Chem. Pharm. Bull. 26(9)2689-2693(1978)

UDC 547.597.02:543.422.25.06

Studies on the Constituents of the Medicinal Plants. XXI.¹⁾ Constituents of the Leaves of *Clethra barbinervis* Sieb. et Zucc. (2)²⁾ and the ¹³C-Nuclear Magnetic Resonance Spectra of 19α-Hydrox-yurs-12-en-28-oic Acid Type of Triterpenoids

Kōtaro Takahashi and Masako Takani

Faculty of Pharmaceutical Sciences, Kanazawa University3)

(Received February 14, 1978)

A new tetrahydroxy triterpene acid, named clethric acid (I), in addition to barbinervicand rotundic-acids, has been isolated from the leaves of *Clethra barbinervis* Sieb. et Zucc and clethric acid was elucidated as $3\alpha,19\alpha,23,24$ -tetrahydroxyurs-12-en-28-oic acid by the chemical and spectral evidences.

The ¹³C-nuclear magnetic resonance spectra of the methylates and acetyl methylates of clethric acid, pomolic acid, rotundic acid and barbinervic acid were studied.

Keywords——Clethra barbinervis Sieb. et Zucc.; Clethraceae; 19α-hydroxyurs-12-en-28-oic acid-type triterpenoid; clethric acid; ¹H–NMR; ¹³C–NMR

It was reported that taraxerol and ceryl cerotinate were isolated from the barks4) of Clethra barbinervis and ursolic acid from the fruits4) and barbinervic acid and rotundic acid from the leaves.2) This paper deals with the isolation and the structural elucidation of a new triterpene acid named clethric acid from the leaves. The methanolic extract of the leaves was extracted with petroleum ether, benzene, ethyl acetate and acetone, successively. The ethyl acetate-soluble and acetone-soluble fractions afforded clethric acid, $C_{30}H_{48}O_6$ (I), colorless needles of mp 284—287°, $\lceil \alpha \rceil_{\rm D}^{\rm ir} = +50^{\circ}$ (c=0.69, MeOH), Liebermann–Burchard test: red-violet. The acid (I) shows the infrared (IR) absorption bands (cm⁻¹) at 3500—3200 (OH), 1710 (COOH), 1650—1620 (trisubstituted double bond), 1065 (secondary OH), 1015 (primary OH), 920 (tertiary OH). The acid (I) afforded, by the methylation with diazomethane, monomethyl ester C₃₁H₅₀O₆·1/2 H₂O (II), colorless needles of mp 206°, which afforded triacetyl methylate C₃₇H₅₆O₉ (III), colorless needles of mp 205—207° by the acetylation with acetic anhydride and pyridine. Acetyl methylate (III) shows the IR bands at 3600—3200 (OH), 1740, 1735, 1710 (acetyl and methyl ester groups), 1640—1630, 845 (trisubstituted double bond) and 935 (tertiary OH). Methylate (II) afforded two types of monoacetonides, C₃₄H₅₄O₆ (IV) of mp 145° (dec.) and $C_{34}H_{54}O_6$ (V) of mp 145° (dec.). The mass spectrum (MS) of I (M⁺ =m/e 504) shows species at m/e 240 ($C_{14}H_{24}O_3$, A) and at m/e 264 ($C_{16}H_{24}O_3$, B), which would result from the M+ ion by the retro-Diels-Alder (RDA) fragmentation, characteristic for Δ^{12} -amyrine type triterpenoid. The MS of I shows also species at m/e 222 (A-H₂O), m/e $204 \text{ (A-2H}_2\text{O)}, m/e \ 186 \text{ (A-3H}_2\text{O)}, m/e \ 246 \text{ (B-H}_2\text{O)}, m/e \ 201 \text{ (B-H}_2\text{O-COOH)}, m/e \ 218$ B-HCOOH), m/e 200 (B-HCOOH-H₂O). The MS of III (M+=644) shows species at m/e 366 ($C_{20}H_{30}O_6$, A') and m/e 278 ($C_{17}H_{26}O_3$, B') by the RDA fragmentation and also species at m/e 306 (A'-AcOH), m/e 246.163 ($C_{16}H_{22}O_{2}$, A'-2AcOH), m/e 186.136 ($C_{14}H_{18}$, A'-3AcOH) and at m/e 260.182 ($C_{17}H_{24}O_2$, $B'-H_2O$), m/e 245.153 ($C_{16}H_{21}O_2$, $B'-H_2O-CH_3$), m/e 219.172 (C₁₅H₂₃O, B'-COOCH₃), m/e 218.165 (C₁₅H₂₂O, B'-HCOOCH₃), m/e 203.147 $(C_{14}H_{19}O, B'-HCOOCH_3-CH_3), m/e 201.162 (C_{15}H_{21}, B'-H_2O-COOCH_3), m/e 200.152 (C_{15}-COOCH_3)$

