Chem. Pharm. Bull. 26(3) 985—988 (1978)

UDC 547.857.7.04:547.963.32.04

Studies of Nucleosides and Nucleotides. LXXX.¹⁾ Purine Cyclonucleosides. (38). Synthesis of 6-Substituted Purine 2'-Azido- and 2'-Amino-2'-deoxyribofuranosides

Morio Ikehara and Yoko Takatsuka

Faculty of Pharmaceutical Sciences, Osaka University²⁾

(Received July 18, 1977)

Starting from 2'-azido-2'-deoxyadenosine (1), sugar-acetylated 6-chloro compound (5) was synthesized by successive deamination, acetylation and chlorination. Using the compound 5 as intermediate 6-monomethylamino-, dimethylamino-, mercapto- and methylthio 2'-azido nucleosides (6, 8, 11 and 12) were obtained. Palladium-catalyzed hydrogenation of compound 6 and 8 afforded 2'-amino nucleosides (7 and 9) respectively.

Keywords—nitrite deamination; Vilsmeier reagent; UV; IR; paper chromatography; TLC

Recently, we have developed^{3,4)} a method for synthesizing 2'-azido-2'-deoxyadenosine (1) starting from the naturally occurring adenosine via 8,2'-O-cyclonucleoside⁵⁾ as an intermediate. Since this method is suitable for the large scale synthesis, we utilize the compound 1 as a starting material for the synthesis of various purine nucleosides having Cl, SH, SMe, NHMe, and N(Me)₂ groups at 6-position. Ribonucleosides having these substituents at 6-position of purine residues have been proved to be active as antimetabolites.⁶⁾ Recent finding⁷⁾ that an antibiotic 2'-deoxy-2'-aminoguanosine also have antibacterial and anticancer activities prompted us to investigate the synthesis of compounds mentioned above.

2'-Azido-2'-deoxyadenosine (1) was deaminated first with sodium nitrite in acetic acid to obtain 6-oxy compound, 2'-azido-2'-deoxy-inosine (2). The yield was variable between 60—77% in several runs. The compound 2 was characterized by comparison with an authentic sample synthesized from 8,2'-O-cyclonucleoside by the attack of azide anion followed by the elimination of 8-oxy group.^{8,9)} Palladium catalyzed hydrogenolysis of the compound 2 gave 2'-amino-2'-deoxyinosine (3) as a form of syrup. Presence of the amino group was indicated by a positive ninhydrin test. In order to obtain crystalline compound, the compound 3 was derivatized to a hydrochloride which was obtained in a yield of 89% calculated from the compound 2. Ultraviolet (UV) absorption properties and elemental analytical value supported the structure to be correct.

2'-Azido-2'-deoxyinosine (2) was then protected with acetyl groups at 3'- and 5'-hydroxyls by the treatment with acetic anhydride in pyridine. Crystalline 3',5'-di-O-acetyl-2'-azido-2'-deoxyinosine (4) thus obtained, was subjected to chlorination using thionyl chloride and DMF¹⁰) as described previously for the chlorination of inosine derivatives. ^{11,12}) 6-Chloro-

¹⁾ Part LXXIX of this series: M. Ikehara and T. Maruyama, Chem. Pharm. Bull. (Tokyo), 26, 240 (1978).

²⁾ Location: 133-1 Yamadakami, Suita, 565, Japan.

³⁾ M. Ikehara, T. Maruyama, and H. Miki, Tetrahedron Lett., 1976, 4485.

⁴⁾ M. Ikehara, T. Maruyama, and H. Miki, submitted for publication.

⁵⁾ M. Ikehara, Accounts Chem. Res., 2, 47 (1969), and subsequent papers.

⁶⁾ See for instance, P. Langer, "Antimetabolites of Nucleic Acid Metabolism," Gordon and Breach, New York, 1974.

⁷⁾ T. Nakanishi, F. Tomita, and T. Suzuki, Agv. Biol. Chem., 38, 2465 (1974).

⁸⁾ M. Ikehara and T. Maruyama, Chem. Pharm. Bull. (Tokyo), 24, 565 (1976).

⁹⁾ M. Ikehara, T. Maruyama, H. Miki, and Y. Takatsuka, Chem. Pharm. Bull. (Tokyo), 25, 754 (1977).

¹⁰⁾ A. Vilsmeier and E. Haack, Ber., 60B, 119 (1927).

