mathrm{w}$        |
| 705m            | Ring vib.                            |                       | $709\mathrm{w}$         | $709\mathrm{w}$        | $705\mathrm{w}$        |
| 689 m           | Ring vib.                            | 682m                  | 687 w                   | $673\mathrm{w}$        | $678\mathrm{sh}$       |
| 649m            | $\delta \mathrm{NH_2}$ wagging       | 648 m                 | 642m                    | 651m                   | 656m                   |
| 608m            | Ring vib.                            | $610\mathrm{w}$       | $607\mathrm{m}$         | 606m                   | $609\mathrm{m}$        |
| $560\mathrm{w}$ | Ring vib.                            | 550 m                 |                         | *                      |                        |
| $544\mathrm{w}$ | Ring vib.                            | 530m                  | $546\mathrm{w}$         | 538m                   | 542m                   |
| 515 w           | Ring vib.                            |                       | $523  \mathrm{sh}$      | $525\mathrm{sh}$       | 520 w                  |
| 506w            | Ring vib.                            | 506m                  | $508  \mathrm{sh}$      | 510 w                  | 509 w                  |
|                 | Ring vib.                            | 200111                | 498m                    | 492m                   | 494 m                  |
| $350\mathrm{w}$ | Ring vib.                            | $350\mathrm{sh}$      | 353 w                   | 350 w                  | 355 w                  |
|                 | VIN.                                 | 200 211               | JJJ W                   | 319 w                  | JJJ W                  |

<sup>a) 2:1 guaninium-ZnCl<sub>4</sub>.
b) 1:1 guaninium-ZnCl<sub>3</sub>.
c) 1:1 guaninium-CuCl<sub>3</sub>.</sup> 


The relevant infrared absorption bands are presented in Table I. In guanine, absorption bands due to the ring vibration were observed in the region of 300—1500 cm<sup>-1</sup>.<sup>17-19</sup> Especially, the bands at 350, 506, 515, 689, 705, and 781 cm<sup>-1</sup> were assigned to the skeletal ring vibrations of guanine.<sup>18,19</sup> These bands were clearly observed in the 2:1 guaninium–ZnCl<sub>4</sub>, guanium–ZnCl<sub>3</sub>, and guaninium–CuCl<sub>3</sub>, indicating that the 2:1 guaninium–ZnCl<sub>4</sub> contains the guanine skeleton.

In IR spectrum of the 2:1 guaninium–ZnCl<sub>4</sub>, many bands appeared newly in the region of 300—1500 cm<sup>-1</sup>, as in the guaninium–ZnCl<sub>3</sub> and –CuCl<sub>3</sub>. Of the new absorption bands, those at near 720, 930, 1240, and 1390 cm<sup>-1</sup> were comparable to the ring vibration of guaninium chloride as shown in Table I. On the other hand, the new bands at near 490, 970, 1250, and 1300 cm<sup>-1</sup>, not present in guanine and guaninium chloride, were assigned to the ring deformation or stretching vibration of the complexes. Moreover, the band assigned to the

N-Metal stretching vibration<sup>20,21)</sup> was observed at 328 cm<sup>-1</sup> in the guaninium-CuCl<sub>3</sub>, at 319 cm<sup>-1</sup> in the guaninium-ZnCl<sub>3</sub>, and at 319 cm<sup>-1</sup> in the 2:1 guaninium-ZnCl<sub>4</sub>. These facts suggest protonation and binding of the metal to either N(3), N(7), or N(9) site of guanine ring in the 2:1 guaninium-ZnCl<sub>4</sub>, as in the guaninium-ZnCl<sub>3</sub> and -CuCl<sub>3</sub>.

Guanine is protonated at N(7) site firstly and at N(3) site secondarily.<sup>22)</sup> In the 2:1 guaninium–ZnCl<sub>4</sub>, N(7) site is protonated, because the  $\delta$  N(7)-H bands were observed at 834 ( $\delta$  N(7)-H out–plane) and 1517 cm<sup>-1</sup> ( $\delta$  N(7)-H in–plane), as in guaninium chloride,<sup>23)</sup> and guaninium–ZnCl<sub>3</sub> and –CuCl<sub>3</sub> complexes (Fig. 2, A). Moreover, N(3) site is suggested to be protonated in the 2:1 guaninium–ZnCl<sub>4</sub>, since the  $\nu$ N(3)-H band<sup>24)</sup> in the guaninium–CuCl<sub>3</sub> was observed in the 2:1 guaninium–ZnCl<sub>4</sub> and guaninium–ZnCl<sub>3</sub> (Table I).

