Chem. Pharm. Bull. 28(2) 493—499 (1980)

Studies on Tertiary Amine Oxides. LXVI.¹⁾ Reactions of Quinoline 1-Oxide Derivatives with Tosyl Chloride in the Presence of Triethylamine

KAZUKO SHICHIRI, KAZUHISA FUNAKOSHI, SEITARO SAEKI, and Masatomo Hamana

Faculty of Pharmaceutical Sciences, Kyushu University²⁾

(Received July 11, 1979)

Reactions of N-oxides of lepidine (1a) and 4-methyl- (1b), 4-chloro- (1c) and 6-methoxyquinoline (1d) with tosyl chloride (1 eq) and triethylamine (ca. 10 eq) in a mixture of chloroform and water at room temperature gave the corresponding di(2-quinolyl) ethers (3a—d) and N-(2-quinolyl)-2-quinolones (4a—d). The efficiency of this type of reaction depends upon the nature and position of the substituents.

Whereas the reaction of 1c with carbostyril under the same conditions gave small amounts of 4-chloro-2-tosyloxyquinoline (2c) and N-(4-chloro-2-quinolyl)-4-chloro-2-quinolone (4c), that of 1d afforded 6-methoxy-2-quinolyl 2'-quinolyl ether (15) and N-(6-methoxy-2-quinolyl)-2-quinolone (16) in 47 and 29% yields, respectively.

Keywords—nucleophilic reaction; addition-elimination course; ether cleavage; 2,2'-diquinolyl ethers; N-(2-quinolyl)-2-quinolones; 2-tosyloxyquinolines; 2-oxoquinolines

In the preceding paper, we reported that quinoline 1-oxide reacts with tosyl chloride and triethylamine in a mixture of chloroform and water to afford di(2-quinolyl) ether and N-(2-quinolyl)-2-quinolone accompanied by small amounts of 2-tosyloxyquinoline and carbostyril.¹⁾ As a continuation of this work, similar reactions of some quinoline 1-oxide derivatives were investigated.

In the general procedure, a mixture of a quinoline 1-oxide, one equivalent of tosyl chloride and a large excess of triethylamine (ca. 10 eq) in a mixture of chloroform and water was stirred at room temperature for 12—13 hr. Table I summarizes the reactions of N-oxides of lepidine (1a) and 4-methoxy- (1b), 4-chloro- (1c) and 6-methoxyquinoline (1d).

Table I. Reactions of Substituted Quinoline 1-Oxides (1a—d) with Tosyl Chloride and Triethylamine in Chloroform-Water

		Product	(%)		
1	2	3	4	5	Other
1a : 4-Me	2a : 10	3a : 6	4a : 11	5a : 30	6 : 8
1b : 4-OMe		3b : 13	4b : 50	5b : 13	
1c : 4-Cl		3c : 55	4c : 35		
1d : 6-OMe		3d : 23	4d: 11	5d : 28	

The reaction of lepidine 1-oxide (1a) afforded not only 2-tosyloxylepidine (2a), di(4-methyl-2-quinolyl) ether (3a), N-(4-methyl-2-quinolyl)-4-methyl-2-quinolone (4a) and 4-methyl-carbostyril (5a),³⁾ but also 3-tosyloxylepidine (6), though all in small yields. The product 6 was apparently formed through an anhydro base (7), and was readily converted into 3-hydroxylepidine³⁾ upon heating with ethanolic potassium hydroxide.

¹⁾ Part LXV: K. Shichiri, K. Funakoshi, S. Saeki, and M. Hamana, Chem. Pharm. Bull., 28, 424 (1980).

²⁾ Location: 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812, Japan.

³⁾ G. Kobayashi, S. Furukawa, Y. Akimoto, and T. Hoshi, Yakugaku Zasshi, 74, 791 (1954).

Vol. 28 (1980)

From the reaction of 4-methoxyquinoline 1-oxide (1b), N-(4-methoxy-2-quinolyl)-4-methoxy-2-quinolone (4b) was obtained as the major product in 50% yield together with small amounts of the corresponding diquinolyl ether (3b) and 4-methoxycarbostyril (5b).

