Chem. Pharm. Bull. 27(10)2450—2455(1979)

UDC 547.466.1.04:547.269.3.04

Intra- and Intermolecular Nucleophilic Cleavage of the Amide Bond of \(\beta\)-Lactams\(^1\)

SHINZO KANO, TSUTOMU EBATA, and SHIROSHI SHIBUYA

Tokyo College of Pharmacy2)

(Received May 2, 1979)

Treatment of 4-hydroxymethyl-1-phenylazetidin-2-ones (2a) and (2b) with methane-sulfonic acid afforded 4-anilino-2-oxo-tetrahydrofurans (3a) and (3b), respectively. In a similar way, 3-(2-hydroxybenzyl)-1-phenylazetidin-2-one (8), 1-(4-methoxyphenyl)-4-(2-piperidino)azetidin-2-one (13), 3-(2-aminobenzyl)-1-phenylazetidin-2-one (16) and 1-(4-methoxyphenyl)-3-(2-piperidinomethyl)azetidin-2-one (19) were subjected to cleavage of the amide bond to give the corresponding lactone and lactams (9), (14), (17) and (20), respectively. The amide bond of β -lactams was also found to be cleaved by alkyl lithium in the presence of N,N,N',N'-tetramethylethylenediamine to give β -aminoketones.

Keywords— β -lactam; cleavage of amide bond of β -lactams; γ -lactone; 3,4-dihydro-1H-2-quinolone; 2-indolizinone; 3-alkylidenation of β -lactam

It is well known that the amide bond of β -lactams is easily cleaved by nucleophilies such as amino and hydroxyl groups to form an XCO-C-C-N (X=N, O) functionality.^{3,4)} This high chemical reactivity of β -lactams has been applied to a synthesis of some heterocycles in order to demonstrate clearly the synthetic utility of monocyclic β -lactams. We report here the results of our studies on the synthetic utility of active intermediate β -lactams as a synthon for the CO-C-C-N moiety through nucleophilic cleavage of the amide bond.

First, nucleophilic cleavage of the amide bond by the hydroxyl group was utilized for the formation of γ -lactone derivatives. Reduction of the acid chloride (1a)⁵⁾ with sodium borohydride (NaBH₄) in tetrahydrofuran (THF) at -78° afforded the alcohol (2a). Treatment of 2a with methanesulfonic acid in benzene at room temperature gave anilinobutyrolactone (3a) in 87% yield. In this way, the alcohol (2b), prepared by reduction of the acid chloride (1b)⁵⁾ with NaBH₄, was converted to the butyrolactone (3b) in 75% yield. Bose⁴⁾ reported the formation of 4-aminocoumarine derivatives (5) from the 4-(2-trimethylsilyloxyphenyl)- β -lactam (4) by detrimethylsilylation. This CO-N fission with a phenolic hydroxyl group was utilized for the synthesis of the 3,4-dihydrocoumarine derivative possessing an aminomethyl group at the 3-position. 3-Alkylidenation of 1-phenylazetidin-2-one (6a)⁶⁾ was achieved by trimethylsilylation at the 3-position, followed by stepwise condensation of 1-phenyl-3-trimethylsilylazetidin-2-one with aldehydes or ketones.^{7,8)} This procedure was improved as follows. The lithium salt of 6a, obtained by treatment with two equivalents of lithium diisopropylamide (LDA), was treated with trimethylchlorosilane, followed by condensation of the 3-trimethylsilyl intermediate with the lithium salt of o-hydroxybenzaldehyde to afford

¹⁾ A part of this work has appeared in S. Kano, T. Ebata, Y. Denta, [S. Hibino, and S. Shibuya, *Heterocycles*, 8, 411 (1977) as a preliminary communication.

²⁾ Location: 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan.

³⁾ A.K. Mukerjee and A.K. Singh, Synthesis, 1975, 547.

⁴⁾ M.S. Manhas, S.G. Amin, and A.K. Bose, Heterocycles, 5, 669 (1976).

⁵⁾ B.G. Chaterjee and P.N. Moza, J. Med. Chem., 9, 259 (1966).

⁶⁾ R.W. Holley and A.D. Holley, J. Am. Chem. Soc., 71, 2129 (1949).

⁷⁾ T. Durst and M.J. Lebell, Can. J. Chem., 50, 3196 (1972).