¹⁾ Part XX: K. Takahashi, S. Matsuzawa, and M. Takani, Chem. Pharm. Bull. (Tokyo), 26, 1677 (1978).

²⁾ M. Takani, K. Kubota, M. Nozawa, T. Ushiki, and K. Takahashi, Chem. Pharm. Bull. (Tokyo), 25, 981 (1977)

³⁾ Location: Takaramachi, Kanazawa, 920, Japan.

⁴⁾ Y. Tanabe, T. Oda, and K. Takahashi, Yakugaku Zasshi, 86, 441 (1966).

 $\rm H_{20},~B'-HCOOCH_3-H_2O)$, and m/e 146.110 ($\rm C_{11}H_{14}$, RDA fragment ion from species m/e 218.165). These chemical and spectral evidence suggest that clethric acid (I) has three OH groups on the ring A and/or B, which are easily acetylated and capable to form two types of acetonides IV and V, and a OH group on the ring E or D, which is sterically hindered, and a trisubstituted double bond at the $\rm C_{12}$ -carbon, and a carboxylic acid group on the ring D or E, although studies on the dehydration from species A should further be performed.

The ¹H nuclear magnetic resonance (NMR) spectra (δ -value) of II and III (Table I) could be interpreted as follows:

			•	, ,	
=C	H	C ₁₈ –H	C ₃ –H	C ₄ -CH ₂ -O-	COOCH ₃
Ш 5.3	35 2			3.92, q, 2H $J=11$, $\delta_{AB}=27$	3.59
m,	1H	s, 1H	$W_{\rm h/2} = 5$	3.70, q, 2H $J=15$, $\delta_{AB}=29$	s, 3H
I	35 2			4.22, dull, 2H	3.60
m,		s, 1H	$W_{\rm h/2}=5$	4.11, q, 2H $J=11$, $\delta_{AB}=7$	s, 3H
IV 5.3	34 2		4.06	3.84, q, 2H $J=11$, $\delta_{AB}=29$	3.60
الأرامية المتراج المتراجي المراجع		s, 1H	$W_{\rm h/2} = 7$	3.67, q, 2H $J=12$, $\delta_{AB}=22$	s, 3H
V 5.3	36 2			3.77, dull, 2H 3.67, q, 2H	3.60

 $W_{h/2} = 6$

m, 1H

s, 1H

J=17, $\delta_{AB}=22$

s, 3H

Table I. The ¹H-NMR Data (δ-value in CDCl₃, 100 MHz, J in Hz)

	*			CH₃				-O-CMe ₂ -O-
		C_{25}	C ₂₆	C ₂₇	C ₂₉	C ₃₀	OAC	-0-01/102-0-
	Ι	0.82	0.65	1.21	1.27	0.94 d, 3H		
	Ш	s, 3H 0.97	s, 3H 0.69	s, 3H 1.21	s, 3H 1.31		1.99	
2 - 2 - 4		s, 3H	s, 3H	s, 3H		d, 3H $J=6$	s, 3H 2.06 s, 6H	
4	IV	0.92	0.69	1.22	1.31	0.95 d, 3H	* 7.1 .777.	1.40 s, 3H
		s, 3H	s, 3H	s, 3H	s, 3H	J=6		1.43 s, 3H
	V	0.82	0.70	1.21	1.26	0.93 d, 3H	. •	1.34 s, 3H
		s, 3H	s, 3H	s, 3H	s, 3H	J=6		1.38 s, 3H

Abbreviation: s, singlet; d, doublet; q, quartet; m, multiplet.