Of the absorption bands in the region of 1600—1800 cm<sup>-1</sup>, those of strong intensity at 1665 and 1720



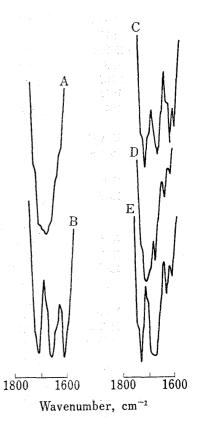



Fig. 3. Infrared Absorption Spectra in the Region of 1600—1800 cm<sup>-1</sup> in KBr Disk

A, guanine; B, guaninium chloride; C, 2: 1 guaninium-ZnCl<sub>4</sub>; D, guaninium-ZnCl<sub>5</sub>; E, guaninium-CuCl<sub>5</sub>.

<sup>17)</sup> C.L. Angell, J. Chem. Soc., 1961, 504.

<sup>18)</sup> M. Tsuboi and Y. Kyogoku, "Synthetic Procedures in Nucleic Acid Chemistry," Vol. 2, eds. W.W. Zorbach and R.S. Tipson, Wiley-Interscience, New York, 1973.

<sup>19)</sup> M. Tsuboi, "Basic Principles in Nucleic Acid Chemistry," Vol. 1, ed. P.O.P. Ts'o, Academic Press, New York, 1974.

<sup>20)</sup> K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compound," John Wiley and Sons, New York, 1963.

<sup>21)</sup> K. Nakamoto, "Coordination Chemistry," Vol. 1, ed. A.E. Martell, Van Norstrand-Reinhold Company, New York, 1973.

<sup>22)</sup> G. Budo and J. Tomasz, Acta Biochim. Biophys. Aca. Sci. Hung., 9, 217 (1974).

<sup>23)</sup> J.M. Broomhead, Acta Crystallogr., 4, 92 (1951).

<sup>24)</sup> T. Fujita and T. Sakaguchi, Yakugaku Zasshi, 97, 1107 (1977).

Table II. Relevant Infrared Absorption Bands of Cytosine, 2:1

Cytosinium—ZnCl<sub>4</sub>,\* Cytosine—Zn(OH)Cl,\*\* and 2:1

Cytosine—ZnCl<sub>2</sub>\*\*\* in KBr Disk

(in 300—3500 cm<sup>-1</sup> region)