⁸⁾ S. Kano, T. Ebata, K. Funaki, and S. Shibuya, Synthesis, 1978, 746.

3-(2-hydroxybenzylidene)-1-phenyl-azetidin-2-one (7). Catalytic hydrogenation of 7 over platinum catalyst gave 3-(2-hydroxybenzyl)-1-phenylazetidin-2-one (8). Treatment of 8 with methanesulfonic acid gave 3-anilinomethyl-3,4-dihydrocoumarine (9).

Chart 1

These transformations were examined with an amino group instead of an oxygen function for the synthesis of indolizine and carbostyril derivatives. Reductive amination of ethyl 2-picolinoylacetate (10) with p-anisidine afforded ethyl 3-(4-methoxyanilino)-3-(2-pyridyl)propionate (11), cyclization of which with ethylmagnesium bromide⁶⁾ gave 1-(4-methoxyphenyl)-4-(2-pyridyl)azetidin-2-one (12). Catalytic hydrogenation of 12 over plutinum catalyst afforded 1-(4-methoxyphenyl)-4-(2-piperidino)azetidin-2-one (13). Treatment of 13 with sodium ethoxide in ethanol yielded 4-(4-methoxyanilino)octahydroindolizin-2-one (14). Similar ring transformation was obtained in the following two cases. Reduction of 3-(2-nitrobenzylidene)-1-phenylazetidin-2-one (15), obtained by condensation of 6a with o-nitrobenzaldehyde as described for the formation of 7, gave 3-(2-aminobenzyl)-1-phenylazetidin-2-one (16). Cyclization of 16 with a catalytic amount of hydrochloric acid yielded 3-anilinomethyl-3,4-dihydro-1*H*-2-quinolone (17). Similarly, condensation of 1-(4-methoxyphenyl)azetidin-2-one (6b)⁶) with pyridin-2-aldehyde yielded 1-(4-methoxyphenyl)-3-(2-picolylidene)azetidin-2-one (18). Catalytic hydrogenation of 18 over platinum catalyst in acetic acid-ethanol (1:1) gave the piperidino derivative (19), treatment of which with sodium ethoxide resulted in the formation of 3-(4-methoxyanilinomethyl)octahydroindolizin-2-one (20). Thus, intramolecular nucleophilic cleavage of the amide bond of β -lactams should be useful for the preparation of various lactam and lactone derivatives.

Table I. Cleavage of the Amide Bond of $\bf 6a$ and $\bf 6b$ with RLi

$$6a \; (\text{or} \; 6b) \; + \; \text{RLi} \; \longrightarrow \; \text{RCOCH}_2\text{CH}_2\text{NH} - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - \text{X} \quad (21a - 21g)$$

	β -Aminoketones (21)								Analyses (%) Calcd.			
β-Lactam X			R	Yield (%)	$^{\mathrm{mp}}_{(^{\circ}\mathrm{C})^{a)}}$	$\begin{array}{c} \mathrm{IR} \ \nu_{\mathrm{max}}^{\mathrm{Nujo1}} \\ \mathrm{cm}^{-1} \\ \mathrm{(C=O)} \end{array}$	$\begin{array}{c} \text{Mass} \\ m/e \\ (\text{M}^+) \end{array}$	Formula	(Found)			
									Ċ	H	N	
a	6b	CH ₃ O	C_6H_5	75	109—111	1660	255	$\mathrm{C_{16}H_{17}NO_2}$	75.27 (75.01	6.71 6.69	5.49 5.48)	
b	6a	Н	4 -BrC $_6$ H $_4$ -	30	105—107	1663	303 $305 (M++2)$	$\mathrm{C_{15}H_{14}BrNO}$	59.21 (59.43	$\begin{array}{c} 4.64 \\ 4.47 \end{array}$	4.60 4.81)	
c	6a	H	$4\text{-}\mathrm{MeC_6H_4}$	50	121122	1662	239	$C_{16}H_{17}NO$	80.30 (80.01	7.16 7.19	5.85 5.87)	
d	6b	CH ³ O	$4\text{-MeC}_6\mathrm{H}_4$	68	116—117	1690	269	$C_1,H_{19}NO$	75.81 (75.67	7.11 7.05	5.20 5.71)	
e	6b	CH ₃ O	C ₆ H ₅ SCH ₂ -	75	118—119	1690	301	$\mathrm{C_{1}}_{i}\mathrm{H_{19}NO_{2}S}$	67.76 (67.55	$\begin{array}{c} 6.36 \\ 6.43 \end{array}$	$4.65 \\ 4.71)$	
f	6a	H	$(\mathrm{C_6H_5(S)_2CH}$	I-70	69— 71	1680	379	$\mathrm{C_{22}H_{21}NOS_2}$	69.64 (69.87	5.58 5.77	3.69 3.52)	
g	6a	H		65	80— 82	1692	226	$\mathrm{C_{14}H_{14}N_2O}$	74.31 (74.58)	$\begin{array}{c} 6.24 \\ 6.45 \end{array}$	12.38 12.15)	