The δ -value (5.35) of the signal of II and that (5.35) of the signal of III, respectively assignable to the signal of the olefinic proton and that (2.58, s) of the signal of II and that (2.60, s) of the signal of III, respectively assignable to the C₁₈-proton are nearly equal to those of the corresponding signals of methyl esters and acetyl methyl esters of barbinervic acid,²⁾ rotundic acid,²⁾ and diacetyl tormentic acid,⁵⁾ respectively. But II does not exhibit the NMR signal assignable to the proton at the C₁₉-carbon, while siaresinolic acid methyl ester⁶⁾ and spinosic

⁵⁾ K. Takahashi, M. Ogura, and Y. Tanabe, Chem. Pharm. Bull. (Tokyo), 20, 2106 (1972).

⁶⁾ R.T. Aplin, W.H. Hui, C.T. Ho, and C.W. Yee, J. Chem. Soc. (C), 1971, 1067.

acid A methyl ester⁶⁾ exhibit respectively the signal of the proton at the C₁₉-carbon at 3.32 and 3.35. These spectral evidences indicate that clethric acid (I) could be assumed to be a trihydroxy derivative of 19α-hydroxyurs-12-en-28-oic acid type of triterpenoid. Methylate (II) shows the NMR methyl signals at 0.65 (s), 1.21 (s), 1.27 (s) and 0.94 (d, J=6 Hz). These δ-values are respectively nearly equal to those of the methyl signals of the C₂₆, C₂₇, C₂₉ and C_{30} carbons of methyl barbinervate, suggesting the absence of the shielding effects of a secondary OH group on the C₂₆ and C₂₇ methyl groups of II and so the absence of an axial secondary OH group at the C₆ or the C₇ carbons of II. Acetyl methylate (III) shows five methyl signals at 0.97 (s), 0.69 (s), 1.21 (s), 1.31 (s) and 0.94 (d, J=6 Hz), whose values are respectively nearly equal to those of the methyl signals of the C_{25} , C_{26} , C_{27} , C_{29} and C_{30} of acetyl methyl barbinervate, but III does not show a methyl signal which corresponds to the C23-methyl signal (0.93) of acetyl methyl barbinervate, suggesting that III has an equatorial CH₂OAc group in addition to an axial CH₂OAc at the C₄ carbon. Acetyl methylate (III) shows, as expected, two methylene signals of the CH₂OAc groups at 4.22 (2H, m) and 4.11 (2H, m), while methylate (II) shows these signals at 3.92 and 3.70, respectively, by the expected upfield shift. Acetyl methylate (III) shows also a methine signal of a HC-OAc group at 5.02 (m, $W_{h/2}=5$ Hz) as acetyl methyl barbinervate (4.94). A greatly reduced half band width ($W_{h/2}=5$ Hz) of this signal due to the methine group linked to the acetoxy group could be attributed to a combination of two factors: first its equatorial nature and second the presence of only two vicinal protons.⁷⁾ Hence, this acetoxy group must be linked to the C₃-carbon as axial. The NMR evidence and the formation of two types of acetonides IV and V suggest also that two hydroxymethyl groups of I, mentioned above, must be present at the C₄-carbon. The acetonides IV and V show the MS species at m/e 278, 260, 218, which are observed on the MS of III as the fragment ions from the ring D and E by the RDA fragmentation, indicating that acetonides formation occurred at the ring A. Acetonides IV and V show respectively the NMR signal of the methine proton at the C_3 - carbon at 4.06 (m, $W_{h/2}=7$ Hz) and at 4.22 (m, $W_{\rm h/2}$ =6 Hz). The reduced half widths of these methine protons indicate that these protons are respectively equatorial as that of II and the conformation of each ring A of IV and V remains unchanged as a chair form and is not of boat form. The δ -value (4.22) of the methine proton at the C₃-carbon of V is nearly equal to that (4.24) of the methine proton at the C₃-carbon of II, suggesting that V could be considered to be C₂₃, C₂₄-acetonide and IV, whose methine proton resonates at rather high field (4.06), could be considered to be C_{3a}, C₂₃-acetonide as shown in Chart 1. These chemical and spectral evidences indicate that clethric acid (I) could be elucidat-