The reaction of 4-chloroquinoline 1-oxide (1c) gave the diquinolyl ether (3c) and the quinolylquinlone (4c) in good yields of 55 and 35%, respectively, no other products being obtained.

$$\begin{array}{c} R \\ \downarrow \\ N \\ \downarrow \\ O \\ 1a-d \\ \hline \\ 2a-d \\ \hline \\ a: R=4-Me, \ b: R=4-MeO, \ c: R=4-Cl, \ d: R=6-MeO \\ \hline \\ 1a \\ \hline \\ O \\ \\ O \\ \\ O \\ \hline \\ O \\ \\ O \\$$

Chart 1

8

TABLE II. Some Physical Properties of 3a—d and 4a—d

Compd.	Appearance (Recryst. Solv.)	mp (°C)	Formula	Analysis (%) Calcd (Found)			${ m IR} \; v_{ m max}^{ m Nujo1} \; ({ m cm}^{-1})$
				ć	H	N	·
3a	Colorless needles (EtOH-H ₂ O)	153—155	$\mathrm{C_{20}H_{16}N_{2}O}$	79.98 (80.10	5.37 5.40	9.33 9.25)	1240 (ether)
3b	Colorless needles [CH ₂ Cl ₂ -(isoPr) ₂ O]	188—188.5	$\rm C_{20}H_{16}N_2O_3$	72.28 (72.49	$\frac{4.85}{4.78}$	8.43 8.47)	1200, 1250 (ether)
3c	Colorless pillars (CH ₂ Cl ₂ -n-hexane)	175—176	$\mathrm{C_{18}H_{10}Cl_2N_2O}$	63.37 (63.48	$\frac{2.95}{2.65}$	8.21 8.30)	1235 (ether)
3 d	Colorless needles (MeOH–H ₂ O)	138—139	$\rm C_{20}H_{16}N_{2}O_{3}$	72.28 (72.32)	$\frac{4.85}{4.83}$	8.43 8.39)	1220, 1250, 1260, 1280 (ether)
4a	Colorless needles (EtOH-H ₂ O)	213—215	$\mathrm{C_{20}H_{16}N_{2}O}$	79.98 (79.96	$5.37 \\ 5.48$	9.33 9.26)	1665 (C=O)
4b	Colorless needles (EtOH)	297 (dec.)	$\rm C_{20}H_{16}N_2O_3$	72.28 (72.15)	$\begin{array}{c} 4.85 \\ 4.84 \end{array}$	8.43 8.53)	1240 (ether) 1655 (C=O)
4c	Colorless needles (Me ₂ CO-H ₂ O)	239—240	$\mathrm{C_{18}H_{10}Cl_{2}N_{2}O}$	63.37 (63.38	$\frac{2.95}{2.70}$	8.21 8.12)	1665 (C=O)
4d	Colorless prisms (EtOH)	220—223	$C_{20}H_{16}N_2O_3$	72.28 (72.31	4.85 4.90	8.43 8.43)	1240, 1250 (ether) 1650, 1660 (C=O)

Similarly, 6-methoxyquinoline 1-oxide (1d) gave the diquinolyl ether (3d), quinolyl-quinolone $(4d)^{4}$ and 6-methoxycarbostyril $(5d)^{4}$ in 23, 11 and 28% yields, respectively.

The reaction of 4-quinolinol 1-oxide (8) followed another path, furnishing only 3-tosyloxy-4-quinolinol (9) in a high yield of 90%. The formation of 9 from 8 with tosyl chloride is a highly reactive process,⁵⁾ and evidently predominates over the type of reaction considered here. From the reaction of 4-nitroquinoline 1-oxide, only 4-nitro-2-tosyloxyquinoline (10) was isolated in a poor yield of 3%, the starting material being mostly recovered.

These results are shown in Chart 1, and some physical properties of 3a—d and 4a—d are listed in Table II.

Various reactions were carried out in connection with the structural elucidation of the products.

⁴⁾ M. Hamana and I. Kumadaki, Yakugaku Zasshi, 86, 1090 (1966).

⁵⁾ M. Hamana and K. Funakoshi, Yakugaku Zasshi, 84, 28 (1964).

Vol. 28 (1980)

Hydrogenation of di(4-chloro-2-quinolyl) ether, 3c, in methanol over 50% palladium charcoal gave di(2-quinolyl) ether (11),¹⁾ quinoline and carbostyril in 15, 21 and 38% yields, respectively. Apparently, the 4-chloro group is much more susceptible than the ether bond to catalytic reduction, as anticipated. On the other hand, treatment of 3c with hot methanolic sodium methoxide was found to give 4-chloro-2-methoxyquinoline (12) and 4-chloro-carbostyril 5c⁶⁾ in yields of 53 and 29%, respectively; no 4-methoxyquinoline derivatives were detected at all. This result indicates that, in contrast to hydrogenation, the ether linkage is much more reactive than the 4-chloro group in this case.

