[Chem. Pharm. Bull.] **26**(8)2449—2453(1978)]

UDC 547.963.32.02.04:543.422.25.06

Studies of Nucleosides and Nucleotides. LXXXII.¹⁾ Cyclonucleosides. (39).²⁾ Synthesis and Properties of 2'-Halogeno-2'-deoxyadenosines

Morio Ikehara and Hiroko Miki

Faculty of Pharmaceutical Sciences, Osaka University3)

(Received February 13, 1978)

9-(2'-O-Methanesulfonyl- or trifluoromethanesulfonyl-3',5'-di-O-tetrahydropyranyl- β -p-arabinofuranosyl)adenine (Ia, b) were reacted with lithium chloride or tetrabutylammonium halide to yield 2'-halogeno-2'-deoxy compounds (IIa—d). These halogeno compounds were deprotected with 80% acetic acid to give 2'-chloro-, 2'-bromo-, 2'-fluoro and 2'-iodo-2'-deoxyadenosine (IVa—d) in overall yields of 12—25% from the compound I. Ultraviolet absorption properties, 1 H and 13 C-nuclear magnetic resonance spectral properties were recorded on the compounds IVa—d.

Keywords—9-(2'-mesyl-3',5'-di-O-tetrahydropyranyl-9-β-D-arabinofuranosyl)adenine; 9-(2'-O-trifluoromesyl-3',5'-di-O-tetrahydropyranyl-9-β-D-arabinofuranosyl)adenine; tetraethylammonium chloride; tetra-n-butylammonium bromide; tetra-n-butylammonium fluoride; tetra-n-butylammonium iodide; UV; ¹H-NMR; ¹³C-NMR

In connection to the biological importance of sugar-modified nucleosides, several researchers reported the synthesis of 2'-substituted 2'-deoxypurine nucleosides.^{4–8)} Among them, 2'-azidoadenosine revealed some anticancer activity⁹⁾ and poly(2'-azido-2'-deoxyadenylic acid) had quite similar physical properties with poly(adenylic acid), but not with poly(2'-deoxyadenylic acid).¹⁰⁾ Moreover, polynucleotides containing 2'-azido-2'-deoxyinosine, poly(Iz)¹¹⁾ have been found to possess interferon-inducing activity when it was hybridized with poly-(citidylic acid).¹²⁾

We, therefore, investigated methods for synthesizing 2'-deoxy-2'-halogenoadenosines and results are reported in the present paper.

It was previously found^{4,5)} that the use of 9-(3',5'-di-O-tetrahydropyranyl-2'-O-mesyl- β -D-arabinosyl)adenine (Ia) as a starting material was quite suitable for introducing an azido group to the C_{2'}-position in α -configuration. The compound (I) is rather easily obtainable from 8,2'-anhydro-8-oxy-9- β -D-arabinofuranosyladenine (8,2'-O-cycloadenosine),¹³⁾ which in turn could be synthesized from adenosine in four step reaction. All these steps do not involve laborious separation of α and β or positional isomers, such as 2' and 3' compounds. Thus, the compound (Ia) was treated with lithium chloride in DMF at 150°. However, the reaction proceeded rather slowly compared to the case of the azido ion. We then changed lithium chloride to tetraalkylammonium chloride, which was proved to be a suitable nucleophile in

¹⁾ Part LXXXI of this series, S. Uesugi and M. Ikehara, submitted for publication.

²⁾ Part 38 of this series, M. Ikehara, and Y. Takatsuka, Chem. pharm. Bull., 26, 985 (1978).

³⁾ Location: 133-1 Yamadakami, Suita, Osaka, 565, Japan.

⁴⁾ M. Ikehara, T. Maruyama, and H. Miki, Tetrahedron, Lett., 1976, 4485.

⁵⁾ M. Ikehara, T. Maruyama, and H. Miki, Tetrahedron, 34, 1133 (1978).

⁶⁾ R. Mengel and H. Weidner, Chem. Ber., 109, 433 (1976).

⁷⁾ J.B. Hobbs and F. Eckstein, J. Org. Chem., 42, (1977).

⁸⁾ R. Ranganthan, Tetrahedron Lett., 1977, 1291.

⁹⁾ D. Mizuno, private communication.