I:
$$R^1=R^2=R^3=R^4=H$$

II: $R^1=Me$, $R^2=R^3=R^4=H$

III: $R^1=R^3=R^4=R^4=H$

III: $R^1=Me$, $R^2=R^3=R^4=H$

III: $R^1=Me$, $R^2=R^3=R^4=H$

III: $R^1=Me$, $R^2=R^3=R^4=H$

III: $R^1=R^3=R^4=R^4=R^4=R^4=R^4$

III: $R^1=R^3=R^3=R^4=R^4=R^4$

III: $R^1=R^3=R^3=R^4=R^4=R^4$

III: $R^1=R^3=R^3=R^4=R^4=R^4$

III: $R^1=R^3=R^3=R^4=R^4=R^4$

III: $R^1=R^3=R^3=R^4=R^4=R^4$

III: $R^$

Chart 1

ed as 3α , 19α , 23, 24-tetrahydroxyurs-12-en-28-oic acid as shown in Chart 1, which is the first example of the naturally occurring urs-12-ene type of triterpenoid having geminal hydroxymethyl groups at the C₄-carbon in the ring A. The 13 C-NMR spectra of the methylates and

⁷⁾ E. Fattorusso, S. Magno, C. Santacroce, and D. Sica, Tetrahedron, 28, 5993 (1972).

acetyl methylates of clethric acid (I), pomolic acid,⁸⁾ rotundic acid,²⁾ and barbinervic acid,²⁾ all of which belong to the 19α -hydroxyurs-12-en-28-oic acid type of triterpenoid were studied and all signals of each spectrum could be assigned to their appropriate carbons as expected for the proposal structures, respectively, as shown in Table II, taking the ¹³C-NMR spectra of hederagenin⁹⁾ and ursolic acid^{10,11)} into consideration.

TABLE II. The ¹³C-NMR Data (25.15 MHz, CDCl₃)

