Chem. Pharm. Bull. 26(10)3240—3241(1978)

UDC 547.854.4.04:546.224.1.04

Oxidative Cyclization of 6-Substituted Amino-5-benzylideneamino-1,3-dimethyluracils to 9-Substituted 8-Aryltheophyllines with Thionyl Chloride

KEITARO SENGA, YUKAKO KANAMORI, and SADAO NISHIGAKI

Pharmaceutical Institute, School of Medicine, Keio University¹⁾

(Received June 3, 1978)

Treatment of 6-substituted amino-5-benzylideneamino-1,3-dimethyluracils with thionyl chloride at 0° for 30 min gave the corresponding 9-substituted 8-aryltheophyllines in 56-98% yields.

Keywords—6-substituted amino-5-benzylideneamino-1,3-dimethyluracils; thionyl chloride; oxidative cyclization; 9-alkyl-8-aryltheophyllines; 8-aryl-9-phenyltheophyllines

Thionyl chloride has recently been shown to be an effective oxidizing agent for the cyclization of 6-amino-5-benzylideneamino-1,3-dimethyluracils to the corresponding 8-aryltheophyllines.²⁾ The present paper describes an extension of this reaction to the preparation of various 9-substituted 8-aryltheophyllines, which are of particular interest as potential inhibitors of 3',5'-cyclic AMP phosphodiesterase.³⁾

Table I. 9-Substituted 8-Aryltheophyllines

	, R1	\mathbb{R}^2	mp (°Č)	Yield (%)	Analysis (%)							TID /N	Juio1)
Compd.a.					Formula	Calcd.			Found			IR (Nujol)	
						c	H	N	ć	H	N	(C	O)
Πa	Me	H	221—222	85	$C_{14}H_{14}N_4O_2$	62.21	5,22	20.73	62:37	5.42	20,55	1650	1700
ШЬ	Me	4-Br	266-268	66	$C_{14}H_{13}BrN_4O_2$	48.13	3,75	16.05	48.10	3.62	16.10	1650	1690
${ m I\hspace{1em}I}{ m c}$	Me	4-C1	227—228	.98	$C_{14}H_{13}ClN_4O_2$	55.16	4.30	18.40	55.34	4.30	18.62	1650	1700
${\mathbb H}{ m d}$	Me	3,4-Cl ₂	242-244	60	$C_{14}H_{12}Cl_2N_4O_2$						16.69	1645	1700
Πe	Me	4-Me	255— 257	56	$C_{15}H_{16}N_4O_2$	63.36	5.67	19.71	63.60	5.67	19,90	1650	1700
Шf	Me	4-OMe	242— 243	80	$C_{15}H_{16}N_4O_3$	59.99	5.37	18.66	60.12	5.31	18,89	1645	1695
${ m I\hspace{1em}I}{ m g}$	Et	H	213215	70	$C_{15}H_{16}N_4O_2$	63.36	5.67	19.71	63.38	5.71	20.01	1650	1695
∐h	Et	4-Br	270-272	66	$C_{15}H_{15}BrN_4O_2$	49.58	4.16	15.43	49.39	4.11	15.49	1645	1695
∏i	Et	4-OMe	231—233	89	$C_{16}H_{18}N_4O_3$	61.13	5.77	17.83	60.84	5.63	17,96	1650	1700
Шj	Ph	H	275276	90	$C_{19}H_{16}N_4O_2$	68.66	4.85	16.86	68.72	4.90	16.75	1655	1700
IIk	Ph	4-Br	>300	97	$\mathrm{C_{19}H_{15}BrN_4O_2}$	55.47	3.68	13.63	55.52	3.63	13,68	1645	1695
II 1	Ph	4-C1	288291	96	$C_{19}H_{15}CIN_4O_2$	62.19	4.12	15.28	62.43	4.00	15.32	1650	1700
${ m I\hspace{1em}I}{ m m}$	Ph	4-Me	>300	98	$C_{20}H_{18}N_4O_2$	69.35	5.24	16.18	69.28	5.15	16.08	1650	1700
\mathbf{IIn}	Ph	4-OMe	258259	97	$C_{20}H_{18}N_4O_3$	66.28	5.01	15.46	66.52	5.01	15,52	1650	1700

a) All compounds were recrystallized from ethanol.

¹⁾ Location: 35, Shinanomachi, Shinjuku-ku, Tokyo 160, Japan.

²⁾ K. Senga, K. Shimizu, and S. Nishigaki, Chem. Pharm. Bull. (Tokyo), 25, 495 (1977).

³⁾ Although a wide variety of the ophylline derivatives have been examined for their ability to inhibit this enzyme, none of the ophyllines possessing a substituent at position 9 have been investigated: M.S. Amer and W.E. Kreighbaum, J. Pharm. Sci., 64, 1 (1975).

Stirring of the appropriate 6-alkylamino-5-benzylideneamino-1,3-dimethyluracils (Ia—i)⁴⁾ with excess thionyl chloride at 0° for 30 min, followed by concentration of the reaction mixture and subsequent trituration of the residue with aqueous ammonia gave the corresponding 9-alkyl-8-aryltheophyllines (IIIa—i)⁴⁾ in 56—98% yields. Analogous treatment of the 6-anilino-5-benzylideneamino-1,3-dimethyluracils (Ij—n)⁴⁾ with thionyl chloride yielded the respective 8-aryl-9-phenyltheophyllines (IIIj—n)⁴⁾ in 90—98% yields (Table I).

As depicted in the Chart 1, the oxidative cyclization of Ia—n to IIIa—n with thionyl chloride presumably proceeds by the initial formation of the N-sulfinyl chloride intermediates (IIa—n) and subsequent elimination of hydrogen chloride and sulfur monoxide. A similar mechanism has been proposed in the reaction of 5-benzylideneamino-1,3-dimethylbarbituric acids with thionyl chloride leading to 2-aryl-5,7-dimethyloxazolo[5,4-d]pyrimidine-4,6(5H, 7H)-diones.⁵⁾ It should be noted that the cyclization of Ia—n to IIIa—n could be achieved under more milder conditions than that of 6-amino-5-benzylideneamino-1,3-dimethyluracils to 8-aryltheophyllines.^{2,6)}

Experimental7)

9-Substituted 8-Aryltheophyllines (IIIa—n). General Procedure——A mixture of the appropriate 6-substituted amino-5-benzylideneamino-1,3-dimethyluracils (Ia—n) 4) (0.0001 mol) and thionyl chloride (2 ml) was stirred at 0° for 30 min. The reaction mixture was concentrated *in vacuo* at room temperature and the residue was triturated with 5% aqueous ammonia (10 ml). The insoluble solid was filtered and recrystallized to give the corresponding pure products IIIa—n, which were identical with the authentic samples. 4)

⁴⁾ F. Yoneda, M. Higuchi, K. Mori, K. Senga, Y. Kanamori, K. Shimizu, and S. Nishigaki, *Chem. Pharm. Bull.* (Tokyo), **26**, 2905 (1978).

⁵⁾ K. Senga, J. Sato, and S. Nishigaki, Chem. Pharm. Bull. (Tokyo), 26, 765 (1978).

⁶⁾ Treatment of 6-amino-5-benzylideneamino-1,3-dimethyluracils with thionyl chloride at 0° for 30 min resulted in the quantitative recovery of the starting materials.

⁷⁾ Melting points were taken on a Yanagimoto micro-melting point apparatus and are uncorrected. Identity of compounds was confirmed by comparison of infrared spectra (Nujol mulls) with a Japan Spectroscopic Co. Ltd., Model IR-E spectrophotometer.