¹⁰⁾ M. Ikehara, T. Fukui, and N. Kakiuchi, Nucleic Acids Res., 3, 2089 (1976).

¹¹⁾ T. Fukui, N. Kakiuchi, and M. Ikehara, Nucleic Acids Res., 4, 2629 (1977).

¹²⁾ E. DeClercq, P.F. Torrence, B.D. Stoller, J. Hobbs, T. Fukui, N. Kakiuchi, and M. Ikehara, submitted for publication.

¹³⁾ M. Ikehara and T. Maruyama, Tetrahedron, 31, 1369 (1975).

the substitution reaction.¹⁴⁾ For increasing the rate of the reaction, 2'-leaving group was also altered to trifluoromethylsulfonyloxy group, which has been used by Ranganasan⁸⁾ for the same type of reactions.

9-(2'-O-Trifluoromethanesulfonyl-3,5-di-O-tetrahydropyranyl- β -D-arabinofuranosyl)adenine (Ib) was obtained by treating 3',5'-di-O-tetrahydropyranyl-araA⁵ with NaH and trifluoromethanesulfonyl chloride at -60° for 1 hr. The yield was 54% and the structure was confirmed by elemental analysis and ultraviolet (UV) absorption properties. The compound (Ib) was then heated with tetraethylammonium chloride in DMF at 80° for 3 hr. The 2'-chloro compound (IIa) was obtained in a yield of 57.5%. For deprotection IIa was heated in 80% acetic acid at 50° for 5 hr and 2'-chloro-2'-deoxyadenosine (IIIa) was obtained in a yield of 40% as needles having mp 221—222°. Elemental analysis and UV absorption properties confirmed the structure of IIIa. As summarized in Table I, ¹H-nuclear magnetic resonance ¹H-(NMR) spectrum of IIIa showed a sign of $H_{2'}$ at 5.11 δ . The coupling constants $J_{1'-2'}$, and $J_{2'-3'}$, equal to 7 Hz and 4.5 Hz, respectively. These values may be consonant with α -ribo configuration of the sugar moiety of IVa. In ¹³C-NMR (Table II) it reveals a C-2' signal at δ —5.33 (from dioxane as standard). This fact may suggest that 2'-carbon is substituted with an electronegative atom.

Table I. ¹H-NMR of 2'-Halogeno-2'-deoxyadenosines (δ (ppm) from TMS)

2'-Substituents H-8	H-2	H-N ⁸	H-1′	3'-OH	5'-OH	$\mathrm{H} ext{-}2'$	H-3′	H-4′	H-5′
Cl 8.41	8.17	7.44	6.17	5.93	5.44	5.11	4.43	4.13	3.69
(s, 1H	I) (s, 1H)	(s, 1H)	(d, 1H)	(d, 1H)	(q, 1H)	(q, 1H)	(q, 1H)	(m, 1H)	(m, 1H)
		$J_{ m H1'-}$	$H_{2'}=5H_Z$	J _{OH3'-H3'} =	=5Hz	$J_{\mathrm{H}2'-\mathrm{H}3'}$ =		$J_{\mathrm{H}3'-\mathrm{H}4'}$	•
Br 8.39	8.16	7.33	6.27	5.98	5.5 0	5.13	4.36	4.16	3.69
(s, 1F	I) (s, 1H)	(s, 2H)	(d, 1H)	(b, 1H)	(q, 1H)	(q, 1H)	(m, 1H)	(m, 1H)	(m, 2H)
As a second of the	200	$J_{ m H1'-}$	$_{\rm H2'} = 7.5 \rm H$	$z J_{ m 0H3'-H3}$	y = 5Hz	$J_{\mathrm{H}2'-\mathrm{H}3'}$ =	=5Hz		:
F 8.31	8.16	7.30	6.34	5.76	5.28	5.72			
			6.16			5.14			
								100	
(s, 1H	(s, 1H)	(s, 2H)	The second second	-	()	(m, 1.5H)			
and the second of the second			$J_{ m H1'-H2'}$						4.
			$J_{\mathrm{H}1'-\mathrm{F}} =$	16Hz					
$F(D_2O)$	•					5.72	4.62	4.03	3.68
							4.62		
e e e e e e e e e e e e e e e e e e e			11.				(octaplet,1	H)(m,1H	(m, 2H)
e e e e e e e e e e e e e e e e e e e						5.14			
			and the second			(q, 0.5H)			<u>.</u>
	* .						4.5 Hz $J_{ m H3}$		iz
т 0.00	0.14	· // 01	C 01	¢ 00	- 44		$Hz J_{H3'-F} =$	17Hz	0.00
I 8.36		7.31		6.02			4.14		3.66
(s, 1H	(s, 1H)	(s, 2H)	(d, 1H)		(m, 1H)	(q, 1H)			(m, 2H)
			JH1'-H2'	= 8.5 Hz J	нз'-онз'=	$\mathfrak{I}_{\mathrm{H2'-1}}$	$_{\rm H3'}=4.5{\rm Hz}$		

