(Chem. Pharm. Bull.) 28(11)3296—3303(1980)

Synthesis of Five-membered Heterocycles containing a Nitrogen-Oxygen Bond via O-Acylation of Aliphatic Nitro Compounds¹⁾

KAZUHO HARADA, EISUKE KAJI, and SHONOSUKE ZEN

School of Pharmaceutical Sciences, Kitasato University²⁾

(Received June 3, 1980)

O-Acylation of primary aliphatic nitro compounds with acid chlorides in N,N-dimethylacetamide led to the formation of nitrile oxides, which cyclized *in situ* with olefinic dipolarophiles in a 1,3-dipolar cycloaddition mode to afford 2-isoxazoline derivatives. Optimum reaction conditions were investigated, and the use of several types of dipolarophiles, such as acetylenes, Schiff bases, aromatic nitriles, and ketones, in this cycloaddition resulted in the formation of the corresponding cycloadducts, namely isoxazoles, 1,2,4-oxadiazolines, 1,2,4-oxadiazoles, and 1,4,2-dioxazoles, respectively, in reasonable yields.

Keywords—O-acylation; 1,3-dipolar cycloaddition; aliphatic nitro compounds; nitrile oxide; 2-isoxazoline; isoxazole; 1,2,4-oxadiazoline; 1,2,4-oxadiazole; 1,4,2-dioxazole

Of the several methods available for the synthesis of five-membered heterocycles containing a nitrogen-oxygen bond in the ring, 1,3-dipolar cycloaddition of nitrile oxide with dipolarophiles has been most extensively used.³⁾ The nitrile oxides are commonly generated in situ from hydroxamoyl chlorides by dehydrochlorination with triethylamine,^{3,4)} or from primary nitroalkanes by treatment with isocyanate in the presence of amines,⁵⁾ and some applications of the latter method have been reported.⁶⁾ In addition, the thermolysis of 1,3,2,4-dioxathiazole 2-oxide,⁷⁾ potassium salts of dinitroalkanes,⁸⁾ or furoxanes⁹⁾ was recently described.

In our previous communication,¹⁰⁾ a novel route generating nitrile oxides was developed by O-acylation of aliphatic nitro compounds with acyl chlorides in N,N-dimethylacetamide (DMA). A facile one-pot synthesis of isoxazole derivatives was presented to illustrate the usefulness of this method. Here we wish to give a full account of this reaction, and applications to the synthesis of other five-membered heterocycles, *i.e.*, 2-isoxazolines, 1,2,4-oxadiazolines, 1,2,4-oxadiazoles, and 1,4,2-dioxazoles.

¹⁾ The Synthetic Reactions of Aliphatic Nitro Compounds. Part XVII: Presented in part at the 12th Congress of Heterocyclic Chemistry, Tokyo, October, 1979: Abstracts, p. 271; Part XVI of this series: E. Kaji and S. Zen, *Chem. Pharm. Bull.*, 28, 479 (1980).

²⁾ Location: 5-9-1, Shirokane, Minato-ku, Tokyo 108, Japan.

³⁾ R. Huisgen, Angew. Chem. Int. Ed. Engl., 2, 565 (1963); C. Grundmann, "The Chemistry of the Cyano Group," ed. by Z. Rappoport, Interscience Publishers, New York, 1970, pp. 832—846; G. Bianchi, C. De Micheli, and R. Gandolfi, "The Chemistry of Double-bonded Functional Groups," Part I, ed. by S. Patai, John Wiley and Sons, Inc., New York, 1977, pp. 432—445.

⁴⁾ M. Christl, R. Huisgen, and R. Sustmann, Chem. Ber., 106, 3275 (1973).

⁵⁾ T. Mukaiyama and T. Hoshino, J. Am. Chem. Soc., 82, 5339 (1960).

⁶⁾ G.B. Bachman and L.E. Strom, J. Org. Chem., 28, 1150 (1963); J.E. McMurry, "Organic Syntheses," Vol. 53, ed. by A. Brossi, John Wiley and Sons, Inc., New York, 1973, p. 59.

⁷⁾ I.E. Franz and H.K. Pearl, J. Org. Chem., 41, 1296 (1976).

⁸⁾ A. Rahman and L.B. Clapp, J. Org. Chem., 41, 122 (1976).

⁹⁾ J.A. Chapman, J. Crosby, C.A. Cummings, R.A.C. Rennie, and R.M. Paton, J.C.S. Chem. Comm., 1976, 240.

¹⁰⁾ E. Kaji, K. Harada, and S. Zen, Chem. Pharm. Bull., 26, 3254 (1978).

No. 11 3297

O-Acylation of Aliphatic Nitro Compounds

O-Acylation of aliphatic nitro compounds has been reviewed thoroughly^{11,12}) as regards the chemistry of the products; stable nitronic carboxylic anhydrides (mixed anhydrides) were formed from secondary nitroalkanes, whereas rearrangement of the corresponding anhydrides formed from primary nitroalkanes into hydroxamic acid esters has been observed. Nevertheless, our current interest¹³ in the alkylation of aliphatic nitro compounds has led us to develop a novel method for generating nitrile oxides by the fragmentation of mixed anhydrides in a dipolar aprotic solvent such as DMA.

The reactions of nitroethane, phenylnitromethane, and methyl nitroacetate with acetyl chloride in DMA at room temperature gave 3,4-disubstituted furoxanes, ¹⁴⁾ i.e., 3 (R¹=CH₃, C₆H₅, and COOCH₃), in 14, 12, and 28% yields, respectively; these products appear to be formed by dimerization of nitrile oxides (2) generated by fragmentation of the initially formed mixed anhydrides (1), as shown in Chart 1. Attempts to trap the nitrile oxides with dimethyl fumarate gave the expected 3,4,5-trisubstituted isoxazolines (4a, 4e, and 4f; see Table II). We further examined the O-acylation of nitroethane with several kinds of acylating agents and bases in the presence of dimethyl fumarate in order to identify the optimum reaction conditions. Table I summarizes the effects of various conditions on the synthesis of the isoxazoline (4a); Method A employed alkali metal salts of nitroethane, while Method B employed free nitroethane and one equivalent of base, with provision of Na⁺ by adding 1 N sodium methoxide in methanol to the mixture of starting materials.

