Communications to the Editor

Chem. Pharm. Bull. 26(7)2275—2277(1978)

UDC 547.587.11'546.733.08:543.422.25.26

β_1 and β_2 -Isomers of Salicylato(triethylenetetramine)cobalt(III) Complex

 β_1 - and β_2 -isomers of salicylato(triethylenetetramine)cobalt(III) chloride monohydrate have been isolated and characterized by analytical and spectroscopic methods.

The ¹³C-NMR spectra of those complexes have shown two different configurations $(\beta_1 \text{ and } \beta_2)$ of the complex.

Keywords—salicylic acid; β_1 and β_2 -isomers; triethylenetetramine; cobalt complex; $^1\text{H-NMR}$; $^{13}\text{C-NMR}$

Although studies on the stereochemistry of [Co(trien)(amino-acidato)]²⁺ complex (trien=triethylenetetramine, amino-acidato=glycinato, sarcosinato…) were reported by some authors,^{1,2)} no report has appeared on the configuration of cobalt(trien) complex which is chelated by two oxygen atoms such as salicylic acid as far as the present authors know.

The β -salicylato(triethylenetetramine)cobalt(III) chloride monohydrate has been obtained from salicylic acid and β -[Co(trien)Cl₂]Cl by Morgan's method³⁾ at pH 8—9. Attempts to obtain α -form using α -[Co(trien)Cl₂]Cl invariably resulted in the isolation of mixture of β_1 and β_2 forms. The α -form can be thermodynamically unstable⁴⁾ at pH 7—8. The separation of its two isomers β_1 and β_2 was attempted by using ion exchange resin.^{1,2)} On elution with a 0.3 m NaCl solution, the band of the complex split into two. The solution of the first band (1a) and of the second band (1b) were concentrated in a rotary evaporator and NaCl was removed by filtration. Complexes 1a and 1b were recrystallized from water, respectively. Anal. Calcd. for C₁₃H₂₄ClCoN₄O₄: C, 39.56; H, 6.13; Cl, 8.98; N, 14.19. Found 1a: C, 39.47; H, 6.07; Cl, 8.76; N, 14.45. 1b: C, 39.68; H, 6.14; Cl, 9.00; N, 14.39.

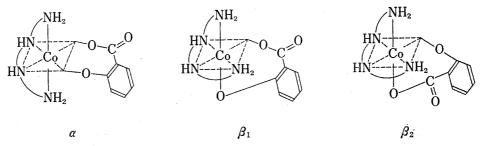


Fig. 1. The α , β_1 and β_2 Configuration of Complex 1

Buckingham et al. who studied the IR-spectra of β_1 , β_2 and α -[Co(trien)gly]^{2+ 2,4)} reported that the IR-spectra of β -(trien)cobalt(III) complexes showed at least four strong absorption bands and those of α -(trien)cobalt(III) complexes showed two strong absorption bands in the 990—1100 cm⁻¹ region. The IR-spectra of complexes 1a and 1b have four strong peaks in this region. The spectrum of 1a and that of 1b in this region are close to that of β_1 -[Co-(trien) gly]²⁺ and to those of β_2 -[Co(trien)gly]²⁺, β_2 -[Co(trien)sar]²⁺, 4) and β -[Co(trien)Cl₂]⁺⁵⁾ respectively. This indicates that the complexes assume the β -form.

¹⁾ D.A. Buckingham, P.J. Cresswell, R.J. Dellaca, M. Dwyer, G.J. Gainsford, and L.G. Marzilli, J. Am. Chem. Soc., 96, 1713 (1974).

²⁾ D.A. Buckingham, M. Dwyer, G.J. Gainsford, V. Janson Ho, L.G. Marzilli, Ward T. Robinson, A.M. Sargeson, and K.R. Turnbull, *Inorg. Chem.*, 14, 1739 (1975).

³⁾ G.T. Morgan and J.D.M. Smith, J. Chem. Soc., 1924, 1924.

⁴⁾ L.G. Marzilli and D.A. Buckingham, Inorg. Chem., 6, 1042 (1967).

⁵⁾ D.A. Buckingham and D. Jones, Inorg. Chem., 4, 1387 (1965).