a) These ketones were recrystallized from MeOH-ether.

Finally, cleavage of the amide bond with alkyl lithium was examined, since there has been no report on CO-N fission of β -lactams with any type of carbanions. Treatment of **6a** with alkyl lithium or aryl lithium (such as phenylthiomethyl lithium or phenyl lithium) in THF at -78° resulted only in the recovery of the starting material or the formation of polymerized products. However, the same reaction was carried out in the presence of N,N,N'N'-tetramethylethylenediamine (TMEDA) to yield the corresponding β -aminoethylketones (**21a**—**g**). Phenyl lithium, 4-bromophenyl lithium, 4-methylphenyl lithium, 2-pyridyl lithium, 9) phenylthiomethyl lithium and diphenylthiomethyl lithium were used to cleave the amide bond of **6a** and **6b**. These results are summarized in Table I.

In conclusion, the amide bond of β -lactams could be cleaved not only by amino and hydroxyl groups but also by carbanions.

Experimental¹⁰⁾

4-Hydroxymethyl-1-phenylazetidin-2-one (2a)—A suspension of 450 mg of NaBH₄ in 30 ml of THF was added to a stirred solution of 450 mg of 1a in 10 ml of THF at -78° . After 0.5 hr at this temperature, the mixture was poured into 100 ml of 1% AcOH and extracted with CHCl₃. The extract was washed with H₂O, dried over Na₂SO₄ and concentrated to leave 361 mg (95%) of 2a as colorless needles, mp 94—95.5° (MeOH-ether). NMR (CDCl₃) δ : 2.91 (1H, q, J=3.5 and 15.5 Hz, 3-H), 3.09 (1H, q, J=4.5 and 15.5 Hz, 3-H), MS m/e: 177 (M⁺). Anal. Calcd. for C₁₀H₁₁NO₂: C, 67.78; H, 6.26; N, 7.91. Found: C, 67.77; H, 6.27; N, 7.69.

4-Ethoxycarbonyl-4-hydroxymethyl-1-phenylazetidin-2-one (2b) ——The azetidin-2-one (1b) (500 mg) was reduced with 300 mg of NaBH₄ in 40 ml of THF under the conditions given above to yield 340 mg (77%) of 2b as an oil. NMR (CDCl₃) δ : 3.22 (2H, s, 3-H₂). MS m/e: 249 (M⁺).

4-Anilino-2-oxo-tetrahydrofuran (3a)—A mixture of 210 mg of 2a, 2 ml of benzene and 1 ml of CH₃-SO₃H was stirred at room temperature for 10 min. The mixture was then poured into H₂O, made basic with 28% NH₄OH and extracted with CHCl₃. The extract was washed with H₂O and dried over Na₂SO₄. Removal of the solvent afforded 183 mg (87%) of 3a, mp 98—99° (MeOH-ether). NMR (CDCl₃) δ : 2.43 (1H, q, J=2.5 and 18.5 Hz, 3-H), 2.86 (1H, q, J=6 and 18.5 Hz, 3-H). MS m/e: 177 (M⁺). IR $\nu_{\max}^{\text{Nujol}}$ cm⁻¹: 1735 (C=O). Anal. Calcd. for C₁₀H₁₁NO₂: C, 67.78; H, 6.26; N, 7.91. Found: C, 67.66; H, 6.33; N, 7.79.