It should be noted that Method B gave higher yields of 4a than Method A, and the acetyl chloride-sodium methoxide system is convenient as regards handling. Aroyl chlorides, although

¹¹⁾ A.T. Nielsen, "The Chemistry of the Nitro and Nitroso Groups," Part I, ed. by H. Feuer, Interscience Publishers, New York, 1969, pp. 461—468.

¹²⁾ A. McKillop and R.J. Kobylecki, Tetrahedron, 30, 1365 (1974).

¹³⁾ E. Kaji, A. Igarashi, and S. Zen, Bull. Chem. Soc. Jpn., 49, 3181 (1976) and the preceding papers.

¹⁴⁾ J.V.R. Kaufman and J.P. Picard, Chem. Rev., 59, 429 (1959).

DCON	Base or alkali	Yield of 4a (%)		
RCOX	metal cation	Method A	Method E	
CH ₃ COCl	Na	29	44	
CH ₃ COCl	K	15		
CH ₃ COCl	Li	31		
CH ₃ COCl	$(C_2H_5)_2NH$		0	
CH ₃ COCl	$\mathrm{DBU}^{b)}$		4	
CH ₃ COBr	Na	30	47	
(CH ₃) ₃ CCOCI	Na		49	
Cl ₃ CCOCl	Na	_	4	
C_6H_5COCl	$\mathbf{N}\mathbf{a}$	32	50	
C_6H_5COBr	Na	34	53	
p-NO ₂ C ₆ H ₄ COCl	$\mathbf{N}\mathbf{a}$	23		
p-CH ₃ C ₆ H ₄ COCl	Na	23	51	
p-ClC ₆ H ₄ COCl	$\mathbf{N}\mathbf{a}$		55	
p-ClOC-C ₆ H ₄ COCl ^{c)}	Na		32	
$(COCl)_2^{c)}$	Na		6.5	
$(CH_2COCl)_2^{c)}$	Na		18	
C ₆ H ₅ CH ₂ OCOCl	Na	35		

Table I. Effects of Various Acylating Agents and Bases on the Synthesis of Isoxazoline $(4a)^{a}$

- a) All experiments were carried out in DMA at room temperature for 15 hr.
- b) 1,8-Diazabicyclo[5,4,0]undec-7-ene.
- c) A half-molar amount of acid chloride relative to nitroalkane was employed.

they gave a slightly higher yield of **4a** than acetyl chloride, should be avoided because of the resulting contamination by aromatic carboxylic acids in the crude products. Furthermore, the use of a phase transfer catalyst, e.g. 18-crown-6 in benzene or triethylbenzylammonium chloride in benzene-water, resulted in 11% and 14% yields of **4a**, respectively.

On the other hand, O-acylation of methyl nitroacetate with benzoyl chloride or p-toluoyl chloride in the absence of a dipolarophile resulted in the formation of a by-product which was characterized as methyl 2-chloro-2-aroyloxyiminoacetate (9a and 9b), accompanied by a major product, furoxane (3a). These compounds (9) might be formed by 1,3-addition of aroyl chloride to the nitrile oxide.¹⁵⁾

\mathbb{R}^1	\mathbb{R}^2	R³	Yield (%) (Method B)	mp (°C) bp (°C/Torr)	J _{4,5} (Hz)	Ref. No. $^{a)}$
CH ₃	COOCH ₃	COOCH ₃	44	74-74.5	5.0	
CH_3	H	COOCH ₃	15	45 - 55/0.2	8.5	16)
CH_3	COOCH ₃	C_6H_5	36	70 - 80/0.2	8.0	_
CH_3	C_6H_5	COOCH ₃	9	70 - 80/0.2	6.0	. —
C_2H_5	COOCH ₃	COOCH ₃	58	75—83/0.3	6.0	
C_6H_5	$COOCH_3$	COOCH ₃	76	100 - 105 / 0.3	5.0	8)
C_6H_5	H	COOCH ₃	73	71.5 - 72.5	8.5	17)
C_6H_5	COOCH ₃	C_6H_5	49	107—108	6.0	17)
C_6H_5	C_6H_5	COOCH ₃	10	82.0—84.5	4.0	17)
C_6H_5	COC_6H_5	COC_6H_5	73	122—123	6.0	18)
C_6H_5	-(CH	₂) ₂ -O-	85	106107	6.0	19)
C_6H_5	-(CH	₂) ₃ -O-	35	88—90	6.0	19)
	CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ C ₂ H ₅ C ₆ H ₅	CH ₃ COOCH ₃ CH ₃ H CH ₃ COOCH ₃ CH ₄ C ₆ H ₅ C ₂ H ₅ COOCH ₃ C ₆ H ₅ COOCH ₃ C ₆ H ₅ H C ₆ H ₅ COOCH ₃ C ₆ H ₅ COOCH ₃ C ₆ H ₅ COC ₆ H ₅ C ₆ H ₅ COC ₆ H ₅ C ₆ H ₅ COCH ₅	$\begin{array}{ccccc} \text{CH}_3 & \text{COOCH}_3 & \text{COOCH}_3 \\ \text{CH}_3 & \text{H} & \text{COOCH}_3 \\ \text{CH}_3 & \text{COOCH}_3 & \text{C}_6\text{H}_5 \\ \text{CH}_3 & \text{C}_6\text{H}_5 & \text{COOCH}_3 \\ \text{C}_2\text{H}_5 & \text{COOCH}_3 & \text{COOCH}_3 \\ \text{C}_6\text{H}_5 & \text{COOCH}_3 & \text{COOCH}_3 \\ \end{array}$	CH ₃ COOCH ₃ COOCH ₃ CH ₃ H COOCH ₃ CH ₃ COOCH ₃ CH ₅ CH ₄ COOCH ₃ CH ₅ CH ₅ COOCH ₃ C ₆ H ₅ COOCH ₃ C ₆ H ₅ COOCH ₃ C ₆ H ₅ COOCH ₃ COOCH ₃ C ₆ H ₅ COOCH ₃ COOCH ₃ C ₆ H ₅ C ₆ H ₅ COOCH ₃ C ₆ H ₅ C ₆ H ₅ COOCH ₃ C ₆ H ₅ C ₆ H ₅ COOCH ₃ C ₆ H ₅ C ₆ H ₅ COOCH ₃ C ₆ H ₅ COC ₆ COC ₆ H ₅ COC ₆ COC ₆ COC ₆ COC ₆ COCCOCCOCCOCCOCCOCCOCCOCCOCCOCC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table II. Isoxazoline Derivatives (4)

a) All known compounds gave analytical data consistent with the reported data.

