Chem. Pharm. Bull. 28(3)1003—1005(1980)

A Cyclization of \(\beta \)-Arylethylisocyanates to 3,4-Dihydroisocarbostyrils

Bunsuke Umezawa, Osamu Hoshino, Shohei Sawaki, and Kazuhiko Mori

Faculty of Pharmaceutical Sciences, Science University of Tokyo¹⁾

(Received October 16, 1979)

A β -arylethylisocyanate derived from β -(3,4-methylenedioxyphenyl) (3a)-, β -(3,4-dimethoxyphenyl) (3b)-, β -(3,4,5-trimethoxyphenyl) (3c)- or β -(3-methoxyphenyl) (3d)-propionic acid was treated with anhydrous phosphoric acid at room temperature to give, in moderate yield, 6,7-methylenedioxy (4a)-, 6,7-dimethoxy (4b)-, 6,7,8-trimethoxy (4c)-, or 6-methoxy (4d)- and 8-methoxy (4d')-3,4-dihydroisocarbostyrils.

In the case of β -(4-benzyloxy-3-methoxyphenyl) (3e)- or β -(3-benzyloxy-4-methoxyphenyl) (3f)-propionic acid, however, only 8-benzyl-7-hydroxy-6-methoxy (4e)- or 5-benzyl-6-hydroxy-7-methoxy (4f)-3,4-dihydroisocarbostyril, respectively, was obtained in low yield.

Keywords——cyclization; rearrangement; anhydrous H_3PO_4 ; β -arylpropionic acids; β -arylethylisocyanates; 3,4-dihydroisocarbostyrils

In connection with synthetic studies²⁾ on lycorine–type alkaloids, the preparation of 1,2,-3,4,4a α ,5,6,10b β -octahydrophenanthrid-6-one (2)³⁾ from an isocyanate (1) was required on a large scale.

Although polyphosphoric acid (PPA),⁴⁾ boron trifluoride-etherate,⁵⁾ and phosphoryl chloride-stannic chloride⁶⁾ are known to be useful reagents for cyclization, we decided to employ anhydrous phosphoric acid (anhyd. H_3PO_4),⁷⁾ for this purpose. This paper deals with the preparation of several 3,4-dihydroisocarbostyrils from appropriate β -arylethylisocyanates.

The corresponding propionic acids (3) were successively transformed to acid chlorides and acid azides, Curtius rearrangement of which gave the starting isocyanates. Treatment of the isocyanates in methylene chloride with anhyd. H₃PO₄ afforded the 3,4-dihydroisocarbostyrils (4) in fair to good yields, as shown in Table I.

The structures of 4a, 8, 4b, 8, 4c, 9, and 4d, were confirmed by their spectral data (NMR, IR) and by comparison of their melting points with those in the literature. On the other hand, the structure 4d' was strongly suggested by the presence of one-proton double doublets at δ 7.25 (J=7 and 8 Hz) in the nuclear magnetic resonance (NMR) spectrum.

¹⁾ Location: 12, Ichigaya Funagawara-machi, Shinjuku-ku, Tokyo, 162, Japan.

²⁾ B. Umezawa, O. Hoshino, S. Sawaki, S. Sato, and N. Numao, J. Org. Chem., 42, 4272 (1977).

³⁾ B. Umezawa, O. Hoshino, S. Sawaki, H. Sashida, and K. Mori, Heterocycles, 12, 1475 (1979).

⁴⁾ J.B. Hendrickson, T.L. Bogard, M.E. Fisch, S. Grossert, and N. Yoshimura, J. Am. Chem. Soc., 96, 7781 (1974).

⁵⁾ S. Ohta and S. Kimoto, Tetrahedron Lett., 1975, 2279; Idem, Chem. Pharm. Bull., 24, 2969 (1976).

⁶⁾ Y. Tsuda, K. Isobe, J. Toda, and J. Taga, Heterocycles, 5, 157 (1976).

⁷⁾ L.F. Fieser and M. Fieser, "Reagents for Organic Synthesis," Vol. 1, John Wiley and Sons, Inc., N.Y., 1967, p. 860.

$$\begin{array}{c} R^1 \\ R^2 \\ R^3 \\ R^4 \\ \end{array} \begin{array}{c} 1) \text{ SOCl}_2 \\ 2) \text{ NaN}_3, \text{ acetone, } H_2O \\ \hline 3) C_6H_6, \ \varDelta \\ 4) \text{ anhyd. } H_3PO_4 \\ \end{array} \begin{array}{c} R^2 \\ R^3 \\ \end{array} \begin{array}{c} R^1 \\ R^4 \\ \end{array} \begin{array}{c} R^1 \\ R^3 \\ \end{array} \end{array}$$

Table I. Melting Points and Yields of 3,4-Dihydroisocarbostyrils (4)

Starting material	Product (%)	$\mathrm{mp}^{a)}$
$3a^{b)}$	4a (65.5)	183—184° (lit.c) 181°)
$3\mathbf{b}^{d}$	4b (60.0)	171.5—172° (lit.c) 170—171°)
$3c^{e}$	4c (47.0)	137—188° (lit. ^f) 136.5—137.5°)
$3d^{g}$	4d (36.0) h)	137—138° (lit.c) 139°)

a) They were recrystallized from C₆H₅-n-hexane.

