Chem. Pharm. Bull. 26(2) 481—483 (1978) UDC 547.592.3.04:547.833.9.04 ## Studies on the Syntheses of Spiro-dienone Compounds. VI.¹⁾ A New Synthesis of *dl*-Pronuciferine.²⁾ ZEN-ICHI HORII, CHUZO IWATA, and YOSHIHIKO NAKASHITA Faculty of Pharmaceutical Sciences, Osaka University3) (Received June 23, 1977) dl-Pronuciferine has been synthesized via photochemical cyclization of 8-bromo-1,2,3,4-tetrahydro-6,7-dimethoxy-1-(4-hydroxybenzyl)-2-methylisoquinoline. **Keywords**—proaporphine alkaloids; *dl*-pronuciferine; photochemical cyclization; spiro-dienone; a new synthesis In our previous papers, $^{4,5)}$ it was reported that the photolysis of 2-bromo-N-ethyl-4'-hydroxybenzanilide (I) in aqueous sodium hydroxide gave 2'-ethylspiro[cyclohexa-2,5-diene-1,1'-isoindoline]-3',4-dione (II) directly and that the photolysis of I in the presence of sodium borohydride gave 2'-ethyl-4-hydroxyspiro[cyclohexa-2,5-diene-1,1'-isoindolin]-3'-one (III), which was oxidized with manganese dioxide in chloroform to give the desired spiro-dienone (II) in high yield. Now we extend this photochemical cyclization reaction to the synthesis of proaporphine alkaloids, containing the spiro-dienone system. The present paper deals with a new synthesis of dl-pronuciferine (IX), one of proaporphine alkaloids, via photochemical cyclization. 8-Bromo-1,2,3,4-tetrahydro-1-(4-hydroxybenzyl)-2-methyl-6,7-d imethoxyisoquinoline (VII) was prepared as follows. Fusion of 3-bromo-4,5-dimethoxyphenethylamine⁷⁾ with methyl p-hydroxyphenylacetate⁸⁾ in the presence of pyridine at 180° for 3 hr gave the amide (IV) in 70% yield. The amide (IV) was converted into the ester (V) by condensation with ethyl chloroformate in pyridine in 90% yield. Bishler-Napieralski reaction of V with a mixture of phosphorous oxychloride and phosphorous pentoxide in benzene, followed by reduction with sodium borohydride in methanol, gave the crude tetrahydroisoquinoline (VI). Treatment of VI with 37% formaline solution, followed by reduction with sodium borohydride, gave the desired starting material (VII)⁹⁾ in 70% yield from V. Irradiation of the N-methyltetrahydroisoquinoline (VII) in aqueous sodium hydroxide in the presence of sodium borohydride with a 100 W high pressure mercury lamp untill the starting material was not recognized on the thin-layer chromatography (TLC) (ca. 2 hr) gave the crude spiro-dienol (VIII) in 40% yield. The oxidation of VIII with manganese dioxide in chloroform for 15 hr at room temperature gave dl-pronuciferine (IX) in 20% yield from VII. The infrared (IR) spectrum shows the presence of a typical dienone system (1660 and ¹⁾ Z. Horii, S. Uchida, Y. Nakashita, E. Tsuchida, and C. Iwata, Chem. Pharm. Bull. (Tokyo), 22, 583 (1974). ²⁾ Preliminary communication, Z. Horii, Y. Nakashita, and C. Iwata, Tetrahedron Lett., 1971, 1167. ³⁾ Location: 133-1, Yamadakami, Suita, Osaka. ⁴⁾ Z. Horii, C. Iwata, S. Wakawa, and Y. Nakashita, Chem. Commun., 1970, 1039. ⁵⁾ Z. Horii, Y. Nakashita, K. Kunisawa, and C. Iwata, Chem. Pharm. Bull. (Tokyo), 21, 2679 (1973). ⁶⁾ T. Kametani and H. Yagi, J. Chem. Soc. (C), 1967, 2182; K. Bernauer, Helv. Chim. Acta, 51, 1119 (1968); S. Ishiwata and