Methylate		Pomolic acid		Rotundic acid		Barbinervic acid		Clethric acid	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	Methylate		Methylate	Acetyl- methylate	Methylate		II	Ш
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			38.1(t)	38.1(t)	37.9(t)	33.1	33.4(t)	32.7(t)	33.2(t)
3 79.0 80.9 (d) 76.9 (d) 74.6 (d) 70.6 73.4 (d) 67.0 (d) 70.3 (d) 4 38.5 37.6 (s) 41.8 (s) 40.6 (s) 42.7 40.2 (s) 45.3 (s) 43.0 (s) 5 55.2 55.2 (d) 49.8 (d) 47.9 (d) 49.5 50.7 (d) 46.4 (d) 47.9 (d) 6 18.4 18.3 (t) 18.6 (t) 18.1 (t) 18.7 18.4 (t) 18.4 (t) 19.4 (t) 7 32.8 32.7 (t) 32.5 (t) 32.5 (t) 32.9 32.9 (t) 32.7 (t) 32.8 (t) 8 39.9 39.9 (s) 39.9 (s) 40.0 (s) 40.0 40.2 (s) 39.8 (s) 39.8 (s) 9 47.2 47.1 (d) 47.2 (d) 47.3 (d) 47.1 47.2 (d) 46.9 (d) 47.3 (d) 10 36.9 36.9 (s) 36.9 (s) 36.8 (s) 36.8 (s) 36.8 36.8 (s) 36.6 (s) 36.7 (s) 11 23.7 23.6 (t) 23.7 (t) 23.7 (t) 23.7 (t) 23.8 (t) 23.7 (t) 12 129.1 129.0 (d) 129.1 (d) 129.0 (d) 129.1 129.0 (d) 128.9 (d) 128.7 (d) 13 138.0 138.0 (s) 138.0 (s) 138.0 (s) 138.2 (s) 137.9 138.1 (s) 138.0 (s) 138.0 (s) 14 41.1 41.1 (s) 41.1 (s) 41.2 (s) 41.1 (s) 41.2 (s) 41.1 (s) 15 28.1 28.2 (t) 28.2 (t) 28.3 (t) 28.2 (2.2 3.7 (t) 22.5 5 (t) ²⁰ 25.5 (t) ²⁰			23.6(t)	26.8(t)	23.0(t)	25.2	22.5(t)	24.6(t)	
4 38.5 37.6(s) 41.8(s) 40.6(s) 42.7 40.2(s) 45.3(s) 43.0(s) 5 55.2 55.2(d) 49.8(d) 47.9(d) 49.5 50.7(d) 46.4(d) 47.9(d) 6 18.4 18.3(t) 18.6(t) 18.1(t) 18.7 18.4(t) 18.4(t) 19.4(t) 7 32.8 32.7(t) 32.5(t) 32.5(t) 32.9 32.9(t) 32.7(t) 32.8(t) 8 39.9 39.9(s) 39.9(s) 40.0(s) 40.0 40.2(s) 39.8(s) 39.9(s) 9 47.2 47.1(d) 47.2(d) 47.3(d) 47.1 47.2(d) 46.9(d) 47.3(d) 10 36.9 36.9(s) 36.9(s) 36.9(s) 36.8(s) 36.8 36.8 36.8 (s) 36.6(s) 36.7(s) 11 23.7 23.6(t) 23.7(t) 23.7(t) 23.7(t) 23.7(t) 23.8(t) 23.7(t) 12 129.0(d) 129.1(d) 129.0(d) 129.1 129.0(d) 128.9(d) 128.7(d) 13 138.0 138.0(s) 138.0(s) 138.2(s) 137.9 138.1(s) 138.0(s) 138.0(s) 138.0(s) 138.2(s) 137.9 138.1(s) 138.0(s) 138.0(s) 138.0(s) 138.2(s) 137.9 138.1(s) 138.0(s) 138.0(s) 138.0(s) 138.0(s) 138.0(s) 138.0(s) 47.9(s) 47.9					74.6(d)	70.6			
5 55.2 55.2 (d) 49.8 (d) 47.9 (d) 49.5 50.7 (d) 46.4 (d) 47.9 (d) 6 18.4 18.3 (t) 18.6 (t) 18.1 (t) 18.7 18.4 (t) 18.4 (t) 19.4 (t) 7 32.8 32.7 (t) 32.5 (t) 32.5 (t) 32.5 (t) 32.9 32.9 (t) 32.7 (t) 32.8 (t) 8 39.9 39.9 (s) 39.9 (s) 40.0 (s) 40.0 40.2 (s) 39.8 (s) 39.9 (s) 9 47.2 47.1 (d) 47.2 (d) 47.3 (d) 47.1 47.2 (d) 46.9 (d) 47.3 (d) 10 36.9 36.9 (s) 36.9 (s) 36.8 (s) 36.8 (s) 36.8 (s) 36.6 (s) 36.7 (s) 11 23.7 23.6 (t) 23.7 (t) 23.7 (t) 23.7 (t) 23.7 (t) 23.8 (t) 23.7 (t) 12 129.1 129.0 (d) 129.1 (d) 129.0 (d) 129.1 129.0 (d) 128.9 (d) 128.7 (d) 13 138.0 138.0 (s) 138.0 (s) 138.2 (s) 137.9 138.1 (s) 138.0 (s) 138.0 (s) 138.0 (s) 138.2 (s) 137.9 138.1 (s) 138.0 (s) 138.0 (s) 138.0 (s) 138.2 (s) 137.9 138.1 (s) 138.0 (s) 13			37.6(s)	41.8(s)	40.6(s)	42.7	40.2(s)	45.3(s)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		55.2	55.2(d)	49.8(d)	47.9(d)	49.5	50.7(d)		
7 32.8 32.7(t) 32.5(t) 32.5(t) 32.9(t) 32.9(t) 32.7(t) 32.8(t) 8 39.9 39.9(s) 39.9(s) 40.0(s) 40.0 40.2(s) 39.8(s) 39.9(s) 9 47.2 47.1(d) 47.2(d) 47.3(d) 47.1 47.2(d) 46.9(d) 47.3(d) 10 36.9 36.9(s) 36.9(s) 36.8(s) 36.8(s) 36.8(s) 36.6(s) 36.7(s) 11 23.7 23.6(t) 23.7(t) 23.7(t) 23.7 23.7(t) 23.8(t) 23.7(t) 12 129.1 129.0(d) 129.1(d) 129.0(d) 129.1 129.0(d) 128.9(d) 128.7(d) 13 138.0 138.0(s) 138.0(s) 138.2(s) 137.9 138.1(s) 138.0(s) 138.0(s) 138.0(s) 14 41.1 41.1(s) 41.1(s) 41.1(s) 41.2(s) 41.1 41.2(s) 41.2(s) 41.2(s) 41.1(s) 15 28.1 28.2(t) 28.2(t) 28.3(t) 28.2 28.3(t) 28.2(t) 28.2(t) 16 25.5α) 25.5(t)α 25			18.3(t)	18.6(t)	18.1(t)	18.7	18.4(t)	18.4(t)	