4-Anilino-4-ethoxycarbonyl-2-oxo-tetrahydrofuran (3b)—Treatment of 500 mg of **2b** with a mixture of 1 ml of CH₃SO₃H and 2 ml of benzene under the above conditions gave 375 mg (75%) of **3b** as an oil. NMR (CDCl₃) δ : 2.82, 3.72 (2H, each d, J=17.5 Hz, 3-H), 4.40, 4.67 (2H, each d, J=9.5 Hz, 5-H₂). MS m/e: 249 (M⁺), 249.097622 Calcd. for C₁₃H₁₅NO₂: 249.100089.

3-(2-Hydroxybenzylidene)-1-phenylazetidin-2-one (7)—A solution of 1.47 g of 6a in 25 ml of THF was added to a solution of LDA in THF (prepared from 2.24 g of diisopropylamine and 14.7 ml of 1.5 m hexane solution of n-BuLi in THF at -78° as usual) at -78° . After 3 min, 1.08 g of trimethylchlorosilane was added. After stirring for a further 10 min, a solution of the lithium salt of o-hydroxybenzaldehyde (prepared from 1.22 g of o-hydroxybenzaldehyde and 1 equivalent of LDA in 30 ml of THF at -78°) was added to this solution at the same temperature. After 10 min, the mixture was poured into NH₄Cl aqueous solution and extracted with CHCl₃. The extract was washed with H₂O, dried over Na₂SO₄ and concentrated. The resulting residue was recrystallized from MeOH-ether to give 1.9 g (96%) of 7 as colorless needles, mp 217—218°. NMR (CDCl₃- d_6 DMSO) δ : 4.49 (2H, broad s, 4-H₂). MS m/e: 251 (M+). Anal. Calcd. for C₁₆H₁₃NO₂: C, 76.47; H, 5.22; N, 5.57. Found: C, 76.60; H, 5.36; N, 5.61.

3-(2-Hydroxybenzyl)-1-phenylazetidin-2-one (8)——A mixture of 0.5 g of 7, 0.3 g of prereduced Pt catalyst and 100 ml of EtOH was shaken under atmospheric pressure of H_2 until uptake of the theoretical amount of H_2 (44.8 ml) had occurred. After removal of the catalyst, the solvent was evaporated and the resulting solid was recrystallized from ether-hexane to give 440 mg (87%) of 8 as colorless needles, mp $107-109^{\circ}$. MS m/e: 253 (M⁺). Anal. Calcd. for $C_{16}H_{15}NO_2$: C, 75.87; H, 5.97; N, 5.53. Found: C, 75.96; H, 5.69; N, 5.39.

3-Anilinomethyl-3,4-dihydrocoumarine (9)——A mixture of 250 mg of 8, 30 ml of benzene and 3 drops of CH_3SO_3H was heated for 1 hr under reflux. The solvent was evaporated and the resulting residue was made basic with 28% NH_4OH , then extracted with $CHCl_3$. The extract was washed with H_2O and dried over Na_2SO_4 . Removal of the solvent left 220 mg (88%) of 9, mp 91—93° (MeOH-ether). MS m/e: 253

⁹⁾ H. Gilman, W. Langham, and F.E. Moore, J. Am. Chem. Soc., 62, 2327 (1940).

¹⁰⁾ Melting points are not corrected. All reactions were carried out under a nitrogen atmosphere unless otherwise stated. Nuclear magnetic resonance (NMR) spectra were recorded on a Varian T-60 instrument and mass spectra (MS) were determined with a Hitachi RMU-7L spectrimeter.

(M+). IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1755 (C=O). Anal. Calcd. for $C_{16}H_{15}NO_2$: C, 75.87; H, 5.97; N, 5.53. Found: C, 75.61; H, 5.77; N, 5.35.

Ethyl 3-(4-Methoxyanilino)-3-(2-pyridyl)propionate (11)——A mixture of 25 g of ethyl α -picolinoylacetate (10), 16 g of p-anisidine, 200 ml of benzene and 100 mg of p-toluenesulfonic acid was refluxed for 12 hr. After removal of the solvent, the remaining residue was dissolved in 250 ml of EtOH and subjected to catalytic hydrogenation over 5 g of 10% Pd-C in the presence of 5 g of NaBH₄ under atmospheric pressure of H₂. After removal of the catalyst, the solvent was evaporated. The resulting residue was diluted with H₂O and extracted with CHCl₃. The extract was washed with H₂O, dried over Na₂SO₄ and concentrated to leave 31.2 g (80%) of 11 as colorless needles, mp 72—73.5° (MeOH-ether). Anal. Calcd. for C₁₇H₂₀N₂O₃: C, 67.98; H, 6.71; N, 9.33. Found: C, 67.96; H, 6.68; N, 9.44.