¹¹⁾ M. Ikehara, H. Uno, and F. Ishikawa, Chem. Pharm. Bull. (Tokyo), 12, 267 (1964).

¹²⁾ M. Ikehara and H. Uno, Chem. Pharm. Bull. (Tokyo), 13, 221 (1965).

9-(3',5'-di-O-acetyl-2'-azido-2'-deoxy- β -p-ribofuranosyl)purine (5) was isolated and characterized by its UV absorption spectra, which were closely resembled to those of 6-chloropurine riboside. The structure was further supported by the fact that the compound (5) gave 2'-azido-2'-deoxyadenosine (1) by the treatment with methanolic ammonia at 100° for 4 hr.

The 6-chloro compound **5** was then allowed to react with aqueous dimethylamine at 100° for 2 hr. N⁶-Dimethyl-2'-azido-2'-deoxyadenosine (**6**) was obtained as a glass showing UV absorption similar to that of N⁶-dimethyl-adenosine¹⁴) and infrared (IR) absorption band at 2100 cm^{-1} , which was assigned to the azido group. When the compound (**6**) was hydrogenolyzed with palladium charcoal as catalyst, N⁶-dimethyl-2'-amino-2'-deoxyadenosine (**7**) was obtained again as a hard syrup. Derivatization to a hydrochloride failed to give a crystalline compound, but its UV absorption having $\lambda_{\text{max}}^{\text{Ho}}$ at 274.5 nm and positive ninhydrin spray test suggested the correct structure for the compound **7**. Comparison of this sample with a sample synthesized *via* another route⁹ showed the same Rf values in paper chromatography in two solvent system. The chloro compound **5** was next allowed to react with aqueous monomethylamine at 100° for 3 hr. N⁶-Methyl-2'-azido-2'-deoxyadenosine (**8**) obtained as a syrup was hydrogenated over palladium catalyst to give N⁶-methyl-2'-amino-2'-deoxyadenosine (**9**), which was obtained as dihydrochloride of mp $202-204^{\circ}$ in a yield of 52%. Elemental analysis and UV absorption properties resembled to those of N⁶-methyladenosine¹² and positive ninhydrin spray test confirmed the structure.

¹³⁾ G.B. Brown and V.S. Weliky, J. Biol. Chem., 204, 1019 (1953).

¹⁴⁾ J.M. Andrews and W.E. Barker, J. Chem. Soc., 1958, 2768.

In order to obtain analogs of 6-thioinosine, the compound 5 was treated with thiourea in refluxing n-propyl alcohol. Three hrs' reaction gave 6-mercapto-9-(3',5'-di-O-acetyl-2'-azido-2'-deoxy- β -D-ribofuranosyl)purine (10) in a yield of 46%. Elemental analysis gave the correct value and UV absorption properties resembling those of 6-mercaptopurine riboside¹⁵) proved the structure of 10. For deprotection the compound 10 was treated with methanolic ammonia to give 6-mercapto-9-(2'-azido-2'-deoxy- β -D-ribofuranosyl)purine (11) in a yield of 65%. Elemental analysis and UV absorption showed the structure be correct.

The compound 5 was finally allowed to react with sodium methylmercaptide in dioxane-water mixture at room temperature for 12 hr. 6-Methylthio-(2'-azido-2'-deoxy-p-ribofurans-yl)purine (12) was obtained in a yield of 58%. The structure of the compound 12 was supported by its IR absorption band at 2110 cm⁻¹ and UV absorption spectra resembled to those of 6-methylthiopurine riboside.¹⁵⁾ Biological properties of the compounds synthesized as above will be reported in subsequent papers.

Experimental¹⁶⁾

2'-Azido-2'-Jeoxyinosine (2)——2'-Azido-2'-deoxyadenosine (1) (94.5 mg, 0.32 mmol) was dissolved in 80% AcOH (10 ml) and NaNO₂ (235 mg, 10 equiv) was added. The mixture was kept at 37° for 12 hr. After checking the reaction extent by TLC (CHCl₃-EtOH, 5: 1), the solvent was evaporated in vacuo. After trace of AcOH was totally removed by coevaporation with H_2O , the residue was dissolved in pyridine and evaporated in vacuo. Recrystallization of the residue from EtOH gave 2 as amorphous powder in a yield of 77%. UV $\lambda_{\max}^{19.0}$ 248 nm, $\lambda_{\max}^{\text{pH} 12}$ 254. PPC: Rf(A) 0.35, Rf(B) 0.64.