The ¹H-NMR spectra of both **1a** and **1b** showed five peaks of the intensity ratio of 1:1:1:1:2 in 0.1 m D₂SO₄ and in 0.1 m DCl. It was reported by Buckingham that the order of chemical shifts in ppm is NHR₁R₂<NH₂R<NH₃.^{4,6)} Thus the secondary NH protons of coordinated trien absorb at lower fields than the terminal NH₂ protons. Also in the [Co(NH₃)₄sal]⁺ ion it has been found that the NH₃ protons in a position trans to the coordinated carboxyl oxygen⁷⁾ of the salicylato ligand absorb at the highest field. Again in the spectra of cis β_2 -[Co(trien)sar]²⁺ ions, the NH₂ protons in a position trans to the coordinated carboxyl oxygen4) of the sarcosinato ligand absorb at a higher field than those cis to the carboxyl oxygen. As regards 1a and 1b, the signal for NH₂ group of complex 1b is at a higher field than that of 1a. Therefore the NH₂ group in the complex 1b is at a position trans to the carboxyl oxygen of the salicylato ligand. Thus complex 1b and 1a can be assigned to β_2 and β_1 , respectively. The observed chemical shifts (in δ) of complex 1a are 2.39—3.89 (12H, CH₂), 4.50 (2H, NH₂), 5.29 and 6.29 (each 1H, NH), 6.56—7.99 (5H, NH+salicylato) in 0.1 m D₂SO₄, and 2.35—3.72 (12H, CH₂), 4.43 (2H, NH₂), 5.24 and 6.25 (each 1H, NH), 6.49—7.95 ppm (5H, NH+salicylato) in 0.1 m DCl. The chemical shifts of complex 1b are 2.30—3.80 (12H, CH₂), 4.40 (2H, NH₂), 5.25 and 6.19 (each 1H, NH), 6.50—7.94 (5H, NH+ salicylato) in 0.1 m D₂SO₄, 2.31—3.68 (12H, CH₂), 4.31 (2H, NH₂), 5.23 and 6.18 (each 1H,

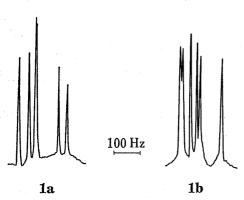


Fig. 2. ¹³C-NMR{¹H} Spectra of Trien of Complexes 1

$$[\beta-[\text{(trien) Co} \bigcirc OOC^{\frac{7}{2}}]_{4}^{\frac{6}{5}}] \text{ Cl} \cdot \text{H}_{2}\text{O}$$
in D₂O

Standard: internal dioxane ($\delta = 67.4 \text{ ppm}$).

NH), 6.51—7.94 (5H, NH+salicylato) in 0.1 m DCl, and 2.35—3.73 (12H, CH₂), 6.62—7.93 (4H, salicylato) in D₂O and NaOH. Internal DSS was used as standard.

The ¹³C-NMR spectra of complexes **1a** and **1b** were measured in heavy water. There have been observed six signals for trien and seven signals for salicylato ligand in complexes **1a** and **1b**, respectively. The chemical shifts of the salicylato ligand of both complexes agreed with each other: 118.6 (c-1), 167.8 (c-2), 117.4 (c-3), 134.3 (c-4), 124.2 (c-5), 132.4 (c-6), 174.6 (c-7) ppm for complexes **1a** and **1b**. However, those of trien were different, as shown in Figure 2: 43.6, 45.8, 51.8, 52.1, 53.9 and 56.3 for complex **1a** and 42.0, 47.5, 48.3, 49.7, 52.1 and 52.7 ppm for **1b**. Although they are difficult to assign to the individual carbon atoms, they show two different configurations (β_1 and β_2 , Fig. 1).

When complexes **1a** and **1b** are treated with 60% nitric acid very deep green solutions are

formed. They should contain complexes⁸⁻¹⁰ similar to [CoL₄sal]Cl·H₂O, (L: NH₃, L₂: en). The equivalent conductance was Λ =93 for complex 1a and 124 S cm² for 1b. The visible absorption spectra in water showed peaks at 530 m μ (ϵ =300) for 1a and at 520 m μ (ϵ =290) for 1b. Complex 1b is diamagnetic, and should be a cobalt(III) complex of low spin type.