1-(4-Methoxyphenyl)-4-(2-pyridyl)azetidin-2-one (12)——An ethereal solution of ethylmagnesium bromide (7.97 g, 20 ml of 3 m solution) was added to a stirred solution of 16.35 g of 11 in 250 ml of dry THF at room temperature. After stirring for 12 hr, the solvent was evaporated and the residue was diluted with $\rm H_2O$ and extracted with CHCl₃. The extract was washed with $\rm H_2O$, dried over $\rm Na_2SO_4$ and concentrated. The remaining residue was chromatographed on silica gel using benzene as an eluent. Removal of the solvent (250 ml) afforded 10.1 g (73%) of 12, mp 111—113° (benzene-hexane). NMR (CDCl₃) δ : 2.96 (1H, q, J=3 and 15 Hz, 3-H), 3.53 (1H, q, J=5.5 and 15 Hz, 3-H), 5.06 (1H, q, J=3 and 5 Hz, 4-H). MS m/e: 254 (M⁺). Anal. Calcd. for $\rm C_{15}H_{14}N_2O_2$: C, 70.85; H, 5.55; N, 11.02. Found: C, 70.93; H, 5.60; N, 11.17.

1-(4-Methoxyphenyl)-4-(2-piperidino) azetidin-2-one (13)—A solution of 2 g of 12 in 150 ml of EtOH–AcOH (1:1) was shaken in the presence of 0.5 g of Pt catalyst under atmospheric pressure of $\rm H_2$ until uptake of the theoretical amount of $\rm H_2$ (524 ml) had occurred. After removal of the catalyst, the solvent was evaporated and the resulting solid was recrystallized from ether-hexane to give 1.7 g (83%) of 13 as colorless needles, mp 107—108°. MS m/e: 260 (M⁺). Anal. Calcd. for $\rm C_{15}H_{20}N_2O_2$: C, 69.20; H, 7.74; N, 10.76. Found: C, 69.48; H, 7.80; N, 10.77.

4-(4-Methoxyanilino)octahydroindolizin-2-one (14)——A mixture of 200 mg of 13, 100 mg of EtoNa and 30 ml of EtoH was refluxed for 6 hr. After removal of the solvent, the residue was diluted with $\rm H_2O$ and extracted with $\rm CHCl_3$. The extract was washed with $\rm H_2O$ and dried over $\rm Na_2SO_4$. Removal of the solvent gave 150 mg (75%) of 14, mp 99—101° (MeOH-ether). NMR (CDCl₃) δ : 1.10—3.54 (11H, m), 4.02—4.22 (1H, m, 4-H), 3.80 (3H, s, OCH₃), 6.55 (2H, d, J=9 Hz, Ar-H), 6.76 (2H, d, J=9 Hz, Ar-H). MS m/e: 260 (M+). IR $v_{\rm max}^{\rm Nuloi}$ cm⁻¹: 1640 (C=O). Anal. Calcd. for $\rm C_{15}H_{20}N_2O_2$: C, 69.20; H, 7.74; N, 10.76. Found: C, 69.01; H, 7.81; N, 10.78.

3-(2-Nitrobenzylidene)-1-phenylazetidin-2-one (15) — A solution of 1.47 g of 6a in 25 ml of THF was added to a stirred solution of LDA in THF (prepared from 2.24 g of diisopropylamine and 14.7 ml of 1.5 m hexane solution of n-BuLi in THF) at -78° . After 3 min, 1.18 g of trimethylchlorosilane was added to this solution, then after a further 10 min, a solution of 1.5 g of o-nitrobenzaldehyde in 20 ml of THF was added at the same temperature. After stirring at the same temperature for 10 min, the mixture was poured into NH₄Cl aqueous solution. After warming the mixture at 40° for 1 hr with stirring, the mixture was extracted with CHCl₃. The extract was washed with H₂O and dried over Na₂SO₄. Removal of the solvent afforded 2.16 g (77%) of 15, mp 150—150.5° (MeOH-ether). NMR (CDCl₃) δ : 4.24 (2H, broad s, 4-H₂), 7.05 (1H, broad s, olefinic H). MS m/e: 280 (M⁺). Anal. Calcd. for C₁₆H₁₂N₂O₃: C, 68.56; H, 4.32; N, 10.00. Found: C, 68.47; H, 4.35; N, 10.20.

