[Chem. Pharm. Bull.] 26(8)2555—2561(1978)] UDC 547.834.2.02.03:541.63.04

# Stereochemistry of Quinolizidines. V.<sup>1)</sup> Protonation of Benzo[ $\alpha$ ] quinolizidines and Determination of Their Nitrogen Inversion Rates

Makiko Sugiura, Narao Takao, 200 Hideaki Fujiwara, and Yoshio Sasaki 200

Kobe Women's College of Pharmacy<sup>2a)</sup> and Faculty of Pharmaceutical Sciences, Osaka University<sup>2b)</sup>

(Received April 3, 1978)

The nitrogen inversion rate of 1,2,3,4,6,7-hexahydro-11bH-benzo[a]quinolizine (I) is determined by means of line broadening of  $^{13}$ C FT nuclear magnetic resonance under the successive alteration of pD. The  $k_{trans}$  thus obtained was confirmed to be reasonable but  $k_{cis}$  was presumed to be smaller than the actual one, which is responsible to the difference of p $K_a$  between trans- and cis"a"-conformer. Actually, it was realized for benzo[a]-quinolizidines that trans-conformer takes lower p $K_a$  than that of cis"a"-conformer because of the steric effect.

**Keywords**—benzo[a]quinolizidines;  ${}^{13}$ C FT NMR; nitrogen inversion rate; "trans $\rightleftharpoons$  cis"a" equilibrium; conformational dependence of p $K_a$ 

#### Introduction

In the previous report,<sup>1)</sup> the details of the stereochemistry and <sup>13</sup>C chemical shift of benzo-[a]quinolizidine derivatives were examined, and <sup>13</sup>C chemical shifts of C-6 and C-7 were approved as the guide to distinguish the three possible conformations (cf. Chart 1)<sup>3)</sup> and, particularly, the displacement of C-6 chemical shift reflected on the state of an equilibrium "trans $\rightleftharpoons$  cis "a"".<sup>1)</sup>

The determination of the nitrogen inversion rate of the system equilibrated as "trans ≥ cis" is interesting, because the rate is a very important thermodynamic parameter, and further-

<sup>1)</sup> Part IV: M. Sugiura, N. Takao, K. Iwasa, and Y. Sasaki, Chem. Pharm. Bull. (Tokyo), 26, 1901 (1978).

<sup>2)</sup> Location: a) Motoyamakita-machi 4-19-1, Higashinada-ku, Kobe 658, Japan; b) Yamadakami 133-1, Suita, Osaka 565, Japan.

<sup>3)</sup> M. Sugiura, N. Takao, K. Iwasa, and Y. Sasaki, Chem. Pharm. Bull. (Tokyo), 26, 1168 (1978).

more, in the system as shown in Chart 2, the ratio  $k_A/k_B$  corresponds to that of the population  $p_A/p_B$ . Nevertheless the nuclear magnetic resonance determination of the nitrogen inversion rate of N-heterocyclic amine involves two difficulties<sup>4)</sup>: high rate value and additional effects of the ring and nitrogen inversion. For the system as shown in Chart 2, Delpuech, et al.<sup>4)</sup> determined  $k_A$  and  $k_B$  from the observation of the signal broadening of <sup>1</sup>H NMR during the protonation process.

In this work, as an extension of Delpuech's method to  $^{13}$ C FT NMR, the nitrogen inversion rate of 1,2,3,4,6,7-hexahydro-11bH-benzo[a]quinolizine (I) was determined. The  $^{13}$ C NMR spectra were measured at pD ca. 0.54—7.5 and, from the variation of the signal line width, the nitrogen inversion rates of the equilibrium "trans $\rightleftharpoons cis$  "a" ",  $k_{trans}$  and  $k_{cis}$ , were determined. The values obtained for  $k_{trans}$  are reasonable and, the validity of this conclusion has been well confirmed. But, the underestimation of  $k_{cis}$  than the actual value is presumed, and the p $K_a$  difference between the trans- and cis"a"-conformer was probably responsible for this estimation. And, in fact, the trans-conformer takes lower p $K_a$  than the cis"a"-conformer because of the steric hindrance, and this assumption has been confirmed.

