Chem. Pharm. Bull. 27(1) 38—42 (1979)

UDC 547.92.08:543.422.25.06

Carbon-13 Nuclear Magnetic Resonance of 24-Substituted Steroids¹⁾

Naoyuki Koizumi,^{2a)} Yoshinori Fujimoto,^{2a)} Toru Takeshita,^{2b)} and Nobuo Ikekawa^{2a)}

Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology^{2a)} and Teijin Institute of Biomedical Research^{2b)}

(Received May 30, 1978)

 13 C-NMR spectra of epimeric pairs of 24-hydroxy-, 24,25-dihydroxy-, 1,24-dihydroxy-, 24-methyl- and 24-ethyl-cholesterols were measured and the signals of all carbons assigned. Most of the side chain carbons in the C-24 epimeric mixtures showed split signals and characteristic differences between 24R and 24S isomers were recognized for the C-20 and C-24 signals, these resonances in the 24R compounds being always at slightly higher field than in the 24S isomers.

Keywords— 13 C-NMR of steroids; configuration at C-24 position of steroids; [24R]- and [24S]-24-hydroxycholesterols; [24R]- and [24S]-24-alkylcholesterols; stereochemical assignments

During the course of our studies on the synthesis of [24R]- and [24S]-24-hydroxy and alkyl substituted cholesterols, it was found that the ¹³C-nuclear magnetic resonance (NMR) is useful for stereochemical assignment of the C-24 epimers and some of data was already reported.³⁾ In this paper we would like to report the assignments of all carbons of epimeric pairs of 24-hydroxy- (1, 2), 24,25-dihydroxy- (3), 1,24-dihydroxy- (4, 5), 24-methyl- (6), and 24-ethyl- (7) cholesterol derivatives. The usefulness of ¹³C-NMR spectra for determination of the configuration at C-22 of 22-substituted cholesterols have been reported by Letourneux et al.⁴⁾

$$R^{2}O$$
 R^{1}
 R^{3}
 R^{4}
 $R^{2}O$

24R series

1a: $R^1 = H$, $R^2 = H$, $R^3 = OH$, $R^4 = H$

2a: $R^1 = H$, $R^2 = Bz$, $R^3 = OBz$, $R^4 = H$

3a: $R^1=H$, $R^2=Bz$, $R^3=OBz$, $R^4=OTMS$

4a: $R^1 = OH$, $R^2 = Bz$, $R^3 = OBz$, $R^4 = H$

5a: $R^1 = OAc$, $R^2 = Bz$, $R^3 = OBz$, $R^4 = H$

6a: $R^1 = H$, $R^2 = H$, $R^3 = Me$, $R^4 = H$

7a: $R^1 = H$, $R^2 = H$, $R^3 = Et$, $R^4 = H$

24S series

1b: $R^1 = H$, $R^2 = H$, $R^3 = OH$, $R^4 = H$

2b: $R^1 = H$, $R^2 = Bz$, $R^3 = OBz$, $R^4 = H$

3b: $R^1 = H$, $R^2 = Bz$, $R^3 = OBz$, $R^4 = OTMS$

4b: $R^1 = OH$, $R^2 = Bz$, $R^3 = OBz$, $R^4 = H$

5b: $R^1 = OAc$, $R^2 = Bz$, $R^3 = OBz$, $R^4 = H$

6b: $R^1 = H$, $R^2 = H$, $R^3 = Me$, $R^4 = H$

7b: $R^1 = H$, $R^2 = H$, $R^3 = Et$, $R^4 = H$

Chart 1

¹⁾ This is Part 49 in the series of "Studies on Steroids." Part 48 see M. Ishiguro, H. Saito, and N. Ikekawa, J. Chem. Soc., Perkin I, in press.

²⁾ Location: a) Nagatsuta, Midori-ku, Yokohama 227, Japan; b) Hino-shi, Tokyo 191, Japan.

³⁾ N. Koizumi, M. Morisaki, N. Ikekawa, A. Suzuki, and T. Takeshita, Tetrahedron Lett., 1975, 2203.

⁴⁾ Y. Letourneux, Q. Khuong-Huu, M. Gut, and G. Lukacs, J. Org. Chem., 40, 1674 (1975).