¹⁵⁾ P. Rajagopalan and C.N. Talaty, Tetrahedron Lett., 1966, 2101.

¹⁶⁾ G. Bianchi and P. Grünanger, Tetrahedron, 21, 817 (1965).

¹⁷⁾ M. Christl, R. Huisgen, and R. Sustmann, Chem. Ber., 106, 3279 (1973).

¹⁸⁾ G. Bianchi, R. Gandolfi, and P. Grünanger, J. Heterocyclic Chem., 5, 49 (1968).

¹⁹⁾ I. Adachi and H. Kano, Chem. Pharm. Bull., 16, 117 (1968).

Synthesis of 2-Isoxazoline, Isoxazole, 1,2,4-Oxadiazoline, 1,2,4-Oxadiazole, and 1,4,2-Dioxazole Derivatives

First, application of our method to the synthesis of 2-isoxazoline derivatives was examined. Nitroethane, 1-nitropropane and phenylnitromethane were O-acylated by Method B with acetyl chloride in the presence of a number of olefinic dipolarophiles, to afford 2-isoxazoline derivatives (4a—1) in reasonable yields. The results are summarized in Table II. All the isoxazolines other than 4b and 4g have the 4,5-trans configuration, since their $J_{4,5}$ values were in the range of 5.0—8.5 Hz.8) Acylation of nitroethane in the presence of dimethyl maleate gave rise to a trans-isoxazoline (4a), which was identical with the product from dimethyl fumarate, in 25% yield (Method A). An analogous result was reported by Rahman et al.8)

When methyl cinnamate was used with nitroethane or phenylnitromethane, a regioisomeric mixture of $\mathbf{4c}$ and $\mathbf{4d}$, or of $\mathbf{4h}$ and $\mathbf{4i}$, respectively, was obtained. On the basis of
Huisgen's report¹⁷⁾ on the melting points and the proton magnetic resonance (PMR) spectra
of $\mathbf{4h}$ and $\mathbf{4i}$, they could be assigned as shown in Table II. The assignment of $\mathbf{4c}$ and $\mathbf{4d}$, which
could not be isolated, was inferred by PMR spectroscopy in comparison with the results for $\mathbf{4h}$ and $\mathbf{4i}$. Thus, the major isomer was deduced to be $\mathbf{4c}$, the ratio of which was determined
by PMR integration. The use of ethyl β -nitrocrotonate with nitroethane led to the expected
cycloadduct ($\mathbf{10}$; 29% yield) identified by spectroscopic studies, but this lost nitrous acid on
standing at room temperature to give the corresponding isoxazole ($\mathbf{11}$).

Compd.	\mathbb{R}^1	\mathbb{R}^2	R³	Yield (%) (Method B)	mp (°C) bp (°C/Torr)	Ref. No. $^{a)}$
5a	CH ₃	COOCH ₃	COOCH ₃	75	31—32	12)
5b	CH_3	H	CH ₂ OAc	39	65—73/2	
5c	CH_3	H	$COOC_2H_5$	54	27—28	20)
5 d	CH_3	H	C_6H_5	36	65—66	21)
5 e	C_6H_5	COOCH ₃	COOCH ₃	76	63.5 - 64.5	12)
5 f	C_6H_5	H	CH_2OAc	57	3738	22)
5g	C_6H_5	H	$COOC_2H_5$	63	45—46	7)
5h	C_6H_5	\mathbf{H}	C_6H_5	47	141—143	23)
5i	COOCH ₃	COOCH ₃	COOCH ₃	20	101102	

Table III. Isoxazole Derivatives (5)

On the other hand, isoxazole derivatives were synthesized directly by O-acylation of aliphatic nitro compounds with acetyl chloride in the presence of several acetylenic dipolarophiles. The results are shown in Table III. In view of the results in Tables II and III, the reactivity of the dipolarophiles towards nitrile oxides in 1,3-cycloaddition appears to be consistent with Huisgen's proposal.²⁴⁾

The use of dipolarophiles containing a C=X (X=N or O) or C≡N bond was also examined. Cycloaddition of benzylidenealkylamine or its heterocyclic analogs with nitrile oxides derived from primary nitro compounds other than methyl nitroacetate readily gave the desired 1,2,4-oxadiazolines (6) in good yields (see Table IV), while the reaction of benzylideneaniline with methyl nitroacetate, or of propylidenebutylamine with phenylnitromethane gave rise to an

a) All known compounds gave analytical data consistent with the reported data.

²⁰⁾ C. Musante, Gazz. Chim. Ital., 70, 685 (1940).

²¹⁾ G. Casnati and A. Ricca, Tetrahedron Lett., 1967, 327.

²²⁾ P. Battioni, L. Vo-Quang, J.C. Raymond, and Y. Vo-Quang, C.R. Acad. Sci. Paris (C), t, 271, 1468 (1970).

²³⁾ G. Labbe and G. Mathys, J. Org. Chem., 39, 1221 (1974).

²⁴⁾ A. Eckell, M.V. George, R. Huisgen, and A.S. Kende, Chem. Ber., 110, 578 (1977).