## Experimental

1) Materials—1,2,3,4,6,7-Hexahydro-11b*H*-benzo[*a*]quinolizine (I), trans-1-methyl-1,2,3,4,6,7-hexahydro-11b*H*-benzo[*a*]quinolizine (II) and cis-1-methyl-1,2,3,4,6,7-hexahydro-11b*H*-benzo[*a*]quinolizine (III) were prepared as described in the previous paper.<sup>3)</sup>

1,2,3,4,6,7-Hexahydro-11b*H*-benzo[*a*]quinolizine hydrochloride (I·HCl) was obtained by refluxing I in MeOH with an excess amount of conc.HCl, and after evaporating the solvent and acid, the residue was

recrystallized from (CH<sub>3</sub>)<sub>2</sub>C=O+MeOH, mp 209-211°.

2) Measurements of NMR Spectra—13C FT NMR Spectra were measured with a NEVA NV-21 spectrometer at 22.6 MHz. Unless otherwise stated, the conditions of FT NMR measurements are: spectral width 5000 Hz; pulse width, 25—30 µsec (flipping angle, about 30—40°); acquisition time, 0.8 sec, number of data [Base] was varied points, 8192.

<sup>13</sup>C NMR Measurement of I in the Successive Addition of Trifluoroacetic Acid TFA: For a solution of I in CD<sub>3</sub>OD (ca.1.4 mol/l), spectra were taken by the successive addition of TFA. Molar ratio of [H+]/

[Base] was varied from 0-5.28.

Plot of <sup>13</sup>C chemical shift against [H+]/[Base] for each aliphatic carbon was shown in Fig. 1.

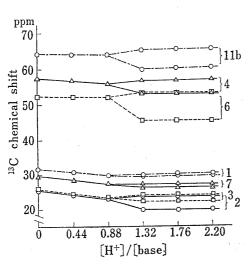



Fig. 1. Plot of <sup>13</sup>C Chemical Shift vs. Molar Ratio [H<sup>+</sup>]/[Base] of I



Fig. 2.  $^{13}$ C NMR of I in  $D_2$ O, (a) pD=0.54, (b) pD=5.55 and (c) pD=6.00

The left hands are the five-times expanded spectra of the right.

<sup>4)</sup> J.J. Delpuech and M.N. Deschamps, Chem. Comm., 1967, 1188.

<sup>13</sup>C NMR Measurement of I·HCl at Variable Acidity: I·HCl was dissolved in D<sub>2</sub>O (ca. 0.6 mol/l), and pD was adjusted by DCl or NaOD. Spectra were taken at optional pD by the following conditions: spectral width, 3000 Hz and horizontal scale is expanded at 5 times; Hz/point, 0.76 Hz (cf. Fig. 2). Correction of pD scale was achieved by adding 0.40 to the pH meter reading.<sup>5</sup>)

<sup>1</sup>H NMR Measurement of II and III at Variable Acidity: <sup>1</sup>H NMR Spectra were measured with a NEVA NV-21 spectrometer at 90 MHz with CW mode. For each solution of II and III of CD<sub>3</sub>OD (ca. 0.1 mol/l), spectra were taken by the successive addition of DCl at optional pD. The apparent pD values were not corrected.

Plots of 11b-H chemical shifts against apparent pD's were shown in Fig. 3.

3) Determination of  $pK_a$  of I—The  $pK_a$  of I was determined by a potentiometric titration<sup>6)</sup> with a Hitachi-Horiba pH meter, model F-5, equipped with a combination pH electrode. The observed value was  $8.73 \pm 0.03$  at 0.01 mol/l.