Acknowledgement The authors wish to express gratitude to Professor Masayasu Mori of Osaka City University for the discussion.

⁶⁾ D.A. Buckingham, L.J. Durham, and A.M. Sargeson, Aust. J. Chem., 20, 257 (1967).

⁷⁾ Y. Yamamoto, Z. Kanda, and E. Toyota, Abstr. No. 3A06, 27th Symposium of Coordination Chemistry of Chemical Society of Japan, Matsumoto, September 1977.

⁸⁾ Y. Yamamoto, K. Ito, H. Yoneda, and M. Mori, Bull. Chem. Soc. Jpn., 40, 2580 (1967).

⁹⁾ Y. Yamamoto, M. Mori, H. Yoneda, S. Misumi, and K. Ito, Bull. Chem. Soc. Jpn., 42, 984 (1969).

¹⁰⁾ Y. Yamamoto, Bull. Chem. Soc., Jpn., 42, 999 (1969).

Faculty of Pharmaceutical Science, Higashi Nippon Gakuen University, Ishikari-Tobetsu, Hokkaido, 061-02, Japan Yознініза Уамамото Еіко Тоуота

Received March 6, 1978

(Chem. Pharm. Bull.) 26(7)2277—2278(1978)

UDC 547.814.1.04:547.261.04

Photochemical Addition of Methanol to Chromones

Irradiation of chromones in MeOH-HCl induced the homolytic addition of methanol to the double bond in the pyrone ring to give the 2-hydroxymethylated chromanones.

Keywords—photochemical addition; chromones; 2-hydroxymethylchromanone; 2-methylchromone; $n-\pi^*$ triplet state

Flavonoids were found in many plants and their photochemical reactions have been studied in detail.¹⁾ In connection with our studies on flavonoids,²⁾ we have examined the photochemical behavior of chromones in acidic media.

Irradiation of 2-methylchromone (1a) in methanol containing 5% hydrochloric acid by 400 W high-pressure mercury lamp (Toshiba H-400 P) with a pyrex filter until all of the starting material had been consumed, resulted in the formation of 2a, mp 86—87°, in 70% yield. The physical data of 2a [m/e 192 (M⁺=C₁₁H₁₂O₃); infrared spectrum (IR) $v_{\rm max}^{\rm KBr}$ cm⁻¹: 3340 (OH), 1680 (C=O); ultraviolet spectrum (UV) $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 223 (2.24), 252 (2.78), 324 (1.40); proton magnetic resonance (PMR) δ (CDCl₃): 1.15 (3H, s, 2-CH₃), 2.50 (1H, d, J=16 Hz, 3-CH₂), 3.13 (1H, d, J=16 Hz, 3-CH₂), 3.67 (2H, s, 2-CH₂O), 6.7—7.9 (4H, m, aromatic-H)] indicated it to be 2-hydroxymethyl-2-methylchromanone.

By the irradiation of **1b** under the same condition, 2-hydroxymethyl-2,3-dimethylchromanone (**2b**): $[m/e \ 206 \ (M^+=C_{12}H_{14}O_3); \ IR \ \nu_{max}^{Liquid} \ cm^{-1}: 3320 \ (OH), \ 1680 \ (C=O); \ PMR \ \delta$ (CDCl₃): 1.15 (3H, s, 2-CH₃), 1.20 (3H, d, J=7 Hz, 3-CH₃), 3.30 (1H, q, J=7 Hz, 3-CH), 3.70 (2H, s, 2-CH₂O), and 6.7—7.9 (4H, m, aromatic-H)] was obtained as an oil in 70% yield.

Fig. 1

T. Matsuura, H. Matsushima and H. Sakamoto, J. Am. Chem. Soc., 86, 6370 (1967); T. Matsuura, T. Takemoto, and R. Nakashima, Tetrahedron Lett., 1971, 1539; A.C. Waiss, R.E. Ludin, A. Lee, and J. Corse, J. Am. Chem. Soc., 89, 6213 (1967).
 M. Komatsu, I. Yokoe, and Y. Shirataki, Chem. Pharm. Bull. (Tokyo), 26, 1274 (1978).