Table IV. 1,2,4-Oxadiazoline Derivatives (6)							
Compd.	R¹	R^2	R³	Yield (%) (Method B)	mp (°C) bp (°C/Torr) ^{a)}	$n_{ m D}^{20}$	Ref. No. ^{c)}
6a	CH ₃	n-C ₃ H ₇	C_6H_5	42	90-100/0.15	1.5342	
6b	CH_3	n - C_4H_9	C_6H_5	56	95 - 105/0.1	1.5288	
6c	CH_3	$CH_2C_6H_5$	C_6H_5	48	135-148/0.35	b)	
6d	C_2H_5	$n-C_3H_7$	C_6H_5	36	100 - 110/0.3	b)	
6e	C_2H_5	n - C_4H_9	C_6H_5	56	110-115/0.6	b)	
6 f	C_2H_5	$n\text{-}\!\mathrm{C_6H_{13}}$	C_6H_5	43	120 - 125/0.6	1.5152	
6g	C_2H_5	$CH_2C_6H_5$	C_6H_5	50	140 - 150/0.3	1.5061	
6h	C_6H_5	n - C_3H_7	C_6H_5	71	150 - 160/0.4	1.5633	***************************************
6i	C_6H_5	$n-C_6H_{13}$	C_6H_5	79	140 - 150/0.2	1.5429	
6 j	C_6H_5	$CH_2C_6H_5$	C_6H_5	80	150 - 160/0.2	1.5174	25)
6k	C_6H_5	sec - C_4H_9	C_6H_5	43	79.5-80.5	<u> </u>	
61	C_6H_5	C_6H_5	C_6H_5	39	75—76	_	26)
6m	C_6H_5	n - C_4H_9	2-Furyl	63	140 - 150/0.4	1.5569	
6n	C_6H_5	$CH_2C_6H_5$	2-Pyridyl	73	170 - 180/0.2	1.5662	
60	C_6H_5	n - C_4H_9	2-Thienyl	86	150 - 160/0.15	1.5828	
6 p	p-Cl-C ₆ H ₄		C_6H_5	88	146.5—147		26)

- Bath temperature is given.
- Refractive index could not be measured because of the lability of these compounds.
- All known compounds gave analytical data consistent with the reported data.

isoxazoline N-oxide (12a²⁷⁾ or 12b). Formation of isoxazoline N-oxides may be due to the conversion of incipient Michael adducts into 1,3-dinitroalkanes, followed by cyclization²⁷⁾ to 12. In the reaction of benzylideneaniline with nitroethane, however, fair amounts of the starting materials were recovered together with a Michael adduct (13²⁸); 9.5%).

Table V. 1,2,4-Oxadiazole Derivatives (7) and 1,4,2-Dioxazole Derivatives (8)

Compd.	\mathbb{R}^1	R^2	\mathbb{R}^3	Yield $(\%)^{a}$ (Method B)	mp (°C) bp (°C/Torr) ^{b)}	Ref. No. ^{c)}
7a	C_6H_5	C_6H_5		45	108109	24)
7b	C_6H_5	p-Cl-C ₆ H ₄		16.5	121.5 - 122	30)
7c	C_6H_5	p-Me-C ₆ H ₄		41	115—116	30)
7d	C_6H_5	1-Naphthyl		38	100—101	25)
7e	C_6H_5	3-Pyridyl		35	117—118	29)
8a	C_6H_5	CH_3	COOCH ₃	44	85-90/0.2	********
8 b	C_6H_5	CH_3	COOC ₂ H ₅	58	100 - 105/0.2	32)
8c	C_6H_5		COCH ₃	60	65 - 73/0.09	32)
8d		CH ₂ Cl	C_6H_5	32	125—130/0.15	

- Data obtained in the presence of a 2-fold molar excess of boron trifluoride etherate.
- Bath temperature is given.
- All known compounds gave analytical data consistent with the reported data.
- p-Chlorobenzoyl chloride was used as an acylating agent.

When benzaldoxime was used as a dipolar ophile, 1,2,4-oxadiazole (7a: 10% yield), which can be regarded as a dehydrated product of an initial cycloadduct, was obtained with concomitant formation of dibenzamide (39%). Another synthesis of 7 was achieved by the use of aromatic nitriles to give 7a—e, as shown in Table V. These reactions were accelerated by adding a two-fold molar excess of boron trifluoride etherate, as suggested elsewhere.³¹⁾

²⁵⁾ K. Bast, M. Christl, R. Huisgen, and W. Mack, Chem. Ber., 105, 2825 (1972).

²⁶⁾ F. Lauria, V. Vecchietti, and G. Fosolini, Gazz. Chim. Ital., 94, 478 (1964).

²⁷⁾ S. Zen and M. Koyama, Bull. Chem. Soc. Jpn., 44, 2882 (1971).

²⁸⁾ N. Leonard, C. Lenbner, and E. Burk, J. Org. Chem., 15, 981 (1950).

²⁹⁾ R. Huisgen, W. Mack, and E. Anneser, Tetrahedron Lett., 1961, 587.

³⁰⁾ T. Sasaki, Y. Suzuki, and T. Yoshioka, Yuki Gosei Kagaku Kyokai Shi, 28, 742 (1970).

³¹⁾ S. Morrocchi, A. Ricca, and L. Velo, Tetrahedron Lett., 1967, 331.

³²⁾ R. Huisgen and W. Mack, Chem. Ber., 105, 2805 (1972).

We attempted to obtain 1,4,2-dioxazole by using ketones possessing an electron-withdrawing group in the presence of boron trifluoride etharate, and obtained the expected dioxazoles (8). The results are shown in Table V.

In view of these results, our method appears to be widely applicable to the synthesis of five-membered heterocycles containing a nitrogen-oxygen bond. Further studies are in progress.

Experimental

Melting points are uncorrected. NMR spectra were recorded with Varian T-60 (60 MHz) and JEOL PS-100 (100 MHz) spectrometers using tetramethylsilane as an internal standard in chloroform-d. IR, UV, and mass spectra were measured with Jasco IRA-1, Hitachi 340, and JMS D-100 spectrometers, respectively. TLC was carried out on Kiesel gel G (Merck), spots being detected with iodine vapor and 10% sulfuric acid on a hot plate. Silica gel (Kanto Kagaku, up to 100 mesh) was used for column chromatography. In this section, detailed spectral and analytical data are given only for previously unknown compounds. Yields and physical constants are given in the tables.