Table II. ¹³C-NMR of 2'-Halogeno-2'-deoxyadenosines (δ (ppm) from dioxane)

2'-Substituents	C-2	C-4	C-5	C-6	C-8	C-1'	C-2'	C-3′	C-4'	C-5′
C1	86.25	82.65	52.81	89.73	73.18	21.46	-5.33	3.90	19.90	-5.33
Br	86.25	82.71	52.86	89.78	73.24	21.94	-13.42	3.90	20.14	-5.07
\mathbf{F}	86.30	82.44	52.76	89.82	73.01	19.47a)	26.94b)	2.06 ^{c)}	17.89	-5.81

and the control of th

¹⁴⁾ S. Winstein, L. Savedoff, S. Smith, and I.D.R. Stevens, J.S. Gall, Tetrahedron Lett., 1960, 24.

The compound Ib was then heated with tetra-n-butylammonium bromide in DMF at 70° . In this case reaction proceeded very slowly and the temperature was raised to 100° . After 5 hr heating the isolated yield of the product (IIb) was 55%. At 120° for 3 hr the yield was 58%. The 2'-bromo compound (IIb), isolated by thin-layer chromatography (TLC), was deprotected with 80% AcOH at 50° for 3 hr and 2'-bromo-2'-deoxyadenosine (IIIb), mp $225-226.5^{\circ}$, was obtained in a yield of 30%. Elemental analysis and UV absorption properties supported the structure of the compound IIIb to be correct. In ¹H-NMR (Table I) the compound IIIb reveals a H-2' signal at δ 5.13 and coupling constants $J_{1'-2'}$ and $J_{2'-3'}$ equal to 7.5 and 5 Hz, respectively, suggesting a β -ribo configuration in the sugar moiety. ¹³C-NMR (Table II) of IIIb showed C-2' signal at δ -13.42, suggesting substitution of a strong electronegative atom at the 2'-carbon.

For obtaining 2'-fluoro compound, Ib was treated in tetrahydrofuran with tetra-n-butylammonium fluoride at 0° for 2 hr. Separation of 2'-fluoro compound (IIc) was performed by column chromatography on silica gel in a yield of 60%. Deprotection with 80% AcOH of IIc gave 2'-fluoro-2'-deoxyadenosine (IIc), mp 232—234°, in a yield of 37°. Elemental analysis and UV absorption properties supported the structure of IIIc to be correct. ¹H-NMR the compound IIIc revealed signals of H-2' at δ 5.72 and 5.14 after D₂O exchange of OH due to coupling with fluorine atom. Furthermore, H-1' also coupled with fluorine to give $J_{1'H-F}$ equal to 16 Hz, usual H-H coupling constants $J_{1'-2'}$ and $J_{2'-3'}$ (after D_2O exchange) being 3.5 and 4.5 Hz, respectively. H-3' is also coupled with fluorine to give $J_{\rm HS'-F}$ equal to 17 Hz. These facts clearly showed that a fluorine atom was introduced to 2'-position. ¹³C-NMR of the compound IIIc showed a very large low-field shift of C-2' signal The coupling constants $J_{\text{C2'-F}}$ were as large as 187.8 Hz and (26.74 ppm from dioxane). even $J_{\text{C1'-F}}$ and $J_{\text{C3'-F}}$ were 34 and 16 Hz, respectively. These facts also supported the introduction of a fluorine atom at 2'-carbon. Finally, the compound Ib was heated with tetra-n-butylammonium iodide in DMF at 100° for 2 hr. 3',5'-Di-O-tetrahydropyranyl-2'iodo-2'-deoxyadenosine (IIb) was obtained as a glass, which was deprotected by heating in 80% acetic acid at 30° for 30 hr. By this procedure, 2'-iodo-2'-deoxyadenosine (IIId) was obtained in a yield of 25% as crystals having mp 202—203°. UV absorption properties and elemental analysis showed the structure of IIId to be correct. In ¹H-NMR spectrum (see Table I) H-2' appeared at δ 5.44 and coupling constants and $J_{\rm H2'-H3'}$ were 8.5 and 4.5 Hz, respectively. The configuration of these halogen atoms in α -position could also be predicted by S_N2 type mechanism for replacement at the 2'-carbon as shown in the case of azido compounds.5)