8 39.9 39.9(s) 39.9(s) 40.0(s) 40.0 40.2(s) 39.8(s) 39.9(s) 9 47.2 47.1(d) 47.2(d) 47.3(d) 47.1 47.2(d) 46.9(d) 47.3(d) 47.3(d) 36.9 36.9(s) 36.9(s) 36.8(s) 36.8 36.8 36.8(s) 36.6(s) 36.7(s) 11 23.7 23.6(t) 23.7(t) 23.7(t) 23.7 23.7(t) 23.8(t) 23.7(t) 12 129.1 129.0(d) 129.1(d) 129.0(d) 129.1 129.0(d) 128.9(d) 128.7(d) 13 138.0 138.0(s) 138.0(s) 138.2(s) 137.9 138.1(s) 138.0(s) 138.0(s) 138.2(s) 137.9 138.1(s) 138.0(s) 138.0(s) 138.0(s) 138.2(s) 137.9 138.1(s) 138.0(s) 138.0(s) 138.0(s) 138.2(s) 137.9 138.1(s) 138.0(s) 138.0(s) 14 41.1 41.1(s) 41.1(s) 41.2(s) 41.1 41.2(s) 41.2(s) 41.1(s) 15 28.1 28.2(t) 28.2(t) 28.3(t) 28.2 28.3(t) 28.2(t) 28.2(t) 16 25.5(a) 25.5(t)(a) 25.5		32.8	32.7(t)	32.5(t)	32.5(t)	32.9	32.9(t)		
9 47.2 47.1(d) 47.2(d) 47.3(d) 47.1 47.2(d) 46.9(d) 47.3(d) 10 36.9 36.9(s) 36.9(s) 36.9(s) 36.8(s) 36.8 36.8(s) 36.6(s) 36.7(s) 11 23.7 23.6(t) 23.7(t) 23.7(t) 23.7 23.7(t) 23.8(t) 23.7(t) 12 129.10(d) 129.1(d) 129.0(d) 129.1 129.0(d) 128.9(d) 128.7(d) 13 138.0 138.0(s) 138.0(s) 138.2(s) 137.9 138.1(s) 138.0(s) 138.0(s) 138.0(s) 138.2(s) 137.9 138.1(s) 138.0(s) 138.0(s) 138.1(s) 138.0(s) 138.1(s) 138.0(s) 138.2(t) 28.2(t) 28.		39.9	39.9(s)	39.9(s)	40.0(s)	40.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		47.2	47.1(d)	47.2(d)	47.3(d)	47.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	36.9	36.9(s)			36.8		36.6(s)	36.7(s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	23.7		23.7(t)	23.7(t)	23.7	23.7(t)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	129.1	129.0(d)	129.1(d)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	138.0	138.0(s)						138.0(s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	41.1		41.1(s)					41.1(s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	28.1	28.2(t)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	25.5^{a}							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		47.9		47.9(s)			47.9(s)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		53.2	53.3(d)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	73.1	73.0(s)	73.1(s)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		41.1	41.1(d)	41.1(d)	41.2(d)	41.1		41.1(d)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		26.0^{a}	$26.0(t)^{a}$	$26.0(t)^{a}$		26.0^{a}		26.0(t)a)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			37.4(t)	37.4(t)	37.4(t)	37.4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	28.1	28.2(q)	72.1(t)	65.5(t)	21.6	22.1(q)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$16.7(q)^{b}$	11.3(q)	13.1(q)	66.5	66.7(t)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	15.5^{b}	15.3(q)			15.6	15.5(q)	14.9(q)	15.2(g)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$16.7(q)^{b}$	$16.6(q)^{b}$	$16.7(q)^{b}$	$16.5^{b)}$	$16.5(q)^{b}$		$16.5(q)^{b}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		24.5	24.5(q)	24.5(q)	24.4(q)	24.6	24.6(q)	24.6(q)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				178.3(s)	178.3(s)	178.2	178.3(s)	178.5(s)	178.2(s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							27.5(q)	27.4(q)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$16.1(q)^{b}$	$16.1(q)^{b}$	16.1^{b}	$16.1(q)^{b}$	$16.1(q)^{b}$	$16.1(q)^{b}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				51.5(q)	51.5(q)	51.5	51.5(q)	51.6(q)	51.5(q)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OCO <u>C</u> H	3	21.3(q)				20.9(q)		21.2(q)
OCOCH ₃ 170.8(s) 170.9(s) 171.1(s) 170.5(s) 170.6(s) 170.4(s) 170.5(s)					20.9(q)		21.3(q)		20.9(q)
$OCOCH_3$ 170.8(s) 170.9(s) 171.1(s) 170.5(s) 170.6(s) 170.4(s)									20.9(q)
	OCOCH,	3	170.8(s)						
169.9(s)				•	170.6(s)		170.4(s)		
									169.9(s)