Table I. Chemical Shifts of ¹³C-NMR

. 1	
24(S)- Et 7 b	37.1 31.5 31.5 31.5 31.7 31.7 31.7 32.0 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6
24(R)- Et 7a	37.1 31.5 31.5 31.5 31.8 31.8 31.8 31.8 32.0 39.6 42.1 22.0 39.6 39.6 39.6 39.6 39.6 39.6 39.0 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11
24(S)- Me 6b	37.3 31.7 71.8 71.8 71.8 71.9 31.9 31.9 50.1 36.0 11.9 19.4 19.4 19.4 33.8 33.8 33.8 33.6 11.6
$\frac{24(R)}{Me}$	37.3 31.7 42.4 140.7 121.7 121.7 121.7 121.7 121.9 36.5 28.2 28.2 28.2 28.2 11.9 19.4 19.4 19.7 19.8 33.8 33.8 33.9 18.7 18.7
24(S)- OBz 1α- OAc 3-Bz 5b	74.3 31.9 69.8 37.3 135.4 124.7 124.7 31.6 41.9 40.3 20.3 39.4 42.1 27.9 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11
$24(R)$ - OBz 1α - OAc OAc 3 -Bz $5\mathbf{a}$	74.3 31.9 69.8 37.3 135.4 124.7 31.6 31.6 41.9 40.3 20.3 39.4 42.1 27.9 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11
24(S)- OBZ 1α- OH 3-BZ 4b	72.4 34.7 70.1 37.3 136.0 126.3 31.7 41.5 42.2 28.4 28.4 28.4 28.4 39.3 31.5 19.4 31.5 31.5 31.5 31.3 11.3
24(R)- OBZ 1α- OH 3-BZ 4a	72.4 34.7 70.0 37.3 136.0 126.3 31.7 31.7 31.7 41.8 42.2 39.4 42.2 39.7 49.7 49.7 49.7 49.7 49.7 49.7 49.7 4
24(S)- OBZ 25- OTMS 3-BZ 3b	38.4 28.0 28.0 37.2 140.2 123.2 32.0 32.0 32.0 32.0 36.8 36.8 42.5 56.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9 1
24(R)- $0Bz$ 25 - $0TMS$ $3-Bz$ $3a$	38.4 28.0 28.0 37.1 140.1 123.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0
24(S)- OBz 3-Bz 2b	38.2 27.9 27.9 37.0 139.4 122.5 31.8 31.8 39.7 42.2 28.1 11.8 11.8 11.8 11.8 11.8 11.8 1
24(R)- OBz 3-Bz 2a	38.2 27.9 27.9 37.0 139.3 122.4 31.8 31.8 42.2 24.2 28.1 19.3 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11
24(S)- OH 1b	37.1 31.5 71.5 71.5 71.5 71.5 121.0 31.8 31.8 31.8 32.1 24.2 28.1 28.1 28.1 19.0 33.0 33.0 16.7
24(R)- OH 1a	37.1 31.5 71.5 71.5 71.5 71.5 71.5 71.6 31.8 31.8 32.0 39.6 49.9 39.6 56.5 57.8 11.8 11.8 11.8 30.4 30.4 30.4 17.2
1α-OH- Chole- sterol 3-Bz	72.5 34.6 70.1 37.3 136.0 126.3 31.8 31.8 31.8 41.5 42.3 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0
Chole- sterol 3-Bz	38.1 28.1 28.1 37.0 139.3 11.8 31.8 39.7 24.2 28.1 11.8 11.8 11.8 11.8 11.8 27.9 27.9 27.9
Chole- sterol	37.8 31.9 31.9 71.6 141.5 121.6 32.3 32.3 32.3 32.3 40.3 40.3 40.3 12.3 12.3 19.1 19.1 36.7 22.8 23.9
Compd.	C - 13 C - 13

a) These assignments may be interchangeable. Carbon resonances of benzoate: 128.3 ± 0.5 , 129.6 ± 0.5 , 130.8 ± 0.5 , 132.7 ± 0.5 and 165.5 ± 0.5 . Carbon resonances of acetate: 21.0 and 169.5 ± 0.03 . Carbon resonances of trimethylsilyl group: 2.5.