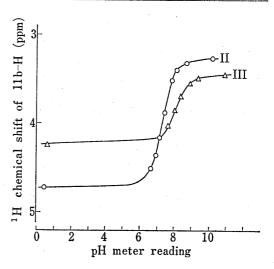


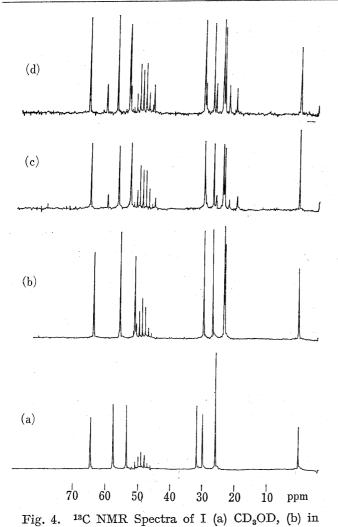

Fig. 3. Plot of 11b-H Chemical Shift vs. pD for II and III

## Results and Discussion

# 1) Protonation of Benzo[a]quinolizidines

When an excess amount of TFA is added in the CDCl<sub>3</sub> or CD<sub>3</sub>OD solution of 1,2,3,4,6, 7-hexahydro-11bH-benzo[a]quinolizine (I), trans-1-methyl-1,2,3,4,6,7-hexahydro-11bH-

benzo[a]quinolizine (II) and cis-1-methyl-1,2,3,4,6,7-hexahydro-11bH-benzo[a]quinolizine (III), their <sup>13</sup>C NMR spectra showed different patterns from each other. Except a few carbons, in aliphatic region, large high field shifts are observed for II and III. In contrast, though I shows high field shifts with a small amount of TFA, all signals separate into two with the successive increase of TFA (cf. Fig. 4). The variations of <sup>13</sup>C chemical shifts on the successive addition are illustrated in Fig. 1, and these show that each signal separates in the region of molar ratio  $[H^+]/[Base] > 1$  and shifts little beyond this region.


In Table I, <sup>13</sup>C chemical shifts of I, II and III with an excess amount of TFA, as well as the differences of shifts from the free bases of aliphatic carbons, are summarized. When an excess amount of TFA is added, the nitrogen inversion is stopped and the equilibrium "trans cis" is diminished, where the observed shifts are regarded to those of the protonated salts and the differences from the free bases are to the protonation shifts.

Since the free base II exists as almost 100% trans-conformer in solution, i) its salt should be protonated to the trans configuration. The protonation shifts of II are comparable to those of quinolizidine (IV) summarized in Table I for reference, and this fact supports the trans configuration of the protonated salt of II.

<sup>5)</sup> M. Davis, H.M. Hügel, R. Lakhan, and B. Ternai, Aust. J. Chem., 29, 1445 (1976).

<sup>6)</sup> A. Albert and E.P. Serjeant, "Ionization Constants of Acids and Bases, A Laboratory Manual," Methuen and Co., Ltd., London, 1962, Chapter 2.

<sup>7)</sup> M. Sugiura and Y. Sasaki, Chem. Pharm. Bull. (Tokyo), 24, 2988 (1976).



 $CD_3OD+TFA$  ([H<sup>+</sup>]/[Base] = 0.88), (c) in  $CD_3OD+$ TFA ([H<sup>+</sup>]/[Base]=1.32), and (d) in  $CD_3OD+$ Large Excess of TFA

$$\begin{array}{c}
2 & 1 & 10 & 9 \\
\hline
& 1 & 10 & 9 \\
\hline
& 1 & 1 & 1 \\
\hline
&$$

Although the free base III in solution has a contribution of ca. 20% transconformer, the protonated salt of III affords the spectral pattern of one spe-In comparison of its cies of salt. chemical shifts with those of protonated salt of II, the higher field shift of C-6 is noted, which suggests the cis"a" configuration of the salt of III. This high field shift arises from the gauche interaction between C-6 and C-3,30 which is confirmed by the high field shift of C-3 of the salt of III. On the other hand, the high field shift of C-3 of the salt of II is due to the  $\gamma$ -effect of the axial methyl. Consequently, in spite of some contribution of the trans-conformer of the free base, the protonated salt of III takes the cis"a" configuration. As shown above, a large difference of C-6 chemical shifts is observed between the salts of II and III as well as of the free This results shows that the utility of the C-6 chemical shift to dis-