3-(2-Aminobenzyl)-1-phenylazetidin-2-one (16)——A mixture of 560 mg of 15, 300 mg of prereduced Pt catalyst and 100 ml of EtOH was shaken under atmospheric pressure of H_2 until uptake of the theoretical amount of H_2 (359 ml) had occurred. After removal of the catalyst, the solvent was evaporated and the resulting solid was recrystallized from MeOH-ether to give 444 mg (88%) of 16, mp 98—99.5°. MS m/e: 252 (M⁺). Anal. Calcd. for $C_{16}H_{16}N_2O$: C, 76.16; H, 6.39; N, 11.10. Found: C, 76.36; H, 6.44; N, 11.17.

3-Anilinomethyl-3,4-dihydro-1H-2-quinolone (17)——A mixture of 250 mg of 16, 30 ml of EtOH and 3 drops of conc. HCl was refluxed for 1 hr. After removal of the solvent, the residue was made basic with 28% NH₄OH and extracted with CHCl₃. The extract was washed with H₂O and dried over Na₂SO₄. The solvent was evaporated and the residue was recrystallized from MeOH-ether to give 200 mg (80%) of 17, mp 153—154.5°. IR $v_{\rm max}^{\rm Nujol}$ cm⁻¹: 1655 (C=O). MS m/e: 252 (M⁺). Anal. Calcd. for C₁₆H₁₆N₂O: C, 76.16; H, 6.39; N, 11.10. Found: C, 76.33; H, 6.51; N, 11.13.

1-(4-Methoxyphenyl)-3-(2-picolylidene) azetidin-2-one (18) — The azetidin-2-one (18) was prepared from 1.77 g of 6b by treatment with LDA, 1.08 g of trimethylchlorosilane and 1.07 g of pyridin-2-aldehyde as described for 15. Recrystallization of the product from benzene-hexane gave 1.8 g (68%) of 18, mp 165—168°. NMR (CDCl₃) δ : 4.17 (2H, broad s, 4-H₂). MS m/e: 266 (M⁺). Anal. Calcd. for C₁₆H₁₄N₂O₂: C, 72.16; H, 5.30; N, 10.52. Found: C, 72.19; H, 5.10; N, 10.41.

3-(4-Methoxyanilinomethyl)octahydroindolizin-2-one (20)——A mixture of 532 mg of 18, 300 mg of prereduced Pt catalyst, 50 ml of AcOH and 50 ml of EtOH was shaken under atmospheric pressure of $\rm H_2$ and worked up as above to give 510 mg of 1-(4-methoxyphenyl)-3-(2-piperidinomethyl)azetidin-2-one (19); this was, without purification, treated with 260 mg of EtONa in 30 ml of EtOH under reflux for 1 hr. The solvent was evaporated and the residue was extracted with CHCl₃. The extract was washed with $\rm H_2O$, dried over $\rm Na_2SO_4$ and concentrated to leave 423 mg (77%) of 20, mp 91—92° (ether-hexane). MS m/e:

274 (M⁺). IR $v_{\text{max}}^{\text{Nujo1}}$ cm⁻¹: 1655 (C=O). Anal. Calcd. for $C_{16}H_{22}N_2O_2$: C, 70.04; H, 8.08; N, 10.21. Found: C, 70.11; H, 7.97; N, 9.96.

Cleavage of the Amide Bond of 6a (or 6b) with Aryl and Alkyl lithium; General Procedure—A stirred solution of 0.73 g (0.05 mol) and 6a (or 0.90 g of 6b) in 20 ml of THF was added to a solution of aryl lithium (0.05 mol) and TMEDA (0.06 mol) in 35 ml of ether at -78° . After stirring for 15 min at the same temperature, the mixture was poured into 100 ml of NH₄Cl aqueous solution and extracted with CHCl₃. The extract was washed with H₂O, dried over Na₂SO₄ and concentrated to afford the corresponding ketones (21a—g) (see Table I).