| Cytosine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tentative assignment              | 2:1 CytH–Zn*      | Cyt-Zn**            | 2:1 Cyt-Zn***     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------|---------------------|-------------------|
| 3450 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | νОН                               |                   | 3520 s              |                   |
| 3375 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\nu \mathrm{NH}_2$               | 3400 s            | 3450 s              | $3440 \mathrm{s}$ |
| $\frac{g}{(2\pi)^{2}} \frac{g}{(2\pi)^{2}} = \frac{g}{(2\pi)^{2}} $ | $v\mathrm{NH}_2^{'}$              | 3300 s            | 3330 s              | 3380 s            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $v\mathrm{NH}_2$                  |                   |                     | 3247 s            |
| 3175 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $vNH_2$                           | 3200 s            | $3200\mathrm{sh}$   | 3210 s            |
| 01.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\nu$ NH                          | 3150 s            | 0200 311            | 02103             |
| $3100\mathrm{sh}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vCH, vNH                          | 3110 s            | 3100 s              | 3083 m            |
| 0100311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VCII, VI(II                       | 3020 s            | 3065m               | 3030 w            |
| 2980 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $v\mathrm{NH}$                    | 3020 S            | 2970m               | 2960 w            |
| 2920m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                   |                     | 2892 w            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vNH                               | 0000              | 2880 m              | ,                 |
| 2850m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vNH                               | 2800 w            | 2840m               | 2800 w            |
| 2800 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vNH                               | 2720 w            | 2700 m              |                   |
| 2700m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\nu \mathrm{NH}$                 |                   | 2610 m              |                   |
| $1665 \mathrm{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\delta \mathrm{NH_2}$ scissoring | $1676 \mathrm{s}$ | 1681 s              | 1680 s            |
| 1645 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vC=O                              | 1735 s            | $1636 \mathrm{\ s}$ | 1645 s            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\nu$ C=N+                        | 1625 m            | $1618\mathrm{sh}$   | 1613 s            |
| $1600\mathrm{sh}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vC=C+vC=N                         |                   |                     |                   |
| 1575 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vC=C+vC=N                         | 1580 w            | $1585\mathrm{sh}$   | 1580 w            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\delta \mathrm{NH}$              | 1570 m            |                     |                   |
| 1539 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\delta \mathrm{NH}$              | 1543 m            | 1537 m              | 1540 m            |
| 1503 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vC=C+vC=N, ring vib.              |                   | 1515m               | 1515m             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ring vib.                         | 1490 m            | 1493 m              | 1507 m            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ring vib.                         | 1100111           | 1476m               | 1476m             |
| 1460 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ring vib.                         | 1402m             | 1456m               | 1447 m            |
| 1370 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ring vib.                         | 1366 w            | 1370m               | 1369 w            |
| 1290 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | 1310 sh           | 1300 w              | 1296 w            |
| 1250111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | νC-NH <sub>2</sub> νC-N           | 1310811           |                     |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vC-N                              | 1000              | 1284m               | 1267 m            |
| 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | vC-N                              | 1250vw            | 1245m               | 1240 m            |
| 1235 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | δCH ring vib.                     | 1220 s            | 1230 sh             | 1222m             |
| 1105 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ring vib.                         | 1150 w            | 1109w               | 1105 w            |
| $978\mathrm{w}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ring vib.                         | 987 w             | $992\mathrm{w}$     | $983\mathrm{w}$   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ring vib.                         | $974\mathrm{w}$   |                     |                   |
| 880 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\delta \mathrm{NH}$              | $885\mathrm{sh}$  | 888 w               | 880 w             |
| *# "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\delta \mathrm{NH}$              | 843 m             |                     |                   |
| 814m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\delta \mathrm{NH}$              | $810\mathrm{m}$   | $800\mathrm{w}$     | 804m              |
| 793 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\delta \mathrm{CH}$              | 786m              | 783 m               | 797 m             |
| 786m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\delta$ CH                       |                   |                     | 782m              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ring vib.                         | 760 m             | $750\mathrm{sh}$    | $752\mathrm{w}$   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ring vib.                         |                   | $715\mathrm{w}$     | $710\mathrm{w}$   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ring vib.                         | 689m              |                     |                   |
| 656m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\delta \mathrm{NH_2}$ wagging    | 672m              | 660 m               | $652 \mathrm{m}$  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ring vib.                         | 0                 | 612m                | 608m              |
| 601 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ring vib.                         | 585 m             | 586m                | 575 m             |
| 552m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ring vib.                         | 540m              | 544m                | 546m              |
| 002111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ming vin.                         | 527 m             | 044111              | Jaulii            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dingswik                          | 521 III           | 449                 | 4.4.4             |
| 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ring vib.                         | 400               | 442 w               | 444 w             |
| 430m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ring vib.                         | 422m              | 432m                | 434 w             |
| 416w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ring vib,                         | 0==               | $420\mathrm{sh}$    | 412m              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ring vib.                         | 377 m             |                     | 117               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vZn–Cl                            | 293 m             | 270 m               | 285 m             |

cm<sup>-1</sup> in 2:1 guaninium–ZnCl<sub>4</sub> (at 1685 and 1734 cm<sup>-1</sup> in guaninium–ZnCl<sub>3</sub>, and at 1670 and  $1732 \text{ cm}^{-1}$  in guaninium-CuCl<sub>3</sub>) were assigned to the  $\delta \text{ NH}_2$  scissoring and  $\gamma \text{C=O}$ band, respectively, because the former band disappeared in DCl solution, while the latter remained, as in the case of guanine derivatives. 17-19,25-27) The  $\nu$  C=N+ band not present in guanine appeared newly at near 1610 and 1640 cm<sup>-1</sup> in these complexes, while the band was observed at 1615 cm<sup>-1</sup> in guaninium chloride (Fig. 3). The double bond stretching vibrations of the complexes were higher in frequencies than those of guanine and guaninium chloride, as shown in Table I. On the other hand, many ring vibrations due to single bond stretching vibration of the complexes were lower in frequencies than those of guanine, as in the case of guaninium chloride. Especially, the  $\nu$ C-N (internal) band coupled with the  $\nu$ C-N (external) at 1263 cm<sup>-1</sup> in guanine was split and shifted to a lower-frequency region (at near 1240 and 1250 cm<sup>-1</sup>) in the complexes, while the band was not split but shifted to a lowerfrequency region (at 1240 cm<sup>-1</sup>). Nakamoto reported that the absorption band due to the C-N stretching vibration shifts to a lower-frequency region on binding of a metal (C-N: →metal).<sup>20,21)</sup> Tsuboi reported that protonation at nitrogen of purine ring causes a localization of  $\pi$ -electrons on the ring, and causes higher-frequency shifts in the double bond stretching vibrations. 19,25) Therefore, the higher-frequency shifts in the double bond stretching vibrations and the lower-frequency shifts in the stretching vibrations of the complexes are caused by protonation at N(3) and N(7), and binding of the metal to nitrogen of guanine ring