4,5-Bis(methoxycarbonyl)-3-methyl-2-isoxazoline (4a): A General Procedure for Method A—Acetyl chloride (0.37 ml, 5.15 mmol) and dimethyl fumarate (740 mg, 5.15 mmol) were added to a stirred mixture of sodium ethanenitronate (500 mg, 5.15 mmol) and anhydrous DMA (20 ml). After stirring at room temperature for 16 hr, the mixture was partitioned between ice-water (75 ml) and benzene (25 ml). The aqueous phase was extracted with benzene (3 × 25 ml), dried (Na₂SO₄) and concentrated to furnish colorless crystals (602 mg), which were chromatographed on silica gel with ethyl acetate-hexane (1: 1), to give 250 mg (34% recovery) of dimethyl fumarate and 296 mg (29% yield) of 4a as colorless crystals: mp 74—74.5° (EtOH). IR $\nu_{\rm max}^{\rm KBT}$ cm⁻¹: 1740 (ester C=O), 1630 (C=N). PMR (CDCl₃) δ : 2.08 (3H, s, CH₃), 3.80 (6H, s, 2 × COOCH₃), 4.30 (1H, d, H-4), 5.35 (1H, d, H-5). MS m/e: 201 (M⁺). Anal. Calcd for C₈H₁₁NO₅: C, 47.76; H, 5.47; N, 6.97. Found: C, 47.27; H, 5.22; N, 7.01.

Method B—Methanolic 1 N sodium methoxide (4 ml) was added to a stirred solution of nitroethane (300 mg, 4.0 mmol) in anhydrous DMA (20 ml). The mixture was cooled to 5° in an ice-bath, then acetyl chloride (0.29 ml, 4.1 mmol) and dimethyl fumarate (580 mg, 4.0 mmol) were added. After being stirred at room temperature for 16 hr, the reaction mixture was worked up in the manner described for Method A to furnish 135 mg (24% recovery) of dimethyl fumarate and 354 mg (44% yield) of 4a.

4-Methoxycarbonyl-3-methyl-5-phenyl-2-isoxazoline (4c) and 5-Methoxycarbonyl-3-methyl-4-phenyl-2-isoxazoline (4d)——Nitroethane (375 mg, 5.0 mmol), acetyl chloride (0.36 ml, 5.1 mmol), and trans-methyl cinnamate (810 mg, 5.0 mmol) were reacted by Method B. General work-up gave 475 mg (59% recovery) of methyl cinnamate and 492 mg of a syrupy mixture of 4c and 4d in a ca. 4: 1 ratio as determined by PMR spectroscopy. Yields, bp, and $J_{4.5}$ data are summarized in Table II. IR $\nu_{\rm max}^{\rm Hq. film}$ cm⁻¹: 1740 (ester C=O), 1630 (C=N). PMR (CDCl₃) δ for 4c: 2.05 (3H, s, CH₃), 3.83 (3H, s, COOCH₃), 3.93 (1H, d, H-4), 5.88 (1H, d, H-5), 7.37 (5H, s, C₆H₅); δ for 4d: 1.80 (3H, s, CH₃), 3.83 (3H, s, COOCH₃), 4.45 (1H, d, H-4), 4.83 (1H, d, H-5), 7.37 (5H, s, C₆H₅). MS m/e: 219 (M+). Anal. Calcd for C₁₂H₁₃NO₃: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.68; H, 6.14; N, 6.59.

3-Ethyl-4,5-bis(methoxycarbonyl)-2-isoxazoline (4e)——1-Nitropropane, acetyl chloride, and dimethyl fumarate were reacted by Method B. 4e; IR $v_{\max}^{\text{Hq.film}}$ cm⁻¹: 1740 (ester C=O), 1630 (C=N). PMR (CDCl₃) δ : 1.20 (3H, t, CH₂CH₃), 2.47 (2H, q, CH₂CH₃), 3.83 (6H, s, 2×COOCH₃), 4.35 (1H, d, H-4), 5.35

(1H, d, H-5). MS m/e: 215 (M+). Anal. Calcd for C₉H₁₈NO₅: C, 50.23; H, 6.09; N, 6.51. Found: C, 50.11; H, 6.02; N, 6.45.