40 Vol. 27 (1979)

We have recently synthesized the epimeric pairs of 24-hydroxy-, 5) 24,25-dihydroxy-, 6) 1,24-dihydroxy- 7) and 1,24,25-trihydroxy-vitamin D_3^{8}) and demonstrated stereochemical importance of C-24 position for eliciting biological activities: the 24R isomers are more active than the 24S isomers. 9-11) Separation of those epimers and determination of their configuration on C-24 position were achieved with various 24-hydroxycholesterol derivatives which were the synthetic precursors of the corresponding vitamin D_3 . ¹³C-NMR spectra of those 24-hydroxycholesterols were measured for application to stereochemical determination. Although, C-24 epimers of 24,25-dihydroxy derivatives were distinguished by ¹H-NMR,⁶) this technique could not differentiate the C-24 epimers of 24-hydroxy derivatives.⁵⁾ On the other hand, the configuration on C-24 of natural phytosterols having methyl or ethyl group at C-24 can be determined by ¹H-NMR, ¹²⁻¹⁴) but the ¹³C-NMR should be also useful for this purpose. Recently we have developed a facile method for synthesis of 24R- and 24S-alkylcholesterols¹⁵⁾ and a diagnostic difference was observed in the ¹³C chemical shifts of the side chain carbons in the epimeric pairs. Though the difference involved is small, it may be quite useful for stereochemical assignment when the epimers can be compared.

Chemical shift data examined are listed in Table I. Assignments were based on proton decoupled and off resonance spectra and on comparison with data of the cholesterol derivatives. The assignments of carbon resonances of 24-alkylcholesterols were also confirmed by application of Lindeman and Adams' parameter. CREsonances of ergostane have been reported, but the assignments have been revised by making use of the shieldings for 2,3-dimethylhexane. 16,17)

Most of the side chain carbons in the C-24 epimeric mixtures showed split signals. For examples, in the spectra of [24R]- and [24S]-24-methylcholesterols chemical shifts of C-20, 21, 23, 24, 25, 26 and 27 as well as C-17 were slightly different as shown in Fig. 1. Similar

Compound	1a	1b	2a	2 b	3a	3 b	4a	4 b	5a	5 b	6a	6b	7a	7b
Configuration on C-24	R	S	R	S	R	S	R	S	R	S	R	S	R	S
C-20 resonance	35.6	35.8	35.3	35.6	35.3	36.0	35.3	35.6	35.2	35.5	35.9	36.1	36.0	36.1
$\Delta(\delta_S - \delta_R)$	0.2		0.3		0.7		0.3		0.3		0.2		0.1	
C-24 resonance	76.6	77.0	79.2	79.6	80.7	81.7	79.2	79.6	79.0	79.4	38.9	39.1	45.6	45.8
$\Delta(\delta_S - \delta_R)$	0.4		0.4		1.0		0.4		0.4		0.2		0.2	

Table II. Chemical Shift Difference at C-20 and C-24 between the Two Series

⁵⁾ N. Ikekawa, M. Morisaki, N. Koizumi, M. Sawamura, Y. Tanaka, and H.F. DeLuca, *Biochem. Biophys. Res. Commun.*, 62, 485 (1975).

⁶⁾ M. Seki, N. Koizumi, M. Morisaki, and N. Ikekawa, Tetrahedron Lett., 1975, 15.

⁷⁾ M. Morisaki, N. Koizumi, N. Ikekawa, T. Takeshita, and S. Ishimoto, J. Chem. Soc., Perkin I, 1975, 1421.

⁸⁾ N. Ikekawa, M. Morisaki, N. Koizumi, Y. Kato, and T. Takeshita, Chem. Pharm. Bull. (Tokyo), 23, 695 (1975).

⁹⁾ Y. Tanaka, H. Frank, H.F. DeLuca, N. Koizumi, and N. Ikekawa, Biochem., 14, 3293 (1975).

¹⁰⁾ Y. Tanaka, H.F. DeLuca, N. Ikekawa, M. Morisaki, and N. Koizumi, Arch. Biochem. Biophys., 170, 620 (1975).

¹¹⁾ H. Kawashima, K. Hoshino, Y. Hashimoto, T. Takeshita, S. Ishimoto, T. Noguchi, N. Ikekawa, M. Morisaki, and H. Orimo, *FEBS Letters*, **76**, 177 (1977).

¹²⁾ M.J. Thompson, S.R. Dutky, G.W. Patterson, and E.L. Gooden, Phytochem., 11, 1781 (1972).

¹³⁾ E.R. Nes, K. Krevitz, and S. Behzadan, Lipids, 11, 118 (1976).