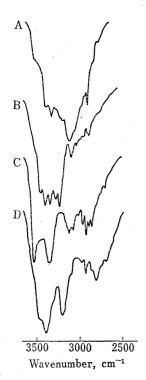



Fig. 4. Infrared Absorption Spectra in the Region of 2500—3500 cm<sup>-1</sup> in KBr Disk

A, 2:1 cytosinium– $ZnCl_4$ ; B, 2:1 cytosine– $ZnCl_2$ ; C, cytosine–Zn(OH)Cl; D, cytosine monohydrate.

in the complexes. Since the  $\nu$ N(9)-H band<sup>24)</sup> in guanine disappeared in the 2:1 guaninium–ZnCl<sub>4</sub>, as in the guaninium–ZnCl<sub>3</sub> and –CuCl<sub>3</sub>, the N(9) position of guanine ring is suggested to be bound to zinc in the complex, as shown in Fig. 2, B.

Cytosine–Zn<sup>2+</sup> Complexes—The relevant infrared absorption bands in KBr disk are listed in Table II. In the spectra of 2:1 cytosinium–ZnCl<sub>4</sub>, cytosine–Zn(OH)Cl, and 2:1 cytosine–ZnCl<sub>2</sub> complexes, their  $\delta$ C–H,  $\delta$ N–H, ring vibration,  $\nu$ C=C,  $\nu$ C=N,  $\delta$ NH<sub>2</sub>, and  $\nu$ C=O bands are attributed to the cytosine structure, 17,18) indicating that the complexes retain the cytosine skeleton (Table II).

In cytosine, absorption bands due to the ring vibration were observed in 400—600 cm<sup>-1</sup> and in 1100—1500 cm<sup>-1</sup> regions.<sup>17,18,28)</sup> In the cytosine–Zn(OH)Cl and 2:1 cytosine–ZnCl<sub>2</sub>, many bands appeared newly in these regions on complexation, as in the 2:1 cytosine–CuCl<sub>2</sub><sup>1)</sup> (Table II). These bands not present in cytosinium chloride were assigned to the ring deformation or stretching vibration of the complexes. In particular, the new bands at near 610 and 710 cm<sup>-1</sup> were observed in many cytosine–metal complexes<sup>29)</sup> in which the metal is coordinated with N(3) site of cytosine ring, and those were assigned to the characteristic skeletal ring vibrations of the cytosine–metal complexes. On the other hand, these bands were not

<sup>25)</sup> M. Tsuboi, Y. Kyogoku, and T. Shimanouchi, Biochim. Biophys. Acta, 55, 1 (1962).

<sup>26)</sup> R.C. Lord and G.J. Tomas, Spectrochim. Acta, A23, 2551 (1967).

<sup>27)</sup> G.J. Tomas, Biopolymer, 7, 325 (1969).

<sup>28)</sup> H. Susi, J.S. Ard, and J.M. Purcell, Spectrochim. Acta, 29A, 725 (1973).

<sup>29)</sup> S. Shirotake, Chem. Pharm. Bull. (Tokyo), submitted.

present in the 2:1 cytosinium–ZnCl<sub>4</sub>, while the absorption bands at 377, 422, 585, 974 and 1227 cm<sup>-1</sup> were comparable to the ring vibrations of cytosinium chloride. These facts suggest the coordination of zinc with nitrogen of cytosine ring in the cytosine–Zn(OH)Cl and 2:1 cytosine–ZnCl<sub>2</sub>, and protonation at the nitrogen in the 2:1 cytosinium–ZnCl<sub>4</sub>.