Reductive dechlorination of 12 to 2-methoxyquinoline (13) was effected in the usual way by hydrogenation in methanol over palladium charcoal, and 12 was shown to be obtainable from 1c by treatment with tosyl chloride and triethylamine in methanol.⁷⁾

Hydrogenation of N-(4-chloro-2-quinolyl)-4-chloro-2-quinolone **4c** in acetic acid and methanol over palladium charcoal gave the dechlorinated product (**14**),¹⁾ and treatment with methanolic sodium methoxide under reflux afforded the corresponding 4,4'-dimethoxy compound **4b**.

Treatment of di(4-methyl-2-quinolyl) ether 3a with ethanolic potassium hydroxide under reflux readily cleaved the ether bond, in the same way as 3c, giving 4-methylcarbostyril 5a³ in 79% yield. Refluxing di(6-methoxy-2-quinolyl) ether 3d with 10% hydrochloric acid in ethanol also brought about ready ether cleavage to afford 6-methoxy carbostyril 5d⁴ in 82% yield. These results provide additional evidence for the fact that the ether linkage of di(2-quinolyl) ethers is fairly susceptible to cleavage.

These reactions are shown in Chart 2.

In view of the mechanism proposed in the preceding paper¹⁾ for the formation of 3 and 4, 1c and 1d were treated with carbostyril in the presence of one equivalent of tosyl chloride and a large excess of triethylamine using the same solvent system in anticipation of the formation of the mixed diquinolyl ether as well as mixed quinolylquinolone. Products obtained from the reaction of 1c, that is, 4-chloro-2-tosyloxyquinoline (2c, 6%) and N-(4-chloro-2-quinolyl)-4-chloro-2-quinolone (4c, 12%), apparently originated only from 1c itself; however, the very low yields of products compared with the above-mentioned reaction of 1c cannot be explained and the details of the reaction remain to be explored. On the other hand, the reaction of 1d led to 6-methoxy-2-quinolyl 2'-quinolyl ether (15) and

⁶⁾ T. Itai, Yakugaku Zasshi, 65(B), 4 (1945).

⁷⁾ cf) H. Honda, Master's Thesis, Kyushu University, 1976.

N-(6-methoxy-2-quinolyl)-2-quinolone (16) in yields of 47 and 29%, respectively, accompanied by other products formed from 1d or carbostyril as shown in Chart 3.

The formation of 2,2'-diquinolyl ethers as well as N-(2-quinolyl)-2-quinolones by the above-mentioned reaction seems to be fairly general and appears to depend upon the nature and position of the substituents.

Since mixed heteroaryl ethers, especially those of α, α' -, γ, γ' - and α, γ -types, are not easily synthesized, we are now investigating reactions of aromatic N-oxides with α - and γ -oxoheteroaromatics in the presence of acylating agents and bases in the hope of providing a new route to this class of compounds, as a further extension of the above studies.

Experimental8)

The appearance, mp, elemental analyses and the characteristic IR absorptions of 3a—d and 4a—d are listed in Table II.

Reaction of Lepidine 1-Oxide (1a) with TsCl and NEt₃——A solution of TsCl (2.3 g) in CHCl₃ (20 ml) was added dropwise to an ice-cooled and stirred solution of $1a \cdot 1/2H_2O$ (1.95 g) and NEt₃ (10 ml) in CHCl₃ (20 ml)—H₂O (20 ml), and the reaction mixture was stirred at room temperature for 12 hr. The CHCl₃ layer was separated from the aqueous layer, which was extracted with CHCl₃. The combined CHCl₃ solution was dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel. The cluate with n-C₆H₁₄—CH₂Cl₂ (1: 1) gave 0.32 g (10.2%) of 2-tosyloxylepidine (2a), colorless needles, mp 122—124° (MeOH-H₂O). Anal. Calcd for C₁₇H₁₅NO₃S: C, 65.15; H, 4.83; N, 4.47. Found: C, 65.10; H, 4.79; N, 4.45. From the cluate with n-C₆H₁₄—CH₂Cl₂ (1: 3), 0.26 g (8.3%) of 3-tosyloxylepidine (6) was obtained as colorless pillars, mp 142—144° (MeOH). Anal. Calcd for C₁₇H₁₅NO₃S: C, 65.15; H, 4.83; N, 4.47. Found: C, 65.15; H, 4.81; N, 4.44. The CH₂Cl₂ cluate gave 0.18 g (6.0%) of di(4-methyl-2-quinolyl) ether (3a). NMR (CDCl₃) δ: 2.68 (6H, s, C₄—CH₃ and C₄′—CH₃), 7.12 (2H, s, C₃—H and C₃′—H). MS m/e: 300 (M⁺). Elution with AcOEt gave successively 0.34 g (11.3%) of N-(4-methyl-2-quinolyl)-4-methyl-2-quinolone (4a) [MS m/e: 300 (M⁺)] and 0.48 g (30.2%) of 4-methylcarbostyril (5a),³ colorless needles, mp 220—222° (MeOH).