2'-Amino-2'-deoxyinosine (3)—2'-Azido-2'-deoxyinosine (2) (146 mg, 0.5 mmol) was dissolved in H_2O (23 ml) and AcOH (5 ml). To the solution H_2 -gas was absorbed for the 1 hr with stirring in the presence of 10% Pd-charcoal (50 mg). The catalyst was removed by filtration and washed with H_2O . The filtrate and washings were combined and evaporated in vacuo. The residual syrup was dissolved in H_2O (1 ml) and 1 n HCl (1 ml) was added. Evaporation and recrystallization of the residue from EtOH gave 3, mp 180—185°, in a yield of 185 mg (87%). Anal. Calcd. for $C_{10}H_{13}N_5O_4 \cdot HCl \cdot 1/2H_2O$: C, 38.40; H, 4.84; N, 22.40; Cl, 11.34. Found: C, 38.15; H, 4.74; N, 22.05; Cl, 12.20. UV: $\lambda_{max}^{H_1O}$ 248.5 nm (ε 11100) $\lambda_{max}^{O.1NHCl}$ 249 (11700) $\lambda_{max}^{O.1NNSOH}$ 254 (12300). PPC: Rf(A) 0.05, Rf(B) 0.67, Rf(C) 0.17.

3',5'-Di-O-acetyl-2'-azido-2'-deoxyinosine (4)——2'-Azido-2'-deoxyinosine (2) (146 mg, 0.5 mmol) was dissolved in pyridine (2 ml) and Ac_2O (1 ml) was added to the solution. The reaction mixture was kept at room temperature for 1 hr. The solvent was evaporated in vacuo and trace of AcOH was removed by evaporation with H_2O several times. The residue was recrystallized from EtOH to give 4, mp 180—181°, in a yield of 110 mg (59%). Anal. Calcd. for $C_{14}H_{15}N_7O_6$: C, 44.56; H, 4.01; N, 25.99. Found: C, 44.56; H, 3.82; N, 25.81. UV: λ_{\max}^{308} 248 nm. IR: ν_{\max}^{EEO} 2125 cm⁻¹ (N3). The sample was identical with that synthesized previously⁸⁾ by criteria of Rf 0.42 in TLC (CHCl₈-EtOH, 7: 1).

6-Chloro-9-(3',5'-di-O-acetyl-2'-azido-2'-deoxy-β-p-ribofuranosyl)purine (5)——Thionyl chloride (0.2 ml) was dissolved in anhydrous CHCl₃ (6 ml). Anhydrous DMF (0.1 ml) was added to the CHCl₃ solution and the mixture was kept at room temperature for 10 min. To the mixture 3',5'-di-O-acetyl-2'-azido-2'-deoxyinosine (4) (95 mg, 0.25 mmol) was added. The reaction mixture was heated at refluxing temperature for 3 hr under exclusion of moisture. After checking the reaction extent by TLC, CHCl₃ was evaporated *in vacuo*. The residue was poured into ice-water (30 ml) with stirring. The nucleoside was extracted with CHCl₃ (30 ml), washed with NaHCO₃ aq. and H₂O, and dried over MgSO₄. Evaporation of the solvent gave 5 as a hard syrup. UV: λ_{max}^{50,810,010} 251 (shoulder) 257, 262.5 nm; λ_{max}^{pH 2} 250 (sh), 256, 262; λ_{max}^{pH 12} 251 (sh), 257, 262.5 TLC (CHCl₃-EtOH, 15: 1): Rf 0.60.

2'-Azido-2'-deoxyadenosine (1)——3',5'-Di-O-acetyl-2'-azido-6-chloro compound (5) (obtained from 0.25 mmol of 4) was sealed in a steel tube with methanolic ammonia (saturated at 0° , 5 ml). The tube was heated at 100° for 4 hr. The reaction mixture was evaporated *in vacuo* to a syrupy residue, which was crystallized from H_2O to give 2'-azido-2'-deoxyadenosine, mp 208— 210° , in a yield of 39.2 mg (54%). This sample was identical with an authentic 2'-azido-2'-deoxyadenosine30 by criteria of mixed mp test, UV absorp-

¹⁵⁾ J.J. Fox, I. Wempen, A. Hampton, and I.L. Doerr, J. Am. Chem. Soc., 80, 1969 (1958).