The  $\nu$  N(1)-H bands characteristic of cytosine<sup>17,18)</sup> were extermely weak and shifted to a lower–frequency region in the 2:1 cytosinium–ZnCl<sub>4</sub> and 2:1 cytosine–ZnCl<sub>2</sub>, whereas the bands were observed in the cytosine–Zn(OH)Cl (like cytosine), as shown in Fig. 4. On the other hand, the  $\delta$  N(1)–H bands were clearly observed at 810 and 1543 cm<sup>-1</sup> in the 2:1 cytosinium–ZnCl<sub>4</sub>, and at 804 and 1540 cm<sup>-1</sup> in the 2:1 cytosine–ZnCl<sub>2</sub>, as in the 2:1 cytosine–CuCl<sub>2</sub><sup>1)</sup> (in Fig. 5), indicating that N(1) position of cytosine ring is bound to proton in the complexes. The variation of the  $\nu$  N(1)-H bands may be caused by hydrogen bonding in the complexes.

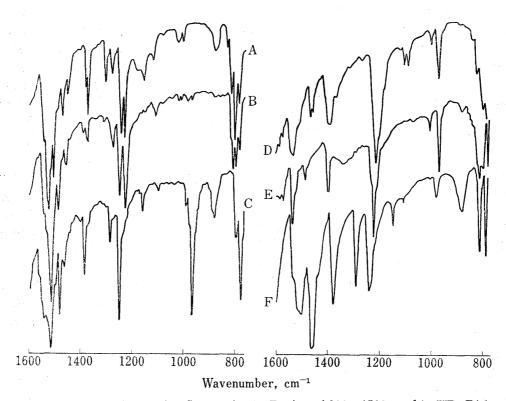



Fig. 5. Infrared Absorption Spectra in the Region of 800—1500 cm<sup>-1</sup> in KBr Disk A, 2:1 cytosine-CuCl<sub>2</sub>; B, 2:1 cytosine-ZnCl<sub>2</sub>; C, cytosine-Zn(OH)Cl; D, 2:1 cytosinium-ZnCl<sub>4</sub>; E, cytosinium chloride; F, cytosine monohydrate.

In these complexes, absorption bands due to the  $NH_2$  and  $C-NH_2$  stretching vibrations were higher in frequencies than those of cytosine, as in cytosinium chloride (Table II). Especially,  $\nu$  C-NH<sub>2</sub> bands of the complexes were weakened and shifted to a higher-frequency region, than that of cytosine (Fig. 5). Since the shift is probably caused by the inductive and mesomeric effects of the ring,  $^{33}$  N(3) site in the complexes is assumed to be more positively charged than that in cytosine, implying the coordination of zinc with the N(3) or protonation at the N(3). In the 2:1 cytosinium-ZnCl<sub>4</sub>, N(3) site is protonated, because absorption bands due to N(3)-H were observed at 843 ( $\delta$  N-H out-plane), 1570 ( $\delta$  N-H out-

<sup>30)</sup> J.A. Carrabine and M. Sundaralingam, Chem. Commun., 1968, 746.

<sup>31)</sup> N. Hadijiliadis and T. Theophanides, Inorg. Chim. Acta, 15, 167 (1975).

<sup>32)</sup> W.C. Hamilton and J.A. Ibers, "Hydrogen Bonding in Solids," W.A. Benjamin, Inc., New York, 1968.

<sup>33)</sup> L.J. Bellamy, "The Infrared Spectra of Complex Molecules," John Wiley and Sons, New York, 1966.

plane), and 3150 cm<sup>-1</sup> ( $\nu$  N–H), as in the case of cytosinium chloride (Fig. 6, A).<sup>1,34,35)</sup> In contrast, these N(3)-H bands were not observed in the 2:1 cytosine–ZnCl<sub>2</sub> and cytosine–Zn(OH)Cl. The  $\nu$  C–N (internal) band coupled with  $\nu$  C–NH<sub>2</sub> at 1290 cm<sup>-1</sup> in cytosine<sup>19)</sup> was split and shifted to a lower–frequency region in the 2:1 cytosine–ZnCl<sub>2</sub> and cytosine–Zn-(OH)Cl. Since no protonation occurs in the complexes, the lower–frequency shift is caused by complexation.<sup>21)</sup> Therefore, the N(3) site is suggested to be coordinated with zinc in the 2:1 cytosine–ZnCl<sub>2</sub> and cytosine–Zn(OH)Cl, as shown in Fig. 6, B.