- 5-Acetoxymethyl-3-methylisoxazole (5b) Nitroethane, acetyl chloride, and O-acetyl propagyl alcohol³³) were reacted by Method B. 5b; IR $\nu_{\rm max}^{\rm Hq.film}$ cm⁻¹: 1750 (ester C=O), 1619 (C=N). PMR (CDCl₃) δ: 2.12 (3H, s, COCH₃), 2.30 (3H, s, CH₃), 5.11 (2H, s, CH₂O), 6.11 (1H, s, H-4). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 211 (3.78), 252 (2.60). MS m/e: 155 (M+). Anal. Calcd for C₇H₉NO₃: C, 54.19; H, 5.85; N, 9.03. Found: C, 54.54; H, 5.49; N, 9.25.
- 3,4,5-Tris(methoxycarbonyl)isoxazole (5i) Methyl nitroacetate, acetyl chloride, and dimethyl acetylene dicarboxylate were reacted by Method B. 5i; IR ν_{\max}^{RBI} cm⁻¹: 1750 (ester C=O), 1635 (C=N). PMR (CDCl₃) δ : 3.94 (3H, s, 3-COOCH₃), 3.97 (6H, s, 4,5-COOCH₃). UV $\lambda_{\max}^{\text{MeOH}}$ nm (log ε): 236 (3.66), 209 (3.83). MS m/e: 243 (M⁺). Anal. Calcd for C₉H₉NO₇: C, 44.45; H, 3.73; N, 5.76. Found: C, 44.42; H, 3.66; N, 5.60.
- 3-Methyl-5-phenyl-4-propyl-1,2,4-oxadiazoline (6a) Nitroethane, acetyl chloride, and benzylidene-propylamine were reacted by Method B. 6a; IR $\nu_{\max}^{\text{Hiq.film}}$ cm⁻¹: 1610 (C=N). PMR (CDCl₃) δ : 0.80 (3H, t, CH₂CH₂CH₃), 1.30 (2H, m, CH₂CH₂CH₃), 2.00 (3H, s, 3-CH₃), 2.90 (2H, t, NCH₂), 6.10 (1H, s, H-5), 7.46 (5H, s, C₆H₅). MS m/e: 204 (M⁺). Anal. Calcd for C₁₂H₁₇N₂O: C, 70.56; H, 7.90; N, 13.72. Found: C, 70.31; H, 7.72; N, 13.58.
- **4-Butyl-3-methyl-5-phenyl-1,2,4-oxadiazoline** (6b)—Nitroethane, acetyl chloride, and benzylidene-butylamine were reacted by Method B. 6b; IR $\nu_{\max}^{\text{Hig.film}}$ cm⁻¹: 1615 (C=N). PMR (CDCl₃) δ : 0.70—1.30 (7H, m, n-C₃H₇), 1.90 (3H, s, 3-CH₃), 2.85 (2H, t, NCH₂), 5.99 (1H, s, H-5), 7.35 (5H, s, C₆H₅). MS m/e: 218 (M⁺). Anal. Calcd for C₁₃H₁₈N₂O: C, 71.52; H, 8.31; N, 12.83. Found: C, 71.26; H, 8.23; N, 12.94.
- 4-Benzyl-3-methyl-5-phenyl-1,2,4-oxadiazoline (6c)—Nitroethane, acetyl chloride, and benzylidene-benzylamine were reacted by Method B. 6c: IR $\nu_{\max}^{\text{Hg.film}}$ cm⁻¹: 1610 (C=N). PMR (CDCl₃) δ: 2.05 (3H, s, CH₃), 3.90 and 4.35 (each 1H, d, J=16 Hz, CH₂C₆H₅), 6.05 (1H, s, H-5), 7.0—7.35 (5H, m, CH₂C₆H₅), 7.40 (5H, s, C₆H₅). MS m/e: 252 (M⁺). Anal. Calcd for C₁₆H₁₆N₂O: C, 76.16; H, 6.39; N, 11.10. Found: C, 75.50; H, 6.37; N, 10.89.
- 3-Ethyl-5-phenyl-4-propyl-1,2,4-oxadiazoline (6d)——1-Nitropropane, acetyl chloride, and benzylidene-propylamine were reacted by Method B. 6d; IR $v_{\rm max}^{\rm liq.flim}$ cm⁻¹: 1603 (C=N). PMR (CDCl₃) δ : 0.6—1.35 (8H, m, CH₂CH₂CH₃ and 3-CH₂CH₃), 2.30 (2H, q, 3-CH₂CH₃), 2.90 (2H, t, NCH₂), 6.08 (1H, s, H-5), 7.43 (5H, s, C₆H₅). MS m/e: 218 (M⁺). Anal. Calcd for C₁₃H₁₈N₂O: C, 71.52; H, 8.31; N, 12.83. Found: C, 71.05; H, 8.19, N, 12.73.
- 4-Butyl-3-ethyl-5-phenyl-1,2,4-oxadiazoline (6e)—1-Nitropropane, acetyl chloride, and benzylidenebutylamine were reacted by Method B. 6e; IR $v_{\rm max}^{\rm liq.film}$ cm⁻¹: 1600 (C=N). PMR (CDCl₃) δ: 0.7—1.5 (10H, m, CH₂C₃H₇ and 3-CH₂CH₃), 2.37 (2H, q, 3-CH₂CH₃), 2.99 (2H, t, NCH₂), 6.11 (1H, s, H-5), 7.47 (5H, s, C₆H₅). MS m/e: 232 (M+). Anal. Calcd for C₁₄H₂₀N₂O: C, 72.38; H, 8.68; N, 12.02. Found: C, 71.72; H, 8.55; N, 12.11.
- 3-Ethyl-4-hexyl-5-phenyl-1,2,4-oxadiazoline (6f)—1-Nitropropane, acetyl chloride, and benzylidene-hexylamine were reacted by Method B. 6f; IR $v_{\max}^{\text{Hiq.film}}$ cm⁻¹: 1610 (C=N). PMR (CDCl₃) δ : 0.8—1.32 (14H, m, CH₂C₅H₁₁ and 3-CH₂CH₃), 2.30 (2H, q, 3-CH₂CH₃), 2.90 (2H, t, NCH₂), 6.03 (1H, s, H-5), 7.39 (5H, s, C₆H₅). MS m/e: 260 (M⁺). Anal. Calcd for C₁₆H₂₃N₂O: C, 73.80; H, 9.29, N, 10.76. Found: C, 74.27; H, 9.39; N, 10.70.
- 4-Benzyl-3-ethyl-5-phenyl-1,2,4-oxadiazoline (6g)——1-Nitropropane, acetyl chloride, and benzylidene-benzylamine were reacted by Method B. 6g; IR $v_{\rm max}^{\rm liq.film}$ cm⁻¹: 1605 (C=N). PMR (CDCl₃) δ: 1.28 (3H, t, CH₂CH₃), 2.40 (2H, q, CH₂CH₃), 3.90 and 4.35 (each 1H, d, J=16 Hz, CH₂C₆H₅), 6.06 (1H, s, H-5), 7.0—7.3 (5H, m, CH₂C₆H₅), 7.38 (5H, s, C₆H₅). MS m/e: 266 (M⁺). Anal. Calcd for C₁₆H₁₈N₂O: C, 76.66; H, 6.81; N, 10.52. Found: C, 76.87; H, 6.87; N, 10.65.
- 3,5-Diphenyl-4-propyl-1,2,4-oxadiazoline (6h)—Phenylnitromethane, acetyl chloride, and benzylidene-propylamine were reacted by Method B. 6h; IR $v_{\max}^{\text{liq.film}}$ cm⁻¹: 1599 (C=N). PMR (CDCl₃) δ : 0.60—1.60 (5H, m, CH₂C₂H₅), 3.05 (2H, t, NCH₂), 6.33 (1H, s, H-5), 7.3—7.7 (10H, m, $2 \times C_6 H_5$). MS m/e: 266 (M⁺). Anal. Calcd for C₁₆H₁₈N₂O: C, 76.66; H, 6.81; N, 10.52. Found: C, 76.85; H, 6.88; N, 10.85.
- 4-Hexyl-3,5-diphenyl-1,2,4-oxadiazoline (6i)—Phenylnitromethane, acetyl chloride, and benzylidenehexylamine were reacted by Method B. 6i; IR $\nu_{\rm max}^{\rm He,film}$ cm⁻¹: 1600 (C=N). PMR (CDCl₃) δ: 0.7—1.4 (11H, m, CH₂C₅H₁₁), 3.06 (2H, t, NCH₂), 6.30 (1H, s, H-5), 7.3—7.6 (10H, m, C₆H₅). MS m/e: 308 (M+). Anal. Calcd for C₁₉H₂₄N₂O: C, 77.88; H, 7.84; N, 9.08. Found: C, 77.48; H, 7.48; N, 8.81.
- 4-sec-Butyl-3,5-diphenyl-1,2,4-oxadiazoline (6k)——Phenylnitromethane, acetyl chloride, and benzylidene-sec-butylamine were reacted by Method B. 6k; IR ν_{\max}^{KBr} cm⁻¹: 1600 (C=N). PMR (CDCl₃) δ: 0.6—1.8 (8H, m, CH(<u>CH₃)C₂H₅</u>), 3.47 (1H, m, NCH), 6.45 (1H, s, H-5), 7.2—7.8 (10H, m, $2 \times C_6H_5$). MS m/e: 280 (M+). Anal. Calcd for $C_{18}H_{20}N_2O$: C, 77.11; H, 7.19; N, 9.99. Found: C, 77.24; H, 7.08; N, 9.93.
- 4-Butyl-5-(2-furyl)-3-phenyl-1,2,4-oxadiazoline (6m)—Phenylnitromethane, acetyl chloride, and furfurylidenebutylamine were reacted by Method B. 6m; IR $v_{\text{max}}^{\text{Hq.film}}$ cm⁻¹: 1600 (C=N). PMR (CDCl₃) δ : 0.6—1.7 (7H, m, CH₂C₃H₇), 3.08 (2H, t, NCH₂), 6.38 (1H, s, H-5), 6.40 and 6.55 (each 1H, d, $J_{3',4'}=3$ Hz,