2'-Chloro-, 2'-bromo- and 2'-fluoro adenosine were derivatized to 5'-diphosphates and polymerized to give poly(2-chloro-,¹⁵⁾ poly(2-bromo-¹⁵⁾ and poly(2-fluoro-2-deoxyadenylic acid)¹⁶⁾ and their properties have been investigated.

(Thp: tetrahydropyranyl)

Chart 1

¹⁵⁾ M. Ikehara, T. Fukui, and N. Kakiuchi, Nucleic Acids Res., 4, 4249 (1977).

¹⁶⁾ N. Kakiuchi, unpublished experiments.

Experimental

General Methods—UV absorption spectra were taken with Hitachi 200-10 spectrophotometer. 1 H-NMR spectra were recorded on a Hitachi R-22 spectrometer (90 MHz, ambient probe temperature 34°). Chemical shifts were measured from an external TMS capillary. 13 C-NMR spectra were recorded on a Hitachi R-22-CFT (22.63 MHz, ambient prove temperature 32—35°). Spectrometer operation in the transform mode in connection with a Hitachi HITAC 1011 computer obtained from noise-decoupled spectra measured in DMSO- d_6 with dioxane (0.5%, v/v) as internal reference for 0.2 m solution, the precision is 0.05 ppm. Paper chromatography was performed on Toyo filter paper No. 51A in descending technique. Solvent used were: A, n-BuOH- H_2 O (84: 16); B, iso-PrOH-conc. NH $_4$ OH- H_2 O (7: 1: 2), C, n-BuOH-AcOH: H_2 O (%: 2: 3). TLC was performed on silica gel G.

8-2'-O-Trifluoromethanesulfonyl-3',5'-di-O-tetrahydropyranyl-p-arabinofuranosyladenine (Ib)—3',5'-Di-O-tetrahydropyranyl-arabinofuranosyladenine (3',5'-di-O-Thp-araA)^{4,5)} (2 g, 4.6 mmol) was dissolved in tetrahydrofuran (THF) (55 ml) and cooled to 0°. NaH (360 mg, containing 50% mineral oil, 1.6 equiv.) was added with stirring. The solution was kept at 0° for 1 hr until evolution of H_2 ceased and then cooled to -5—60° with dry ice-ethanol bath. Trifluoromethanesulfonyl chloride (0.92 ml, 2 equiv.) was added and the mixture was kept at the same temperature range for 1 hr. The reaction mixture was poured in 2% NaHCO₃ aq. (500 ml) and precipitates were collected by filtration. The precipitates was dried over P_2O_5 at 80° for 10 hr in vacuo to give 1.54 g (2.72 mmol, 59%) of Ib. mp was 145—149°. Anal. Calcd. for $C_{21}H_{28}$ - $F_3N_5O_8S$: C, 44.43; H, 4.98; N, 12.34. Found: C, 44.57; H, 5.05; N, 12.37. UV: $\lambda_{max}^{95\% EloH}$ 258.5 nm, $\lambda_{max}^{pH 2}$ 257.5 nm, $\lambda_{max}^{pH 12}$ 258.5 nm.