¹⁶⁾ UV absorption spectra were taken with Hitachi EPS-3T and 124 spectrophotometer. IR spectra were taken with a Hitachi EPL-L spectrophotometer. NMR spectra were taken with a Hitachi R-22 spectrometer operated at 90 MHz using tetramethylsilane as internal standard. Paper chromatography was performed on Toyo Roshi filter paper No. 51A in solvent systems: A, n-BuOH-H₂O (84: 16); B, isoPrOH-conc. NH₄OH-H₂O, (7: 1: 2); C, n-BuOH-AcOH-H₂O (5: 2: 3). TLC was performed in Kieselgel HF-254 plates.

tion properties ($\lambda_{\max}^{\text{H}_2\text{O}}$ 257 nm, $\lambda_{\max}^{\text{pH}_2}$ 257, $\lambda_{\max}^{\text{pH}_1}$ 259) and Rf's in paper chromatography: Rf(A) 0.20, Rf(B) 0.40. N°-Dimethyl-2'-azido-2'-deoxyadenosine (6)——The compound 5 (obtained from 0.6 mmol of 4) was sealed in a steel tube with 40% aqueous dimethylamine (20 ml) and heated at 100° for 2 hr. The solvent was evaporated in vacuo and a syrupy residue was obtained in a yield of ca. 60% estimated by optical density. UV: $\lambda_{\max}^{50\% \text{EtoH}}$ 275 nm, $\lambda_{\max}^{\text{pH}_2}$ 268.5; $\lambda_{\max}^{\text{pH}_{12}}$ 273.5. IR: $\nu_{\max}^{\text{CHCl}_3}$ 2100 cm⁻¹ (N₃). TLC (CHCl₃-EtOH, 7: 1): Rf 0.59.

N⁶-Dimethyl-2'-amino-2'-deoxyadenosine (7)—N⁶-Dimethyl-2'-azido compound (6) (obtained as above from 0.6 mmol of 4) was dissolved in a mixture of H_2O (23 ml) and AcOH (5 ml). Palladium charcoal (20%, 80 mg) was added to the solution and H_2 -gas was absorbed with stirring for 2 hr. The catalyst was filtered off, washed with H_2O , the filtrate and washings were combined and evaporated in vacuo. A glass was obtained in a yield of 240 mg (ca. 50%). UV: $\lambda_{\max}^{H_2O}$ 274.5 nm, $\lambda_{\max}^{PH_2O}$ 266.5, $\lambda_{\max}^{PH_2O}$ 274.5. PPC: Rf(B) 0.71, Rf(C) 0.66. TLC (CHCl₃-EtOH, 3: 1) Rf 0.18. These values were similar to those reported previously.⁸)

N°-Methyl-2'-azido-2'-deoxyadenosine (8)—Diacetyl-6-chloro compound (5) (prepared from 0.6 mmol of 4) was sealed in a steel tube with 30% monomethylamine aq (20 ml). The tube was heated at 100° for 3 hr. The solvent was evaporated in vacuo to give a syrup. Yield was 48% estimated by optical density. UV: $\lambda_{\max}^{50\%\,\text{FtoH}}$ 266.5 nm, $\lambda_{\max}^{\text{pH}\,2}$ 263, $\lambda_{\max}^{\text{pH}\,12}$ 266. IR: $r_{\max}^{\text{CHCl}_3}$ 2110 cm⁻¹ (N₃). TLC (CHCl₃-EtOH, 5:1): Rf 0.59.

N⁶-Methyl-2'-amino-2'-deoxyadenosine (9) (Hydrochloride)—The compound 8 (obtained as above from 0.6 mmol of 4) was dissolved in a mixture of H_2O (23 ml) and AcOH (5 ml). To the solution 20% Pd-C (50 mg) was added and H_2 -gas was absorbed for 1 hr with stirring. The catalyst was removed by filtration and washed with hot H_2O . The filtrate and washings were combined and evaporated to a residue. The residue was taken up in a small amount of H_2O and 1 N HCl (2 ml) was added. The solution was evaporated and the residue was crystallized from EtOH. The compound 9 (HCl salt), mp 202—204°, was obtained in a yield of 110 mg (52%). Anal. Calcd. for $C_{11}H_{16}N_6O_3 \cdot 2HCl \cdot H_2O$: C, 35.59; H, 5.43; N, 22.64; Cl, 19.10. Found: C, 35.16; H, 4.96; N, 22.55, Cl, 19.95. UV $\lambda_{max}^{H_2O}$ 266 (ε 16300), $\lambda_{max}^{pH_2}$ 262 (18000), $\lambda_{max}^{PH_{12}}$ 266 (16400). PPC: Rf(A) 0.18, Rf(B) 0.84, Rf(C) 0.43. TLC (CHCl₃-EtOH, 3:1): Rf 0.14.