$$\begin{array}{c|c} NH_2 & NH_2 \\ N: \to H^+ & N: \to Zn^{2+} \\ N \nearrow O & H & H \\ A & B \\ Fig. 6 \end{array}$$

Table III. Double Bond Stretching Vibrations of Cytosinium Chloride and 2:1 Cytosinium—
ZnCl<sub>4</sub> Complex\* in the 1500—1800 cm<sup>-1</sup>
Region (in EtOD Solution)

| Cytosinium<br>chloride | Tentative assignment | 2:1 CytH–Zn*      |
|------------------------|----------------------|-------------------|
| 1740 s                 | vC=O                 | 1730 s            |
| $1652 \mathrm{s}$      | $\nu C=N+$           | 1650 s            |
| 1584m                  | vC=C+vC=N            | 1580 m            |
| 1550 w                 | vC=C+vC=N            | $1560\mathrm{w}$  |
| 1520 m                 | vC=C+vC=N            | 1518m             |
| $1508\mathrm{sh}$      | vC=C+vC=N            | $1510\mathrm{sh}$ |

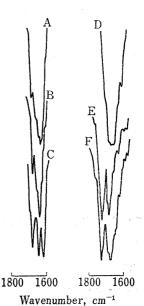



Fig. 7. Infrared Absorption Spectra in the Region of 1600—1800 cm<sup>-1</sup> in KBr Disk

A, 2:1 cytosine-CuCl<sub>2</sub>; B, 2:1 cytosine-ZnCl<sub>2</sub>; C, cytosine-Zn(OH)Cl; D, cytosine monohydrate; E, cytosinium chloride; F, 2:1 cytosinium-ZnCl<sub>4</sub>.

Of the absorption bands in the region of  $1600-1800~\rm cm^{-1}$ , strong ones at 1618, 1636, and  $1681~\rm cm^{-1}$  in the cytosine–Zn(OH)Cl, and at 1613, 1645, and  $1680~\rm cm^{-1}$  in the 2:1 cytosine–ZnCl<sub>2</sub> were assigned to the  $\nu$  C=N<sup>+</sup>, the  $\nu$  C=O, and the  $\delta$  NH<sub>2</sub> scissoring, respectively, since the last band disappeared in EtOD solution (the other bands remained), as in the case of cytosine derivatives. <sup>19,36,37)</sup> The  $\nu$  C=O frequency of the complexes is comparable to that of cytosine but is lower than that of cytosinium chloride. Since  $\nu$  C=O band shifts to a higher–frequency region when the lone–pair electrons at N(3) position in cytosine take part in the binding, <sup>19,37)</sup> the lowering of the band of the 2:1 cytosine–ZnCl<sub>2</sub> (than that of cytosinium chloride) suggests the coordination of zinc with the C(2)=O site of cytosine in the complexes, as in the case of the 2:1 cytosine–CuCl<sub>2</sub><sup>1,30)</sup> (Fig. 7). In the cytosine–Zn-(OH)Cl, however, it is difficult to distinguish the coordination of zinc or hydrogen bonding of C(2)=O with hydroxyl anion.

On the other hand, in the 2:1 cytosinium–ZnCl<sub>4</sub>, the bands at 1676 and 1735 cm<sup>-1</sup> are assigned to the NH<sub>2</sub> acissoring and C(2)=O stretching vibration, respectively, since the former disappeared in EtOD solution. The  $\nu$  C=O frequency of the complex was higher than that of

<sup>34)</sup> E.D. Becker, H.T. Miles, and R.B. Bradley, J. Am. Chem. Soc., 87, 5575 (1965).

<sup>35)</sup> R.R. Shoup, H.T. Miles, and E.D. Becker, J. Am. Chem. Soc., 89, 6200 (1967).

<sup>36)</sup> H.T. Miles, J. Am. Chem. Soc., 79, 2565 (1957).

<sup>37)</sup> H.T. Miles, Proc. Natl. Acad. Sci. U.S.A., 47, 791 (1961).

cytosinium chloride in solid state, while it was lower by  $10 \text{ cm}^{-1}$  than that of the latter in EtOD solution (Table III). As in this case, 4:1 cytosinium—copper complex<sup>1</sup> was lower by  $13 \text{ cm}^{-1}$  in EtOD solution. This fact implies the coordination of zinc with  $C(2) \neq 0$  site of cytosine in the 2:1 cytosinium— $ZnCl_4$ .