A solution of 2a (0.3 g) in conc. HCl (20 ml) was refluxed for 3 hr to give 0.11 g (72.4%) of 5a.

A mixture of 6 (0.3 g) and KOH (1.0 g)-EtOH (15 ml) was refluxed for 3 hr to give 0.1 g (65.8%) of 3-hydroxylepidine,³⁾ colorless leaflets, mp 200—202°.

Reaction of 4-Methoxyquinoline 1-Oxide (1b) with TsCl and NEt₃——A mixture of 1b (1.75 g), NEt₃ (10 ml) and TsCl (2.3 g) in CHCl₃ (40 ml)– H_2O (20 ml) was allowed to react under the conditions described above. The mixture of products was chromatographed on silica gel with CH_2Cl_2 and AcOEt. The fraction eluted with CH_2Cl_2 was again chromatographed on silica gel with n-C₆ H_{14} and AcOEt. The eluate with n-C₆ H_{14} -AcOEt (6: 1) gave 0.21 g (12.7%) of di(4-methoxy-2-quinolyl) ether (3b). NMR (CDCl₃) δ : 4.01 (6H, s, 4-OCH₃ and 4'-OCH₃), 6.65 (2H, s, C_3 -H and C_3 '-H), 8.12 (2H, d, J=7.9 Hz, C_5 -H and C_5 '-H). MS m/e: 332 (M⁺). The AcOEt eluate gave 0.83 g (50%) of N-(4-methoxy-2-quinolyl)-4-methoxy-2-quinolone (4b). MS m/e: 332 (M⁺).

The fraction eluted with AcOEt from the first chromatography gave 0.22 g (12.6%) of 4-methoxycarbostyril (5b), colorless needles, mp 258—259° (MeOH). Anal. Calcd for $C_{10}H_9NO_2$: C, 68.56; H, 5.18; N, 8.00. Found: C, 68.44; H, 5.12; N, 8.01. IR $v_{\rm max}^{\rm Nujol}$ cm⁻¹: 1235 (ether), 1673 (C=O), 3140 (NH). This was identical with an authentic sample prepared from 1b by reaction with TsCl-Na₂CO₃ in CHCl₃-H₂O.

Reaction of 4-Chloroquinoline 1-Oxide (1a) with TsCl and NEt₃—A mixture of 1c (0.9 g), NEt₃ (5 ml) and TsCl (1.15 g) in CHCl₃ (20 ml)-H₂O (10 ml) was treated as described above, and the mixture of products was chromatographed on silica gel. Elution with CH₂Cl₂ gave 0.47 g (55.3%) of di(4-chloro-2-quinolyl) ether (3c). NMR (CDCl₃) δ : 7.46 (2H, s, C₃-H and C₃'-H). MS m/e: 341 (M+). The AcOEt eluate gave 0.3 g (35.3%) of N-(4-chloro-2-quinolyl)-4-chloro-2-quinolone (4c). MS m/e: 341 (M+).