a), b), c): Values in any vertical column may be reversed although those given here preferred. The letter in parentheses designates the multiplicity of signal with off-resonance decoupling. Abbreviation: s, singlet; d, doublet; t, triplet; q, quartet.

⁸⁾ C.H. Brieskorn and H. Wunderer, Chem. Ber., 100, 1252 (1967); K. Takahashi, S. Kawaguchi, K. Nishimura, K. Kubota, Y. Tanabe, and M. Takani, Chem. Pharm. Bull. (Tokyo), 22, 650 (1974).

⁹⁾ K. Tori, S. Seo, A. Shimaoka, and T. Tomita, Tetrahedron Lett., 1974, 4227.

¹⁰⁾ S. Seo, T. Tomita, and K. Tori, Tetrahedron Lett., 1975, 7.

¹¹⁾ S.A. Knight, Org. Magn. Reson., 6, 603 (1974).

Experimental

The following instruments were used for the physical data. Melting point: Yanagimoto Micro-Melting apparatus (a hot plate type); IR (cm⁻¹): Nippon Bunko IR-G spectrometer in KBr; NMR (δ-value in ppm): JNM-PS-100 high resolution instrument at 100 MHz (¹H) and at 25.15 MHz (¹³C) in CDCl₃ with (CH₃)₄Si as an internal reference; MS: JMS-OISG mass spectrometer (direct inlet, 75 eV); Optical rotation: Nippon Bunko automatic polarimeter DIP-SL at 589 nm. The thin-layer chromatogram (TLC) was obtained on a glass plate coated with Kieselgel G (Stahl). The column chromatography was carried out using Kieselgel 60 (Stahl).