6-Mercapto-9-(3',5'-di-O-acetyl-2'-azido-2'-deoxy-β-p-ribofuranosyl)purine (10)—The compound 5 (obtained from 0.5 mmol of 4) was dissolved in n-PrOH (10 ml) and thiourea (190 mg, 5 equiv) was added. The reaction mixture was heated at refluxing temperature for 30 min. The solvent was evaporated in vacuo and the residue was extracted with CHCl₃. The CHCl₃ solution was dried over MgSO₄ and evaporated to give a residue, which was recrystallized from AcOEt. The compound 10, mp 150—155°, was obtained in a yield of 100 mg (46%). Anal. Calcd. for $C_{14}H_{15}N_7O_5S$: C, 42.74; H, 3.84; N, 24.93, S, 8.15. Found: C, 42.46; H, 3.68; N, 24.74; S, 8.15. UV: $\lambda_{\text{max}}^{\text{505}\,\text{EtOH}}$ 323.5 nm, $\lambda_{\text{max}}^{\text{pH2}}$ 323, $\lambda_{\text{max}}^{\text{pH2}}$ 315. IR: $\nu_{\text{max}}^{\text{cHCl}_3}$ 2110 cm⁻¹. TLC (CHCl₃-EtOH, 15: 1): Rf 0.45.

6-Mercapto-9-β-(2'-azido-2'-deoxy-n-ribofuranosyl)purine (11)—The compound 10 (80 mg) was dissolved in methanolic ammonia (saturated at 0°, 10 ml) and kept at room temperature for 12 hr. The solvent was removed *in vacuo* and the residue was recrystallized from H₂O containing a small amount of Na₂S₂O₃.¹⁷ The sample colorized at 190° and melted at 212—214°. *Anal.* Calcd. for C₁₀H₁₁N₇O₃S·1/2H₂O: C, 37.73; H, 3.80; N, 30.80; S, 10.07. Found: C, 37.53; H, 3.33; N, 30.78; S, 10.18. UV $\lambda_{\max}^{50\% EEOH}$ 323.5 nm (ε 23000), $\lambda_{\max}^{pH 2}$ 324 nm (23000), $\lambda_{\max}^{pH 12}$ 315 nm (22800). IR: ν_{\max}^{KBF} 2110 cm⁻¹ (N₃). PPC: Rf(A) 0.92, Rf(B) 0.84, Rf(C) 0.89. TLC (CHCl₃-EtOH, 10: 1): Rf 0.10.

6-Methylthio-9-β-(2'-azido-2'-deoxy-p-ribofuranosyl)purine (12)—The compound 5 (obtained from 0.5 mmol of 4) was dissolved in dioxane (20 ml) and 20% NaSCH₃ aq. (1.5 ml) was added. The reaction mixture was kept at room temperature for 12 hr. After the H₂O-layer was removed by suction with a pipett, the dioxane-layer was neutralized with 1 n HCl (5 ml). The solvent was evaporated *in vacuo*, the residue coevaporated with H₂O, and extracted with a mixture of *n*-BuOH (30 ml) and H₂O (30 ml). From the BuOH solution the compound 12 was obtained as a hard syrup in a yield of 58%. UV: $\lambda_{\max}^{100 \, \text{Spicot}} 287$, 292 nm, $\lambda_{\max}^{\text{PH} \, 2} 287$, 292; $\lambda_{\max}^{\text{PH} \, 12} 287$, 292. IR: $\nu_{\max}^{\text{CECl}_3} 2110 \, \text{cm}^{-1}$ (N₃). PPC: Rf(A) 0.93, Rf(B) 0.94, Rf(C) 0.92. TLC (CHCl₃-EtOH, 15: 1): Rf 0.35.

Acknowledgement Authors wish to thank for a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

¹⁷⁾ M. Ikehara and M. Muraoka, Chem. Pharm. Bull. (Tokyo), 20, 550 (1972).