Reaction of 6-Methoxyquinoline 1-Oxide (1d) with TsCl and NEt₃—A mixture of $1d \cdot 2H_2O$ (0.88 g), NEt₃ (5 ml) and TsCl (1.15 g) in CHCl₃ (20 ml)–H₂O (10 ml) was treated as described above, and the mixture of products was chromatographed on silica gel. Elution with n-C₆H₁₄–AcOEt (7: 3) gave 0.33 g (23%) of di(6-methoxy-2-quinolyl) ether (3d). NMR (CDCl₃) δ : 3.92 (6H, s, 6-OCH₃ and 6'-OCH₃), 7.76 (2H, d, J= 8.5 Hz, C₇–H and C₇′–H), 8.80 (2H, d, C₈–H and C₈′–H). MS m/e: 332 (M+). The AcOEt eluate gave 0.16 g (11.2%) of N-(6-methoxy-2-quinolyl)-6-methoxy-2-quinolone (4d). MS m/e: 332 (M+). The eluate with AcOEt–MeOH (9: 1) gave 0.21 g (28%) of 6-methoxycarbostyril (5d), colorless prisms, mp 218—220° (EtOH–H₂O).

⁸⁾ All melting points are uncorrected. IR spectra were recorded on a JASCO IR-E spectrophotometer. NMR spectra were measured with a JEOL PS-100 spectrophotometer at 100 MHz using tetramethylsilane as an internal standard. Mass spectra were obtained on a JEOL 01SG machine.

Reaction of 4-Quinolinol 1-Oxide (8) with TsCl and NEt₃—A mixture of 8 (0.80 g), NEt₃ (5 ml) and TsCl (1.15 g) in CHCl₃ (20 ml)-H₂O (10 ml) was stirred at room temperature for 12 hr. The CHCl₃ layer was separated from the aqueous layer, which was extracted with CHCl₃. The combined CHCl₃ solution was dried over Na₂SO₄, and concentrated, and the residue was dissolved in CH₂Cl₂. The CH₂Cl₂ solution was passed through a silica gel column to give 1.29 g (90.2%) of 3-tosyloxy-4-quinolinol (9),⁵⁾ colorless needles, mp 227—228° (95% EtOH).

Reaction of 4-Nitroquinoline 1-Oxide with TsCl and NEt₃—A mixture of 4-nitroquinoline 1-oxide (0.95 g), NEt₃ (5 ml) and TsCl (1.15 g) in CHCl₃ (20 ml)–H₂O (10 ml) was stirred at room temperature for 12 hr. The CHCl₃ layer was separated from the aqueous layer, which was extracted with CHCl₃. The residue from the combined CHCl₃ solution was chromatographed on silica gel. The fraction eluted with n-C₆H₁₄-CH₂Cl₂ (1:1) gave 0.11 g (3.2%) of 4-nitro-2-tosyloxyquinoline (10), pale yellow needles, mp 170—172° [benzene-n-C₆H₁₄ (1:3)]. Anal. Calcd for C₁₆H₁₂N₂O₅S: C, 55.82; H, 3.51; N, 8.14. Found: C, 55.93; H, 3.62; N, 7.98. MS m/e: 344 (M⁺). IR $v_{\text{max}}^{\text{Nuloi}}$ cm⁻¹: 1183, 1195, 1385 (SO₂), 1365, 1540 (NO₂). NMR (CDCl₃) δ : 2.48 (3H, s, CH₃), 7.39 (2H, d, J=8.0 Hz, two Ph-H), 8.04 (2H, d, J=8.0 Hz, two Ph-H), 7.68 (1H, s, C₃-H), 8.35 (1H, dd, C₈-H), 7.7—8.0 (3H, m, C₅-, C₆- and C₈-H). Unreacted N-oxide was recovered from the CH₂Cl₂ eluate; 0.57 g (60%).

Reaction of Di(4-chloro-2-quinolyl) Ether (3c)—1) Hydrogenation: A solution of 3c (0.25 g) in MeOH (40 ml) was hydrogenated at normal temperature and pressure over 50% Pd-C previously prepared in situ from active charcoal (0.3 g) and 1% PdCl₂ (15 ml). After absorption of 41.2 ml of hydrogen, the solution was filtered and concentrated, then made alkaline with NH₄OH and extracted with CHCl₃. The residue from the CHCl₃ extract was chromatographed on silica gel. The CH₂Cl₂ eluate gave 0.03 g (15.0%) of di(2-quinolyl) ether (11), colorless needles, mp 109—111° [(isoPr)₂O-n-C₆H_{1,1}]. The eluate with CH₂Cl₂-AcOEt (2: 1) gave 0.02 g (21.2%) of quinoline. The AcOEt eluate afforded 0.04 g (37.7%) of carbostyril.