¹⁴⁾ I. Rubinstein, L.J. Goad, A.D.H. Claque, and L.J. Mulheirn, Phytochem., 15, 195 (1976).

¹⁵⁾ Y. Fujimoto and N. Ikekawa, J. Org. Chem., in press.

¹⁶⁾ J.W. Blunt and J.B. Stothers, Org. Magnetic Resonance, 9, 43 (1977).

¹⁷⁾ L.P. Lindeman and J.Q. Adams, Anal. Chem., 43, 1245 (1971).

¹⁸⁾ B. Balogh, D.M. Wilson, and A.L. Burlingame, Nature (London), 233, 261 (1971).

Fig. 1. Carbon Resonances of Epimeric Mixture of 24-Methylcholesterol (6a and 6b)

results for sitosteryl and clionasteryl acetates were reported recently. Characteristic differences between 24R and 24S isomers were recognized on both C-20 and C-24 resonance (Table II). Those resonance of the 24R compounds were always observed in higher field than that

of 24S isomers. It is interesting to note that this phenomenon was observed in spite of existence to two methylenes between asymmetric The different range between each epimers was at most 1.0 ppm at C-24 and 0.7 ppm at C-20 for 24,25-dihydroxycholesterol 24-benzoate 25-TMS ether (3), and at least 0.2 ppm at C-24 and 0.1 ppm at C-20 for 24-ethylcholesterol (7). These diagnostic effects might be thought to be due to the gaushe interaction $(\gamma\text{-effect})^{20}$ between C-20 and C-24, caused by the different population of the conformers in the 24-epimeric side chain. All-anti zigzag conformer is considered to be most favorable (I and II). Concerning on the $C_{22}-C_{23}$ bond, conformers (III) and (IV) represent the next favorable for 24R and 24S compounds, respectively. One of the possible explanations of the upfield shift of 24R-series may be obtained by the assumption that the population of the conformer (IV) of S-series might be diminished by 1,3-interaction between the C-24 substituent and C-20 in comparison with the conformer (III) for R-series. In view of a new

interpretation of γ -effect,²¹⁾ the conformer (III) may also cause upfield shift of the C-20 and C-24 signals by the effect. It has been explained clearly that chemical shift deference on C-23 between 22-substituted epimers was dependent on the conformation of steroidal side chain.²²⁾

Experimental

Material—Epimeric pairs of 24-hydroxycholesterol (1a and 1b),⁵⁾ 24-hydroxycholesterol dibenzoate (2a and 2b),⁵⁾ 24,25-dihydroxycholesterol 3,24-dibenzoate 25-trimethylsilyl ether (3a and 3b),⁶⁾ 1,24-dihy-

¹⁹⁾ S. Seo, Y. Tomita, and K. Tori, J. Chem. Soc., Chem. Commun., 1978, 319.

²⁰⁾ N.L. Allinger and E.L. Eliel, "Topics in Stereochemistry," Vol. 8, John Wiley and Sons, New York, 1974.

²¹⁾ H. Beierbeck and J.K. Saunders, Can. J. Chem., 54, 2985 (1976).

²²⁾ M. Nakane and N. Ikekawa, J. Chem. Soc., Perkin I, 1977, 1426.

droxycholesterol 3,24-dibenzoate (4a and 4b),7) 1,24-dihydroxycholesterol 1-acetate 3,24-dibenzoate (5a and 5b),7) 24-methylcholesterol (campesterol (6a) and dihydrobrassicasterol (6b)),15) 24-ethylcholesterol (sitosterol (7a) and clionasterol (7b))15) were all chemically synthesized. 1α -Hydroxycholesterol 3-benzoate was prepared from 1α -hydroxy-cholesterol;23) mp 172—173.5°.

¹³C-NMR Measurements——¹³C-NMR spectra were recorded with a JEOL PS/PFT-100 spectrometer at 25.2 MHz in CDCl₃ using 10 mm spinning tubes at 30° with tetramethylsilane as internal standard. Data were accumulated with a maximum of 0.61 Hz per data point. The spectra were determined as 0.1—0.05 M solutions and sample concentrations of each epimeric pair were almost same.

²³⁾ M. Morisaki, A. Saiga, K. Bannai, M. Sawamura, J. Rubio-Lightbourn, and N. Ikekawa, *Chem. Pharm. Bull.* (Tokyo), 23, 3272 (1975).