2'-Chloro-2'-deoxy-3',5'-di-O-tetrahydropyranyladenosine (IIa)—i) 2'-O-Mesyl-3',5'-di-O-Thp-araA⁵) (Ia) (450 mg, 0.88 mmol) was dissolved in DMF (50 ml). Lithium chloride (383 mg, 8.8 mmol) was added to the solution and heated at 150° for 2 hr. The solvent was evaporated *in vacuo* and the residue was extracted with CHCl₃-H₂O. The CHCl₃-layer was concentrated *in vacuo*. The residue was applied to a preparative TLC plate and developed in CHCl₃-EtOH (10:1). A band migrating at Rf 0.31 was extracted with CHCl₃-EtOH (2:1). CHCl₃-EtOH was evaporated and IIa was obtained as a hard glass (124.7 mg, 0.28 mmol, 31%).

ii) 2'-O-Trifluoromesyl-3',5'-di-O-Thp-araA (Ib) (1.7 g, 3 mmol) was dissolved in DMF (100 ml), tetraethylammonium chloride (1.5 g, 3 equiv.) was added, and heated at 80° for 3 hr. The solvent was evaporated in vacuo and the residue was taken up in CHCl₃. Insoluble material was filtered off. The CHCl₃ solution was dried over Na₂SO₄ and concentrated. The solution was applied to a column of Silica gel G (70 g) and eluted in a CHCl₃-EtOH (3:1). The compound IIa was obtained as a hard glass in a yield of 768 mg (1.73 mmol, 57.5%). This material was used for the deprotection reaction without further precipitation.

2'-Chloro-2'-deoxyadenosine (IVa) — Di-O-Thp-2'-chloro compound (IIa) (768 mg, 1.73 mmol) was dissolved in 80% AcOH (20 ml) and kept at room temperature overnight. The solvent was evaporated in vacuo and traces of AcOH were codistilled several times with added $\rm H_2O$. The residue was dissolved in $\rm H_2O$ and washed twice with CHCl₃. $\rm H_2O$ was distilled off and the residue was recrystallized from $\rm H_2O$. The compound IIIa was obtained in a yield of 195 mg (0.69 mmol, 40%). mp was 221—222°. Anal. Calcd. for $\rm C_{10}H_{12}ClN_5O_3$: C, 42.03; H, 4.24; N, 24.52. Found: C, 41.78; H, 4.24; N, 24.30. UV: $\lambda_{\rm max}^{\rm H_2O}$ 259.1 nm (ε 14400), $\lambda_{\rm max}^{\rm pH_2}$ 256.5 (ε 14700), $\lambda_{\rm max}^{\rm pH_{12}}$ 259.5 nm (ε 15000). PPC: Rf (A), 0.62; Rf (B), 0.72; Rf (C), 0.68. TLC (CHCl₃-EtOH, 5:1); Rf 0.36.

2'-Bromo-2'-deoxy-3',5'-tetrahydropyranyladenosine (IIb) ——2'-Trifluoromesyl-3',5'-Thp-araA (Ib) (300 mg, 0.53 mmol) was dissolved in DMF (15 ml) and tetra-n-butylammonium bromide (512 mg, 1.59 mmol) was added. The mixture was heated at 120° for 3 hr. The solvent was evaporated in vacuo, the residue dissolved in CHCl₃ and the insoluble material was filtered off. CHCl₃ was evaporated to some extent and the solution was applied to a preparative TLC plate. The plate was developed with CHCl₃-EtOH (20: 1) 2 times. A band migrating at Rf 0.54 (starting material Rf 0.68) was extracted with CHCl₃-EtOH to give 168 mg (0.34 mmol, 58%) of the compound IIIb as a hard glass. This material was rendered to deprotection without further purification.

2'-Bromo-2'-deoxyadenosine (IIIb) — The compound IIIb (159 mg, 0.32 mmol) obtained as above was dissolved in 80% AcOH (5 ml) and heated at 50% for 3 hr. The solvent was evaporated in vacuo and traces of AcOH are removed by repeated evaporation with added $\rm H_2O$. To the residue $\rm H_2O$ (20 ml) was added and the $\rm H_2O$ -layer was washed with CHCl₃ (10 ml). CHCl₃ was evaporated in vacuo to some extent and crystalline IIIb were collected by filtration. Yield was 31.3 mg (30%). mp 225—226.5°. Anal. Calcd. for $\rm C_{10}H_{12}BrN_5O_3$: C, 36.38; H, 3.67; Br, 24.20, N, 21.22. Found: C, 36.45; H, 3.56; Br, 24.40; N, 21.02. UV: $\lambda_{\rm max}^{\rm Ho}$ 259.5 nm (ε 15000), $\lambda_{\rm max}^{\rm Ho}$ 257 nm (ε 15200), $\lambda_{\rm max}^{\rm PH 12}$ 260 nm (ε 15300). PPC: Rf (A), 0.63, Rf (B), 0.72, Rf (G), 0.72. TLC (CHCl₃-EtOH, 5: 1), Rf 0.36.