K. Itakura, Chem. Pharm. Bull. (Tokyo), 18, 416 (1970). ⁷⁾ K. Bessho, Chem. Pharm. Bull. (Tokyo), 11, 1500 (1963). ⁸⁾ H. Salkowski, Ber., 22, 2137 (1889). ⁹⁾ The structure of VII was confirmed by the following data: Catalytic hydrogenation of VII with Raney Ni in potassium hydroxide-methanol gave 1,2,3,4-tetrahydro-6,7-dimethoxy-1-(4-hydroxybenzyl)-2-methylisoquinoline whose NMR spectrum showed a band at δ 5.97 (singlet) due to a C₈-H. 1620 cm⁻¹). The ultraviolet (UV) spectrum shows two absorption bands at 230 and 280 nm due to a dienone system. This product (IX) was identical with the natural product. OH O $$CH_3O$$ NH $i)$ POCl₃-P₂O₅ CH_3O NR $iii)$ HCHO $iv)$ NaBH₄ ## Experimental All melting points are uncorrected. Spectra were recorded as follows: nuclear magnetic resonance (NMR) on a Hitachi R-20 (60 MHz) spectrometer, using tetramethylsilane as the internal reference; IR on a Hitachi EPI-G3 spectrometer; UV on a Hitachi 124 spectrometer; mass on a Hitachi RMU-60 spectrometer. Eikosha PIH-100 from Eikosha Co., Osaka, was used as light source for the photoreaction. N-(3-Bromo-4,5-dimethoxyphenethyl)-2-(4-hydroxyphenyl)acetamide (IV)—A mixture of 4.0 g of 3-bromo-4,5-dimethoxyphenethylamine, 6.0 g of methyl p-hydroxyphenylacetate and 0.5 g of pyridine was heated for 3 hr at 180°. The mixture was diluted with CHCl₃ and the solution was washed with 3% HCl, saturated brine, dried over anhydrous Na₂SO₄ and evaporated. The crude product was purified by chromatography on silica gel (Mallinckrodt) with CHCl₃. Recrystallization of the product from acetone-ether gave 7.0 g (70%) of IV as colorless crystals, mp 123—124°. IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 3600 (OH), 3400 (NH), 1650 (CONH). Anal. Calcd. for C₁₈H₂₀BrNO₄: C, 54.83; H, 5.11; N, 3.53. Found: C, 54.57; H, 5.04; N, 3.44. N-(3-Bromo-4,5-dimethoxyphenethyl)-2-(4-ethoxycarbonylphenyl)acetamide (V)—To an ice- H_2O cooling solution of 1.0 g of IV in 5.0 ml of pyridine was added 1.5 ml of ethyl chloroformate with stirring and the mixture was warmed at 60° for 2 hr. After cooling, the mixture was diluted with CHCl₃ and the solution was washed with 3% HCl, saturated brine and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave a colorless solid, which was recrystallized from ether to yield 1.0 g (90%) of V as colorless crystals, mp 93—94°. IR $v_{max}^{\text{CHCl}_3}$ cm⁻¹: 3400 (NH), 1750 (CO), 1655 (CONH). Anal. Calcd. for $C_{21}H_{24}$ BrNO₆: C, 54.08; H, 5.18; N, 3.00. Found: C, 54.27; H, 5.27; N, 2.87. 8-Bromo-1,2,3,4-tetrahydro-6,7-dimethoxy-1-(4-hydroxybenzyl)-2-methylisoquinoline (VII)——A mixture of 1.0 g of V, 5.0 g of phosphorous pentoxide, 10 ml of phosphorous oxychloride and 25 ml of benzene was refluxed for 3 hr. After the solvent was decanted, the residue was washed with benzene and poured into ice- H_2O gradually. The resulting mixture was basified with dil. NH_4OH and extracted with $CHCl_3$. The $CHCl_3$ extract was washed with saturated brine and dried over anhydrous Na_2SO_4 . After the solvent was evaporated under reduced pressure, the residue [1.0 g, $IR_{p_{max}}^{CICl_3}$ cm⁻¹: 1750 (CO), 1670 (C=N)] was dissolved in 50 ml of MeOH. To this stirred solution