³³⁾ O. Schlichting and K. Klager, U.S. Patent 2340701 [C.A., 38, 4269 (1944)].

H-3',4'), 7.2—7.6 (6H, m, C_6H_5 and H-5'). MS m/e: 270 (M+). Anal. Calcd for $C_{16}H_{18}N_2O_2$: C, 71.09; H, 6.71; N, 10.36. Found: C, 70.90; H, 6.73; N, 10.36.

4-Benzyl-3-phenyl-5-(2-pyridyl)-1,2,4-oxadiazoline (6n)—Phenylnitromethane, acetyl chloride, and pyridylidenebenzylamine were reacted by Method B. 6n; IR $v_{\max}^{\text{Hq,fillm}} \text{ cm}^{-1}$: 1600 (C=N). PMR (CDCl₃) δ : 4.05 and 4.45 (each 1H, d, J = 16 Hz, $\underline{\text{CH}}_2\text{C}_6\text{H}_5$), 6.25 (1H, s, H-5), 6.9—7.7 (14H, m, $2 \times \text{C}_6\text{H}_5$ and $\text{C}_5\text{H}_4\text{N}$). MS m/e: 315 (M⁺). Anal. Calcd for $\text{C}_{20}\text{H}_{17}\text{N}_3\text{O}$: C, 76.17; H, 5.43; N, 13.33. Found: C, 75.62; H, 5.22; N, 12.91

4-Butyl-3-phenyl-5-(2-thienyl)-1,2,4-oxadiazoline (60)—Phenylnitromethane, acetyl chloride, and thienylidenebutylamine were reacted by Method B. 60; IR $\nu_{\rm max}^{\rm Hq.flim}$ cm⁻¹: 1600 (C=N). PMR (CDCl₃) δ : 0.6—1.5 (7H, m, CH₂C₃H₇), 3.12 (2H, t, NCH₂), 6.60 (1H, s, H-5), 6.9—7.7 (8H, m, C₆H₅ and C₄H₃S). MS m/e: 286 (M⁺). Anal. Calcd for C₁₆H₁₈N₂OS: C, 67.17; H, 6.29; N, 9.79. Found: C, 66.79; H, 6.01; N, 9.54.

5-Methoxycarbonyl-5-methyl-3-phenyl-1,4,2-dioxazole (8a)—Phenylnitromethane, p-chlorobenzoyl chloride, and methyl pyruvate were reacted by Method B in the presence of a 2-fold molar excess of boron trifluoride etherate. General work-up followed by column chromatography on silica gel with benzene gave 3,4-diphenylfuroxane¹⁴⁾ (25% yield) and 8a; IR $v_{\rm max}^{\rm Hq,film}$ cm⁻¹: 1750 (ester C=O), 1620 (C=N). PMR (CDCl₃) δ : 1.96 (3H, s, CH₃), 3.87 (3H, s, COOCH₃), 7.4—7.9 (5H, m, C₆H₅). MS m/e: 221 (M+). Anal. Calcd for C₁₀H₁₁NO₄: C, 59.72; H, 5.01; N, 6.33. Found: C, 59.23; H, 4.95; N, 6.14.