Isolation of I——Dried leaves (4.8 kg) of Clethra barbinervis were extracted with methanol and then the extract was concentrated in vacuo to afford a powder (500 g), which was adsorbed on a celite (100 g) and the celite was extracted with petr-ether, benzene, ethyl acetate and acetone, successively. The ethyl acetate—soluble and acetone—soluble fractions (49 g) were chromatographed on a column of silica gel (1 kg) with methanol—chloroform (1:2). The fraction (840 mg) of Rf 0.34 (TLC, MeOH—CHCl₃=1:10) was chromatographed on a column of silica gel (170 g) with acetone—CHCl₃ (1:2) to afford colorless needles (304 mg) of mp 288° from methanol—benzene, which was proved to be identical with rotundic acid²) by the mixed fusion and IR. The fraction (430 mg) of Rf 0.27 (TLC, MeOH—CHCl₃=1:10) was chromatographed on a column of silica gel (170 g) with acetone—chloroform (2:3) to afford colorless needles (427 mg) of mp 297—299° from methanol, which was proved to be identical with barbinervic acid²) by the mixed fusion, IR and TLC. The fraction (900 mg) of Rf 0.25 (TLC, CH₃OH—CHCl₃=1:10) was chromatographed on a column of silica gel (180 g) with acetone—chloroform (2:3) to afford colorless needles (I) (130 mg) of mp 284—287° from methanol. Anal. Calcd. for C₃₀H₄₈O₆·H₂O: C, 68.93; H, 9.64. Found: C, 69.08; H, 9.86.

Methylation of I—I (260 mg) in methanol was methylated with diazomethane and the crude methylate was chromatographed on a column of silica gel (52 g) with acetone-chloroform (1:2) to afford colorless crystalline powder (II) (59 mg) of mp 206° from petr-ether. Anal. Calcd. for $C_{31}H_{50}O_6 \cdot 1/2H_2O$: C, 70.55; H, 9.74. Found: C, 70.61; H, 9.52. MS m/e: 518 (M⁺), 240 (A), 278 (B), 222 (A-H₂O), 204 (A-2H₂O), 186 (A-3H₂O), 260 (B-H₂O), 201 (B-H₂O-COOCH₃), 218 (B-HCOOCH₃), 200 (B-HCOOCH₃-H₂O).

Acetylation of II—II (164 mg) was acetylated with acetic anhydride (4.5 ml) and pyridine (2 ml) for 24 hr at room temperature and the crude acetyl methylate (176 mg) was chromatographed on a column of silica gel (35 g) with acetone-chloroform (1:25) to afford colorless needles (III) of mp 205—207° from n-hexane. Anal. Calcd. for $C_{37}H_{56}O_9$: C, 68.91; H, 9.75. Found: C, 69.07; H, 8.84.

Acetonides of II—A mixture of II (150 mg), p-toluenesulfonic acid (15 mg) in dry acetone (20 ml) was refluxed for 1 hr. The reaction mixture was poured into 4% K₂CO₃ solution and extracted with CHCl₃, which was washed with water and evaporated, after being dried over Na₂SO₄. The residue was chromatographed over silica gel with benzene-ether (5:1). The fraction of Rf 0.26 (TLC, benzene-ether=5:1) was crystallized from petr-ether and methanol to afford acetonide IV, crystalline powder of mp 145° (dec.). Anal. Calcd. for C₃₄H₅₄O₆: C, 73.08; H, 9.74. Found: C, 72.45; H, 9.97. The fraction of Rf 0.19 (TLC, benzene-ether=5:1) was crystallized from petr-ether and ether to afford acetonide V, crystalline powder of mp 145° (dec.). Anal. Calcd. for C₃₄H₅₄O₆: C, 73.08; H, 9.74. Found: C, 73.03; H, 9.98.

Acknowledgement The authors thank Mr. Y. Itatani for NMR spectra, Miss Y. Arano for elemental analyses and Miss K. Ohata for MS spectra. Thanks are due to Miss J. Urata for her technical assistance.