Table IV. Proton Field Shifts of Guaninium Chloride, 1:1 Guaninium–ZnCl $_3$ ,\* and 2:1 Guaninium–ZnCl $_4$ \*\* from DSS in 20% DCl+D $_2$ O and TFA

| Solvents                 | Guaninium<br>chlo <del>ri</del> de | 1:1 G-Zn* | 2:1 G-Zn**        |
|--------------------------|------------------------------------|-----------|-------------------|
| 20% DC1+D <sub>2</sub> O | 912 Hz                             | 910 Hz    | 908 Hz            |
| TFA                      | $886~\mathrm{Hz}$                  | 881 Hz    | $878~\mathrm{Hz}$ |

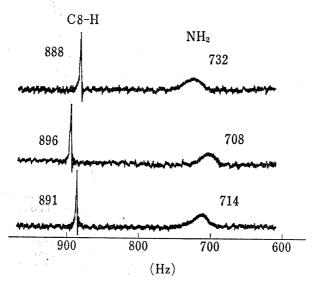



Fig. 8. Proton Magnetic Resonance Spectra in DMSO- $d_6$ 

Upper, guaninium chloride; center, guaninium-ZnCl<sub>3</sub>; lower, 2:1 guaninium-ZnCl<sub>4</sub>.

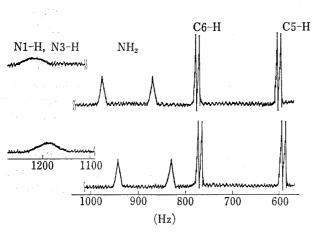



Fig. 10. Proton Magnetic Resonance Spectra in DMSO- $d_6$ 

Upper, cytosinium chloride; lower, 2:1 cytosinium–ZnCl4.

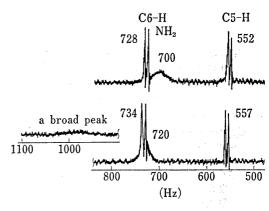



Fig. 9. Proton Magnetic Resonance Spectra in DMSO- $d_6$ 

Upper, cytosine monohydrate; lower, cytosine-Zn(OH)Cl.

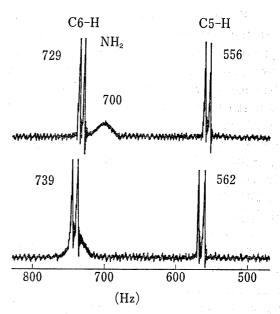



Fig. 11. Proton Magnetic Resonance Spectra in DMSO- $d_6+4\%$  H<sub>2</sub>O

Upper, cytosine monohydrate; lower, 2:1 cytosine-ZnCl<sub>2</sub>.

2950 Vol. 26 (1978)

# **Proton Magnetic Resonance Spectra**

In PMR studies on the nucleosides—diamagnetic metal complexes, Li et al.<sup>38,-40)</sup> found that the addition of ZnCl<sub>2</sub> to nucleosides in DMSO results in a lower–field shift of the proton in the ligand, and determined the binding site of a metal to the ligand from the lower–field shift. In the present work, the binding site of Zn<sup>2+</sup> to guanine or cytosine was examined on the basis of the shift of proton resonance in the new complexes.

Guanine– $\mathbf{Zn^{2+}}$  Complexes—The spectra of guaninium chloride, guaninium– $\mathbf{ZnCl_3}$ , and 2:1 guaninium– $\mathbf{ZnCl_4}$  in DMSO- $d_6$  are given in Fig. 8. Spectra of the complexes showed a lower–field shift of the C(8)–H resonance when compared with that of guaninium chloride (guanine is insoluble in DMSO). The lower–field shift of the C(8)–H resonance suggests the possibility that  $\mathbf{Zn^{2+}}$  is bound to either N(7) or N(9) of the imidazole ring in guanine. In the spectra of complexes in 20% DCl+D<sub>2</sub>O and TFA solutions, the higher–field shift of C(8)–H was observed, as shown in Table IV. The higher–field shift implies the binding of  $\mathbf{ZnCl_4^{2-}}$  or  $\mathbf{ZnCl_3^{-}}$  to the N(7) or N(9) site. This interpretation may be understood by referring to the structure of guaninium– $\mathbf{ZnCl_3^{-13,14}}$ 