2) Reaction with MeONa–MeOH: Compound 3c (0.2 g) was added to a MeONa–MeOH solution prepared from Na (0.35 g) and anhyd. MeOH (10 ml), and the whole was refluxed for 6 hr. The reaction mixture was concentrated, treated with NaHCO₃ solution, and extracted with CH₂Cl₂. The residue from the CH₂Cl₂ extract was chromatographed on silica gel. The fraction eluted with n-C₆H₁₄–AcOEt (10:1) gave 0.06 g (53%) of 4-chloro-2-methoxyquinoline (12), colorless needles, mp 70—71° (petr. ether). Anal. Calcd for C₁₀H₈CINO: C, 62.03; H, 4.16; N, 7.23. Found: C, 61.95; H, 4.00; N, 7.23. The AcOEt eluate gave 0.03 g (29%) of 4-chlorocarbostyril (5c), 6 colorless needles, mp 345—347° (EtOH).

4-Chloro-2-methoxyquinoline (12)——An ice-cooled and stirred solution of 1c (0.9 g) in anhyd. MeOH (30 ml) was treated with TsCl (2.1 g) in small portions, followed by NEt₃ (1.2 g), then the whole was stirred at room temperature for 5 hr. The reaction mixture was concentrated, treated with NaHCO₃ solution, and extracted with CH₂Cl₂. The residue from the CH₂Cl₂ extract was chromatographed on silica gel with $n \, C_6 H_{14}$ –CH₂Cl₂ (1:1) to give 0.84 g (87%) of 12.

Hydrogenation of 4-Chloro-2-methoxyquinoline (12)—A solution of 12 (0.04 g) in MeOH (40 ml) containing AcONa (0.015 g) was hydrogenated over Pd–C previously prepared in situ from active charcoal (0.03 g) and 1% PdCl₂ (2 ml). After absorption of ca. 1 mol eq of hydrogen, the solution was filtered and concentrated, then treated with NaHCO₃ solution and extracted with CH₂Cl₂. The residue from the CH₂Cl₂ extract was chromatographed on silica gel with n-C₆H₁₄-benzene (2:1) to give two fractions. The first fraction gave 2-methoxyquinoline, which was isolated as 0.06 g (64.9%) of the picrate, mp 170—171° (EtOH). From the second fraction, 0.015 g (33%) of 12 was recovered.

Reaction of N-(4-Chloro-2-quinolyl)-4-chloro-2-quinolone (4c)——1) Hydrogenation: A solution of 4c (0.3 g) in AcOH (20 ml)-MeOH (5 ml) containing AcONa (0.15 g) was hydrogenated at normal temperature and presuure over 50% Pd-C previously prepared in situ from active charcoal (0.3 g) and 1% PdCl₂ (15 ml). After absorption of 28.4 ml of hydrogen, the solution was filtered and concentrated, then made alkaline with NaHCO₃ solution and extracted with CH₂Cl₂. The residue from the CH₂Cl₂ extract was chromatographed on silica gel with CH₂Cl₂-AcOEt (1: 1). The first fraction gave 0.08 g (26.7%) of unreacted 4c. The second one afforded 0.07 g (29.2%) of N-(2-quinolyl)-2-quinolone (14),¹⁾ colorless needles, mp 172—174° (EtOH-H₂O).

2) Reaction with MeONa-MeOH: Compound 4c (0.15 g) was added to a solution of MeONa in MeOH prepared from Na (0.3 g) and anhyd. MeOH (22 ml), and the whole was refluxed for 16 hr. After concentration, NH₄OH was added, and the resulting mixture was extracted with CH₂Cl₂. The residue from the CH₂Cl₂ extract was dissolved in CH₂Cl₂-AcOEt (1:1) and passed through a silica gel column to give 0.13 g (98%) of 4b.

Reaction of Di(4-methyl-2-quinolyl) Ether (3a) with KOH-MeOH——A mixture of 3a (0.3 g) and KOH (1.0 g)—EtOH (15 ml) was refluxed for 3 hr. The reaction mixture was concentrated, made alkaline with ammonia and extracted with CHCl₃. The residue from the CHCl₃ extract was recrystallized from MeOH to give 0.25 g (78.6%) of 5a.³)

Reaction of Di(6-methoxy-2-quinolyl) Ether (3d) with 10% HCl-EtOH——A solution of 3d (0.1 g) in 10% HCl (5 ml)—EtOH (8 ml) was refluxed for 3 hr. The reactants were concentrated, made alkaline with NaHCO₃ solution and extracted with CH_2Cl_2 . The residue from the CH_2Cl_2 extract was recrystallized from EtOH– H_2O to give 0.086 g (82%) of 4d.4)