was added 2.5 g of sodium borohydride in small portions under ice- H_2O cooling. The reaction mixture was stirred for 3 hr at room temperature, poured into 120 ml of ether and extracted with 3% HCl. The HCl extract was basified with dil. NH_4OH and extracted with $CHCl_3$. The $CHCl_3$ extract was washed with saturated brine, dried over anhydrous Na_2SO_4 and evaporated to give 750 mg of VI. This crude (VI) was dissolved in a solution of 2.0 ml of formaline and 20 ml of MeOH and allowed to stand overnight. To this stirred mixture was added 3.0 g of sodium borohydride in small portions under ice- $\rm H_2O$ cooling and the mixture was stirred for 1.5 hr at room temperature. After the mixture was acidified with AcOH, then basified with dil. NH₄OH, the solution was extracted with CHCl₃. The CHCl₃ extract was washed with saturated brine, dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to give 750 mg of crude product (VII). Chromatography of the crude VII on silica gel (Mallinckrodt) with CHCl₃ gave 570 mg (70%) of VII as colorless crystals, mp 169—170° (from acetone-ether). MS m/e: 393, 391 (M+). IR $v_{\rm max}^{\rm OHCl_3}$ cm⁻¹: 3600, 3350 (OH). NMR (CDCl₃) δ : 2.38 (3H, s, NCH₃), 3.85 (6H, s, 2 × OCH₃), 5.41 (1H, s, C₅-H), 6.30—7.25 (4H, AA'BB' type, p-hydroxyphenyl). Anal. Calcd. for C₁₉H₂₂BrNO₃: C, 58.17; H, 5.65; N, 3.57. Found: C, 58.32; H, 5.80; N, 3.53. dl-Pronuciferine (IX)——A water cooled mixture of 300 mg of VII, 100 mg of NaOH, 100 mg of sodium borohydride and 100 ml of H₂O was irradiated for 2 hr. The reaction mixture was acidified with AcOH, then basified with dil. NH₄OH, and extracted with CHCl₃. The CHCl₃ extract was washed with saturated brine, dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to give 264 mg of crude product (VIII). Chromatography of the crude VIII on silica gel (Mallinckrodt) with CHCl₃ gave 100 mg (40%) of VIII as brown solid, that darkened in an air atmosphere. MS m/e: 315 (M⁺). IR $v_{max}^{\text{cHCl}_3}$ cm⁻¹: 3400 (OH). This product was used in the next step without further purification. A mixture of 100 mg of VIII, 2.0 g of manganese dioxide and 10 ml of CHCl₃ was stirred for 10 hr at room temperature. The reaction mixture was filtered and the residue was washed with CHCl₃ repeatedly. The filtrate and washings were combined and condenced under reduced pressure. The residue was purified by preparative TLC on silica gel (Merck, GF₂₅₄) with CHCl₃ to give 48 mg (20% yield from VII) of dl-pronuciferine as a colorless oil. MS m/e: 313 (M⁺), 282, 268. IR $v_{max}^{\text{cHCl}_3}$ cm⁻¹: 1660 (CO), 1620 (C=C). UV $\lambda_{max}^{\text{EIOH}}$ nm (log ε): 230 (4.35), 280 (3.73). NMR (CDCl₃) δ : 2.44 (3H, s, NCH₃), 3.59 and 3.80 (6H, s, 2 × OCH₃), 6.20—6.45 and 6.80—6.90 (4H, AA'BB' type, dienone), 6.67 (1H, s, C₃-H). The picrolonate of IX was recrystallized from acetone—ether to give yellow crystals, mp 224—225° (dec.). Anal. Calcd. for C₂₉H₂₉N₅O₈: C, 60.51; H, 5.08; Found: C, 60.04; H, 5.03. **Acknowledgement** We thank Professor J. Kunimoto of Mukogawa Women's University and Dr. M. Kozuka of Kyoto College of Pharmacy for providing the IR and NMR spectral data of natural pronuciferine respectively.