5-Chloromethyl-3,5-diphenyl-1,4,2-dioxazole (8d)——Phenylnitromethane, p-chlorobenzoyl chloride, and α-chloroacetophenone were reacted by Method B in the manner described for 8a. Work-up gave a mixture of diphenylfuroxane and α-chloroacetophenone along with 8d; IR $\nu_{\rm max}^{\rm Hq.film}$ cm⁻¹: 1615 (C=N). PMR (CDCl₃) δ: 4.03 (2H, s, CH₂Cl), 7.2—7.4 (10H, m, $2 \times {\rm C_6H_5}$). MS m/e: 273 (M⁺), 275 (M⁺+2). Anal. Calcd for C₁₅H₁₂ClNO₂: C, 65.81; H, 4.39; N, 5.12. Found: C, 65.70; H, 4.41; N, 5.19.

Methyl 2-Benzoyloxyimino-2-chloroacetate (9a)—A mixture of sodium methoxycarbonylmethane-nitronate (282 mg, 2.0 mmol) and benzoyl chloride (0.23 ml, 2.0 mmol) in anhydrous DMA (15 ml) was stirred at room temperature for 16 hr. General work-up followed by column chromatography on silica gel with chloroform-hexane (2:1) gave 137 mg (56% yield) of benzoic acid and 160 mg (33% yield) of 9a as colorless needles: mp 125.5—126.3° (MeOH-H₂O). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 1770 and 1740 (ester C=O), 1585 (C=N). PMR (CDCl₃) δ: 4.00 (3H, s, COOCH₃), 7.50—8.22 (5H, m, C₆H₅). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 240 (4.16). MS m/e: 210 (M⁺-OCH₃), 212 (M⁺+2-OCH₃). Anal. Calcd for C₁₀H₈ClNO₂: C, 49.69; H, 3.31; N, 5.80. Found: C, 49.28; H, 3.32; N, 5.74.

Methyl 2-(p-Tolyloxyimino)-2-chloroacetate (9b)—Sodium methoxycarbonylmethanenitronate and p-tolyl chloride were employed in the manner described for 9a. General work-up followed by column chromatography on silica gel with chloroform-hexane (3: 1) gave p-toluic acid (40% yield) and 9b (14% yield) as colorless needles: mp 133.5—134.5° (MeOH- H_2O). IR ν_{\max}^{KBr} cm⁻¹: 1780 and 1740 (ester C=O), 1580 (C=N). PMR (CDCl₃) δ : 2.35 (3H, s, CH₃), 4.01 (3H, s, COOCH₃), 7.3—8.1 (4H, m, C₆H₅). UV $\lambda_{\max}^{\text{MoOH}}$ nm (log ε): 251 (4.26). MS m/e: 255.5 (M+), 257.5 (M++2). Anal. Calcd for $C_{11}H_{10}ClNO_4$: C, 51.66; H, 3.91; N, 5.48. Found: C, 51.49; H, 3.92; N, 5.76.

4-Ethoxycarbonyl-3,5-dimethyl-5-nitro-2-isoxazoline (10) and 4-Ethoxycarbonyl-3,5-dimethylisoxazole (11)—Acetyl chloride (0.32 ml, 4.55 mmol) and ethyl β -nitrocrotonate (0.32 ml, 4.55 mmol) were added to a stirred mixture of sodium ethanenitronate (437 mg, 4.55 mmol) in anhydrous DMA (25 ml) under ice-cooling. After being stirred at room temperature for 16 hr, the mixture was worked up as usual, followed by chromatography on silica gel with benzene to give 136 mg (19% recovery) of ethyl β -nitrocrotonate and 213 mg (29% yield) of 10 as a yellow syrup: bp 30—35°/0.15 Torr. IR $\nu_{\rm max}^{\rm liq.film}$ cm⁻¹: 1720 (ester C=O), 1610 (C=N), 1540 and 1380 (C-NO₂). PMR (CDCl₃) δ: 1.40 (3H, t, CH₂CH₃), 2.47 (3H, s, 3-CH₃), 2.70 (3H, s, 5-CH₃), 3.83 (1H, s, H-4), 4.35 (2H, q, CH₂CH₃). MS m/e: 170 (M⁺-NO₂), 169 (M⁺-HNO₂).

On standing at room temperature for about 1 week, 10 was converted into an isoxazole (11) in 75% yield, which was isolated by chromatography on a column of silica gel with benzene to give a brownish syrup; IR $v_{\rm max}^{\rm Hq.flim}$ cm⁻¹: 1740 (ester C=O), 1610 (C=N). PMR (CDCl₃) δ : 1.30 (3H, t, CH₂CH₃), 2.37 (3H, s, 3-CH₃), 2.55 (3H, s, 4-CH₃), 4.26 (2H, q, CH₂CH₃). MS m/e: 169 (M⁺). Anal. Calcd for C₈H₁₁NO₃: N, 8.23. Found: N, 7.76.

3,5-Diphenyl-4-propylisoxazoline N-Oxide (12b) — Methanolic 1 N sodium methoxide (5 ml), acetyl chloride (0.36 ml, 5.1 mmol) and propylidenebutylamine (570 mg, 5.0 mmol) were added to a stirred solution of phenylnitromethane (685 mg, 5.0 mmol) in anhydrous DMA (20 ml) under ice cooling. After being stirred at room temperature for 16 hr, the mixture was worked up as usual and chromatographed on silica gel with ethyl acetate-hexane (1:5) to give 110 mg (32% recovery) of butylaldehyde and 475 mg (68% yield) of 12b as colorless needles: mp 113.5—114.5° (MeOH). IR $v_{\rm max}^{\rm KBr}$ cm⁻¹: 1610 (C=N). PMR (CDCl₃) δ : 0.9—2.0 (7H, m, n-C₃H₇), 3.73 (1H, m, H-4), 5.38 (1H, d, $J_{4.5}$ =2.0 Hz, H-5), 7.3—8.0 (10H, m, 2×C₆H₅). MS m/e: 281 (M⁺). Anal. Calcd for C₁₈H₁₉NO₂: C, 76.84; H, 6.81; N, 4.98. Found: C, 76.63; H, 6.70; N, 5.05.

Acknowledgement Financial support of this work by a Grant-in-Aid for Scientific Research (No. 355375) from the Ministry of Education, Science and Culture is gratefully acknowledged. The authors are indebted to Mr. A. Hori and Miss I. Takahashi for their technical assistance.