Reaction of 4-Chloroquinoline 1-Oxide (1c) with Carbostyril in the Presence of TsCl and NEt₃——An ice-cooled and stirred mixture of 1c (0.45 g), carbostyril (0.36 g), NEt₃ (5 ml), CHCl₂ (10 ml) and H₂O (10 ml) was treated dropwise with a solution of TsCl (1.15 g) in CHCl₃ (10 ml), and the whole was stirred at room temperature for 12 hr. The CHCl₃ layer was separated from the aqueous layer, which was extracted with CHCl₃. The residue from the combined CHCl₃ solution was chromatographed on silica gel. The first fraction, eluted with n-C₆H₁₄-CH₂Cl₂ (1: 1), afforded 0.051 g (6%) of 4-chloro-2-tosyloxyquinoline (2c), colorless needles, mp 135–137° [CH₂Cl₂–(isoPr)₂O]. Anal. Calcd for C₁₆H₁₂ClNO₃S: C, 57.57; H, 3.62; N, 4.20. Found: C, 57.52; H, 3.61; N, 4.12. The eluate with CH₂Cl₂–AcOEt (1: 1) gave 0.051 g (12%) of 4c. IR $\nu_{\rm max}^{\rm Nuloi}$ cm⁻¹: 1180, 1195, 1375 (SO₂). NMR (CDCl₃) δ : 2.47 (3H, s, CH₃), 7.28 (1H, s, C₃–H), 7.34 (2H, d, J=8.0 Hz, two Ph–H), 8.01 (2H, d, J=8.0 Hz, two Ph–H). MS m/e: 333 (M⁺). The last fraction, eluted with AcOEt, gave 0.07 g (19%) of carbostyril.

Reaction of 6-Methoxyquinoline 1-Oxide (1d) with Carbostyril in the Presence of TsCl and NEt₃—A solution of TsCl (2.3 g) in CHCl₃ (20 ml) was added dropwise to an ice-cooled and stirred mixture of 1d (0.88 g), carbostyril (0.73 g), NEt₃ (5 ml), CHCl₃ (20 ml) and H₂O (20 ml), and the whole was stirred at room temperature for 12 hr. The CHCl₃ layer was separated from the aqueous layer, which was extracted with CHCl₃. The residue from the combined CHCl₃ solution was carefully chromatographed on silica gel. The fraction eluted with n-C₆H₁₄-CH₂Cl₂ (1: 1) gave 0.16 g (10.7%) of 2-tosyloxyquinoline, colorless prisms, mp 82° (n-C₆H₁₄). The CH₂Cl₂ eluate afforded 0.60 g (39.5%) of 6-methoxy-2-quinolyl-2'-quinolyl ether (15), colorless needles, mp 153—154° (95% EtOH). Anal. Calcd for C₁₉H₁₄N₂O₂: C, 75.48; H, 4.67; N, 9.27. Found: C, 75.51; H, 4.63; N, 9.25. IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1240, 1255 (ether). NMR (CDCl₃) δ : 3.92 (3H, s, OCH₃). MS m/e: 302 (M⁺). The eluate with CH₂Cl₂-AcOEt (3: 1) gave 0.37 g (24.3%) of N-(6-methoxy-2-quinolyl)-2-quinolone (16), colorless needles, mp 197—197.5° (EtOH). Anal. Calcd for C₁₉H₁₄N₂O₂: C, 75.48; H, 4.67; N, 9.27. Found: C, 75.42; H, 4.76: N, 9.25. IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1245 (ether), 1660 (C=O). NMR (CDCl₃) δ : 3.97 (3H, s, OCH₃). MS m/e: 302 (M⁺). In addition, 0.15 g (20.5%) of carbostyril and 0.30 g (34%) of 5d were isolated from the fractions eluted with AcOEt and with EtOH, respectively.

Acknowledgement This work was supported in part by a grant from the Takeda Science Foundation, which is gratefully acknowledged. Thanks are also due to Mr. K. Ishimura and Mr. T. Miyazaki for elemental analyses, to Miss. M. Kawamura for the measurement of mass spectra and to Mr. A. Tanaka for the measurement of NMR spectra.