2'-Fluoro-2'-deoxy-3',5'-tetrahydropyranyladenosine (IIc)—2'-Trifluoromesyl-3',5'-Thp-araA (Ib) (1 g, 1.77 mmol) was dissolved in tetrahydrofuran (35 ml) and combined with a solution of tetra-n-butylammonium fluoride [8.8 mmol, 5 eq., made from $(nBu)_4NBr$ (8.8 mmol) passed through Dowex 1×8 (fluoride form)] dissolved in tetrahydrofuran (5 ml) at 0°. The mixture was kept at 0° for 2 hr. The solvent was evaporated in vacuo the residue taken up in CHCl₃, and the insoluble material was filtered off. CHCl₃ was

evaporated to some extent and the solution was applied to a column ($\phi 2.75 \times 13$ cm) of Silica gel G. Elution with CHCl₃-EtOH (30:1) gave 463.7 mg (1.06 mmol, 60%) of the compound IIc. mp 105—106°. TLC: (CHCl₃-EtOH, 5:1) Rf 0.19. This material was used for further reaction without purification.

2'-Fluoro-2'-deoxyadenosine (IIIc)—The compound IIc (464 mg, 1.06 mmol) obtained as above was dissolved in 80% AcOH (20 ml) and the solution was kept at room temperature overnight. AcOH was evaporated in vacuo and traces of AcOH were codistilled several times with added $\rm H_2O$. The residue was taken up in CHCl₃ and $\rm H_2O$ and the $\rm H_2O$ -layer was evaporated in vacuo. The residue was recrystallized from EtOH to give 105 mg (0.39 mmol, 37%) of 2'-fluoro-2'-deoxyadenosine, mp 232—234°. Anal. Calcd. for $\rm C_{10}H_{12}FN_5O_3$: C, 44.60; H, 4.50; F, 7.06; N, 26.01. Found: C, 44.65; H, 4.66; F, 7.07; N, 25.72. UV: $\rm ^{H_2O}_{max}$ 259.5 nm (ε 14200), $\lambda^{pH 2}_{max}$ 259 nm (ε 14400), $\lambda^{pH 12}_{max}$ 260 nm (14100). PPC: Rf (A), 0.64, Rf (B), 0.64, Rf (C), 0.52. TLC: (CHCl₃-EtOH, 5: 1), Rf 0.19 (2'-chloro-2'-deoxyadenosine Rf 0.33).

2'-Iodo-2'-deoxyadenosine (IIId)—9-(2'-O-Trifluoromethyl-3',5'-di-O-Thp-araA) (IIb) (850 mg, 1.5 mmol) was heated with $(nBu)_4$ -N·I (2.6 g, 7 mmol) in DMF (50 ml) at 100° for 2 hr with exclusion of moisture. The solvent was evaporated in vacuo, the residue taken up in CHCl₃ and insoluble material was filtered off. CHCl₃ was evaporated in vacuo to give a glass, which contain a trace ammount of contaminat (probably tributylammonium iodide). The glass was dissolved in 80% AcOH (10 ml) and kept at 30° for 30 hr. The solvent was evaporated and the residue was crystallized from MeOH to give 114 mg (0.37 mmol, 25% from Ib) of the compound IIId. This material colorized at 200° and melted at 202—203°. Anal. Calcd. for $C_{10}H_{12}IN_5O_3$: C, 31.84; H, 3.21; I, 33.65; N, 18.57. Found: C, 31.96; H, 3.00; I, 33.50; N, 18.63. UV: $\lambda_{max}^{H_{10}}$ 259 nm (ε 14100), $\lambda_{max}^{pH_{12}}$ 256.5 nm (ε 14200), $\lambda_{max}^{pH_{12}}$ 259 nm (ε 14600). Paper chromatography: Rf (A) 0.64, Rf (B) 0.73, Rf (C) 0.36. TLC (CHCl₃-EtOH, 5:1) Rf 0.36.

Acknowledgement This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, to which author's thanks are due.