Table I. 13C Chemical Shiftsa) of Protonated Salts of I, II and III, and Protonatin Shifts (△H+)b)

| Carbon                | I      |         | II            | $\Delta \mathrm{H}^+(\mathrm{II})^{b)}$ | III    | $\Delta \mathrm{H}^{+}(\mathrm{III})^{b)}$ | ⊿H+(Qu)c) |
|-----------------------|--------|---------|---------------|-----------------------------------------|--------|--------------------------------------------|-----------|
|                       | trans  | cis "a" | 11            | 711 (11)°'                              | 111    | <u> </u>                                   | 211 (%4)  |
| 1                     | 28.81  | 28.35   | 30.94         | -1.22                                   | 31.72  | 1.41                                       | -2.88     |
| 2                     | 22.74  | 20.59   | 29.09         | -3.07                                   | 30.84  | -3.36                                      | -2.35     |
| 3                     | 22.98  | 19.63   | 18.70         | -2.44                                   | 18.64  | -2.43                                      | -2.56     |
| $\stackrel{\circ}{4}$ | 56.50  | 51.50   | 58.45         | -0.01                                   | 53.73  | -0.69                                      | -0.75     |
| 6                     | 52.74  | 45.71   | <b>53.</b> 87 | 0.48                                    | 45.26  | -0.58                                      | -0.75     |
| 7                     | 26.16  | 24.95   | 26.51         | -3.65                                   | 25.29  | -3.56                                      | -2.56     |
| 11b                   | 65.29  | 59.35   | 69.76         | 1.78                                    | 67.00  | 0.78                                       | 2.44      |
| 8                     | 129.26 | 129.37  | 130.03        |                                         | 129.79 |                                            |           |
| 9                     | 128.76 | 127.82  | 129.58        |                                         | 129.15 |                                            |           |
| 10                    | 127.70 | 126.42  | 128.77        |                                         | 127.00 |                                            |           |
| 11                    | 124.86 | 128.76  | 125.11        |                                         | 129.79 |                                            |           |
| 7a                    | 130.93 | 129.69  | 129.20        |                                         | 129.96 |                                            |           |
| 11a                   | 131.14 | 131.44  | 131.44        |                                         | 130.25 |                                            | •         |
| C-CH <sub>3</sub>     |        | • • •   | 10.98         | -2.01                                   | 18.64  | -1.93                                      |           |

Relative to TMS in ppm.

△H+=the difference of chemical shift between free base and protonated salt.

The minus sign means a high field shift.

Protonation shifts of quinolizidine, 70 corresponding to each carbon of benzo[a] quinolizidines.

tinguish the conformation—trans or cis "a"—of the free base is also available for the protonated salt.

Because, for the free base I, an equilibrium "trans=cis"a" includes ca. 90% trans-conformation, 1) the observed two signals at protonated species are regarded as of the two salts—trans and cis"a". From these chemical shifts, referring to those of the salts of II and III, the major salt is the trans and the minor is the cis"a".

As shown in Fig. 1, when [Base]>[H<sup>+</sup>], only one kind of signal is observed. In this condition, the presence of the free bases of the *trans*- and *cis*"a"-conformer as well as the *trans* and *cis*"a" salts are expected. And,

$$k_{trans}$$
 $k_{cis}$ 
 $k_{cis}$ 
 $k_{2}$ 
 $k_{1}$ 
 $k_{2}$ 
 $k_{2}$ 
 $k_{1}$ 
 $k_{2}$ 
 $k_{3}$ 
 $k_{4}$ 
 $k_{5}$ 
 $k_{6}$ 
 $k_{1}$ 
 $k_{2}$ 
 $k_{2}$ 
 $k_{3}$ 
 $k_{4}$ 
 $k_{5}$ 
 $k_{5}$ 
 $k_{6}$ 
 $k_{7}$ 
 $k_{1}$ 

these species are reached to a rapid equilibrium as shown in Chart 3, where the observed chemical shifts are averaged in the NMR time scale and are also the weighed average of these species.