Cytosine– $\mathbf{Zn^{2+}}$  Complexes—The spectra of cytosine, cytosinium chloride, cytosine– $\mathbf{Zn-(OH)Cl}$ , and 2:1 cytosinium– $\mathbf{ZnCl_4}$  in DMSO- $d_6$  are given in Figs. 9 and 10, and those of cytosine and 2:1 cytosine– $\mathbf{ZnCl_2}$  in DMSO- $d_6+4\%$ - $\mathbf{H_2O}$  (since the complex is insoluble in DMSO) in Fig. 11. The spectra of 2:1 cytosine– $\mathbf{ZnCl_2}$  and cytosine– $\mathbf{Zn(OH)Cl}$  showed a lower–field shift of C(4)–NH<sub>2</sub>, C(5)–H, and C(6)–H resonances when compared with those of cytosine. Since the binding of a positively charged atom to N(3) site of cytosine ring causes a lower–field shift of the proton resonances,  $^{34,35,38-40)}$  the shift of these resonances suggests the binding of zinc to the N(3) site of cytosine in the complexes.

In PMR study on the cytosine–ZnCl<sub>2</sub> complex, Wang and Li<sup>38,39)</sup> reported that the C(5)–H and C(6)–H are shifted to a lower field by an equal extent in the complex. However, the present data showed that the shift of C(6)–H to a lower field is greater than that of C(5)–H, as in Fig. 11. In cytosinium chloride, in which only the N(3) site is protonated, the shift of C(5)–H to a lower field is greater than that of C(6)–H, when compared with those of cytosine. Therefore, the present data suggest the coordination of zinc with C(2)=O site of cytosine in 2:1 cytosine–ZnCl<sub>2</sub>. This is quite consistent with the interpretation from IR spectral results of the complex.

The spectrum of 2:1 cytosinium– $\operatorname{ZnCl_4}$  showed the geminal amino coupling, like cytosinium chloride, and a higher–field shift of C(4)–NH<sub>2</sub>, C(5)–H, and C(6)–H resonances when compared with those of cytosinium chloride, as shown in Fig. 10. The geminal amino coupling and the N–H resonance indicate that N(3) position of cytosine is protonated in the complex. This fact shows that the N(3) site of cytosine has a stronger affinity for proton than for zinc. The higher–field shift of C(5)–H and C(6)–H was observed in D<sub>2</sub>O, as in DMSO– $d_6$  (in Table V). However, it is difficult to elucidate the binding site of zinc in the complex from only the higher–field shift.

Table V. Proton Field Shifts of Cytosinium Chloride and 2: 1 Cytosinium-ZnCl<sub>4</sub>\* from DSS in D<sub>2</sub>O

| Samples                      | С5-Н              | С6-Н              |
|------------------------------|-------------------|-------------------|
| <br>Cytosinium chloride      | 616 Hz            | 773 Hz            |
| 2:1 CytH–ZnCl <sub>4</sub> * | $605~\mathrm{Hz}$ | $761~\mathrm{Hz}$ |

<sup>38)</sup> S.M. Wang and N.C. Li, J. Am. Chem. Soc., 88, 4592 (1966).

<sup>39)</sup> S.M. Wang and N.C. Li, J. Am. Chem. Soc., 90, 5069 (1968).

<sup>40)</sup> L.S. Kan and N.C. Li., J. Am. Chem. Soc., 92, 281 (1970).

In the spectra of these complexes in TFA, no variation was observed in C(4)–NH<sub>2</sub>, C(5)–H, and C(6)–H resonances, when compared with those of cytosine, indicating decomposition of these complexes in a strong acid.

### Conclusion

In view of these IR and PMR spectral data, it is suggested that the N(3) site of cytosine is coordinated with zinc in 2:1 cytosine–ZnCl<sub>2</sub> and cytosine–Zn(OH)Cl complexes, and that the C(2)=O site is coordinated with zinc in the 2:1 cytosine–ZnCl<sub>2</sub> complex, while the N(3) site of cytosine would be protonated in the 2:1 cytosinium–ZnCl<sub>4</sub>. These results give us an important information that the N(3) site of cytosine is strongly bound to proton rather than to zinc under an acidic condition. In the 2:1 guaninium–ZnCl<sub>4</sub>, it is suggested that zinc is bound to the N(9) site of guanine.

**Acknowledgement** The authors thank Professor Zenzo Tamura, University of Tokyo, and Professor Shin-ichiro Sakai, Chiba University, for valuable discussions. Thanks are due to Misses H. Ohida and K. Nakajima who carried out elemental analyses and PMR measurements.