## 2) Nitrogen Inversion Rate of 1,2,3,4,6,7-Hexahydro-11bH-benzo[ $\alpha$ ] quinolizine (I)

Delpuech, et al.<sup>4)</sup> determined the nitrogen inversion rate of piperidine derivative having two kinds of protonated salts from <sup>1</sup>H NMR under the alteration of pH. In the system as shown in Chart 2, while two different sharp signals are observed for some protons at the complete protonation, the equilibriums depicted as  $k_1$  and  $k_2$  as well as  $k'_1$  and  $k'_2$  are gradually established with the progressive increase of pH, and the two different signals become broad by the exchange, thus bringing a coalescence.<sup>4)</sup>  $k_A$  and  $k_B$  are approximated as below;

$$\frac{1}{\tau_{AH}} = \frac{K_i \cdot k_A}{[H^+]} \quad \text{and} \quad \frac{1}{\tau_{BH}} = \frac{K_i \cdot k_B}{[H^+]} \tag{1}^{4}$$

where  $K_i$  is the acid dissociation constant, and  $\tau_{AH}$  and  $\tau_{BH}$  are the life times of isomer AH and BH on the exchange, as determined by a NMR line-broadening as represented in Eq. (2).

$$\frac{1}{\tau_{AH}} = \pi \cdot \Delta W_{AH} \quad \text{and} \quad \frac{1}{\tau_{BH}} = \pi \cdot \Delta W_{BH}$$
 (2)

In Eq. (2),  $\Delta W$  is the increment of the width in Hz at half-height of each signal by the exchange. For the salts of the system as shown in Chart 2, when NMR spectra are measured with the successive increase of pH from the acidic side and the variations of half-height width are measured for each signal,  $k_A$  and  $k_B$  are determined from Eq. (1) and (2) when  $pK_a$  is known.

Since Chart 3 is replaced by Chart 2, above treatments are available for I. Therefore, these treatments were applied to  $^{13}$ C NMR of I·HCl.  $^{13}$ C NMR of I·CHI in  $D_2$ O solution was measured under the alteration of pD, and parts of the spectra were reproduced in Fig. 2. On the dissolution in  $D_2$ O (pD=0.54), a I·HCl gave sharp signals (cf. Fig. 2(a)), which became broad with the increase of pD (cf. Fig. 2(b)), and at pD=ca.6.00 the signals corresponding to the cis "a" salt became unobservable in the noise (Fig. 2 (c)). From the observation of the signals shown in Fig. 2, the averages of the increment of the half-height width for each signal between pD=5.55 or 6.00 and ca. 0.54 were measured, and the results determined  $k_{trans}$  and  $k_{cts}$ . From Eq. (1) and (2),  $k_{trans}$  and  $k_{cts}$  are represented by Eq. (3).

$$k_{trans} = \frac{\pi \cdot \Delta W_{trans \cdot H^{+}} \cdot [H^{+}]}{K_{i}}$$

$$k_{ots} = \frac{\pi \cdot \Delta W_{cts \cdot H^{+}} \cdot [H^{+}]}{K_{i}}$$
(3)

The results of each salt are summarized in Table II. Two values of  $k_{trans}$  given at two conditions -pD=5.55 and 6.00- are similar from each other. This fact supports the validity of this treatment. The nitrogen inversion rate<sup>8)</sup> of N-methyl-1,2,3,4-tetrahydroisoquinoline<sup>5)</sup> is comparable to the  $k_{trans}$  determined in this work.

Table II. Difference of the Width at Half-height of the Peak (AW) and Calculated Nitrogen Inversion Rates (k<sub>trans</sub> and k<sub>cts</sub>) of I

| *************************************** | 1  | ρD              | $arDelta \overline{W}$ (Hz) | k (sec-1)                    |  |
|-----------------------------------------|----|-----------------|-----------------------------|------------------------------|--|
| tran                                    | ns | $6.00 \pm 0.01$ | 6.17±0.7                    | $10.4 (\pm 0.4) \times 10^3$ |  |
|                                         |    | $5.55 \pm 0.01$ | $1.97 \pm 0.7$              | $9.35(\pm 0.4) \times 10^3$  |  |
| cis                                     |    | $5.55 \pm 0.01$ | $4.77 \pm 0.7$              | $22.6 (\pm 0.4) \times 10^3$ |  |
|                                         |    |                 |                             |                              |  |

It is obvious from Chart 3 that the ratio of the population for each conformer is inversely proportional to the ratio of the inversion rate, namely.

$$p_{trans}/p_{cis} = k_{cis}/k_{trans} \tag{4}$$

consequently, from the values of k at pD=5.55,  $p_{trans}/p_{cis}=7/3$ , which suggests a ca. 70% population of the trans-conformer of the free base, is obtained. Fot I, however, a 92—93% population of the trans-conformer was concluded by means of the Bohlmann band of IR and the induced paramagnetic shift by Ni(AA)<sub>2</sub> as well as the <sup>13</sup>C chemical shift of C-6.<sup>13</sup> This discrepancy is probable from the difference of  $K_1$  in Eq. (3) for the conformer trans or cis "a". Though only one value was given for  $pK_a$  of I by the potentiometric titration, the possibility of the presence of two  $pK_a$  of the trans- and cis "a"-conformer is expected. In this experiment, the same  $K_1$  in Eq. (3) is used for the estimation of  $k_{trans}$  and  $k_{cis}$ . In order to obtain  $p_{trans}/p_{cis}$  (= $k_{cis}/k_{trans}$ )=9/1,  $K_1$  of the cis-conformer should be smaller than that of the trans and it is expected that  $K_1(cis)=1/(3-4)\cdot K_1(trans)$ , namely  $pK_a$  (cis)= $pK_a$  (trans) +ca.0.5—0.6. Since, in the free base, the equilibrium "trans $\Rightarrow$ cis "a" "lies rather to the trans-site,  $pK_a$  obtained from the potentiometric titration-8.73- is assigned to the trans-conformer. Consequently,  $pK_a$  of the cis-conformer is expected to be higher than that of the trans by 0.5—0.6 unit.

#### 3) Conformational Dependence of $pK_a$

In the preceding section, two conformers of I-trans and cis "a"- were expected to afford the different  $pK_a$  from each other. This difference is ascribed to the steric factor, when other situation is similar between these two conformers. In the trans-conformer, the surroundings of the nitrogen lone-pair are more crowded by  $\beta$  axial protons. Previously, we have observed that II with a 100% trans conformation was not coordinated by the paramagnetic shift reagent Ni(AA)<sub>2</sub>, while III showed significant paramagnetic shift, and these observations are provably attributed to the steric hindrance of the trans-conformer. However, since the steric requirement of proton is known to be smaller, 9 the similar situation of the addition of Ni(AA)<sub>2</sub> is not available.

In order to elucidate the conformational dependence of  $pK_a$ , the difference of  $pK_a$  between II and III have been examined. <sup>1</sup>H Chemical shifts of II with a 100% trans conformation and III with a 80% cis conformation were measured under the successive alteration of pD. 11b-H Chemical shifts of both compound are readily observable because of the absence of overlapping and its marked shift. Then, the variations of the 11b-H chemical shifts of CD<sub>3</sub>OD solution at several acidities are represented in Fig. 4, which indicate the clear difference between

<sup>8) =</sup>  $1.0(\pm 0.2) \times 10^4 \text{ sec}^{-1}$ .

<sup>9)</sup> H.C. Brown, D.H. McDaniel, and O. Häfliger, "Determination of Organic Structures by Physical Methods," ed. by E.A. Braude and F.C. Nachod, Academic Press Inc., New York, 1955, p. 603.

II and III. The roundings of the two curves are due to the protonation of each base, and their midpoints are regarded as an apparent  $pK_a$ . Therefore, for III, the higher  $pK_a$  by nearly one unit than II is obvious.

Although this experiment is carried out in  $CD_3OD$  and does not afford the real  $pK_a$ , the difference between these two derivatives is significant. In the preceding section, the assumption of  $pK_a(cis) = pK_a(trans)^+(0.5-0.6)$  has been postulated to resolve the conflict of the experiments. This conclusion is also supported by the above observation even though the difference of solvent, etc. are taken into account.

It is concluded that two conformers of benzo[a]quinolizidines-trans and cis "a"-have the different  $pK_a$ , and the value of the cis "a"-conformer is higher than that of the trans-conformer by 0.5—1 unit. This difference is attributed to the conformational difference and reflects the stability of the salt including the effect of solvent and ion-pair, since the steric requirement of proton is negligible.

Acknowledgement The authors wish to thank Mrs. N. Motohashi of Kobe Women's College of Pharmacy for her helpful advice of the determination of  $pK_a$ .