b) W. Reeve and H. Myers, J. Am. Chem. Soc., 73, 1371 (1951).

c) Ref. 8.

d) N.K. Bose and D.N. Chaudhurry, J. Indian Chem. Soc., 42, 211 (1965).

e) K.H. Slotta and H. Heller, Ber., 63, 3029 (1930).

f) Ref. 9.

g) R.S. Livshits, G.I. Bezirevkaya, M.S. Bainova, O.E. Dobrovinskaya, and N.A. Preobrazhenskii, J. Gen. Chem. (USSR), 17, 1671 (1947) [Chem. Abstr., 42, 2606i (1948)].

) A regioisomer (4d'), mp 146—147° (CCl₄-n-hexane) (Anal. Calcd for $C_{10}H_1$, NO₂: C, 67.78; H, 6.26; N, 7.91. Found: C, 67.34; H, 6.30; N, 7.92), was obtained in 6% yield.

In the case of 3e, ¹⁰ however, the only isolable product was 8-benzyl-3,4-dihydroisocarbostyril (4e), the yield being 7%. Similarly, $3f^{11}$ gave 4f in 5% yield. The structures of 4e and 4f were assigned on the basis of NMR spectra; namely the absence of a one-proton singlet attributable to C_8 -H and the presence of a benzylic two-proton singlet, shifted appreciably downfield, at δ 4.70 in the former, and the presence of a one-proton singlet at δ 7.50 due to C_8 -H and of a benzylic two-proton singlet at δ 4.11 in the latter.

Lewis acid-catalyzed rearrangement of benzyl phenyl ether has been well documented,¹²⁾ and the above rearrangement must have been induced by protons before or after cyclization.

Since more effective agitation is possible in anhyd.H₃PO₄ than PPA, the present method appears to be of some synthetic utility.

Experimental¹³⁾

A General Procedure—A solution in CH₂Cl₂ (1.5 ml) of an isocyanate was prepared by treatment with aq. NaN₃ in acetone of an acid chloride from 4a—c (4.17 mmol) followed by heating in C₆H₆, then

11) R. Robinson and S. Sugasawa, J. Chem. Soc., 1931, 3163.

⁸⁾ A. Brossi, J. Wuersch, and O. Schnider, Chimia (Switz.), 12, 114 (1958).

⁹⁾ R.H.F. Manske and H.L. Holmes, J. Am. Chem. Soc., 67, 95 (1945).

¹⁰⁾ S. Kobayashi, Sci. Papers Inst. Phys. Chem. Res., 6, 149 (1927).

¹²⁾ N.M. Cullinane, R.A. Woolhouse, and G.B. Carter, J. Chem. Soc., 1962, 2995.

¹³⁾ All melting points are uncorrected. IR spectra were taken with a Hitachi 215 spectrometer. NMR spectra were run on a Hitachi R-24B spectrometer in CDCl₃ solutoin using (CH₃)₄Si as an internal standard, unless otherwise noted. The following abbreviations are used; s: singlet; bs: broad singlet; d: doublet; dd: doublet doublets; td: triple doublets; t: triplet; m: multiplet. Mass spectra were run on a Hitachi RMU-7M double-focusing mass spectrometer at 70 eV with direct insertion. Preparative TLC (prep. TLC) was performed using silica gel HF₂₅₄ (Merck) or basic alumina HF₂₅₄ (Merck).

this solution was treated with anhyd. H_3PO_4 (5 g, prepared from 85% H_3PO_4 and a calculated amount of P_2O_5) at room temperature for 2 hr. Purification of the product was carried out by prep. TLC or recrystallization. The results are shown in Table I. A typical experimental procedure is described below.

3,4-Dihydro-6-methoxy- and 3,4-Dihydro-8-methoxy-isocarbostyrils (4d and 4d')——A solution in CH_2Cl_2 (1.5 ml) of an isocyanate (509 mg) derived from 3d (751 mg) was added dropwise to anhyd. H_3PO_4 (5 g) with stirring over a period of 5 min and stirring was continued at room temperature for 2 hr. The reaction mixture was poured into saturated aq. K_2CO_3 and the product was taken up in $CHCl_3$. Usual work-up gave a solid (340 mg), which was recrystallized from C_6H_6 -n-hexane to give 4d (196 mg). A mixture (139 mg) from the mother liquor was separated by prep. TLC (SiO₂, acetone-AcOEt=2:1) giving an additional crop of 4d (72 mg) and 4d' (35 mg) (mobility; 4d>4d'). 4d'; NMR δ : 2.85 (2H, t, J=6 Hz, C_4 -H), 3.40 (2H, m, C_3 -H), 3.80 (3H, s, OCH₃), 6.70 (1H, d, J=8 Hz, ar. H), 6.80 (1H, d, J=7 Hz, ar. H), 7.25 (1H, dd, J=8, 7 Hz, C_6 -H); IR v_{max}^{encis} cm⁻¹: 3400 (NH), 1660 (NHCO); MS m/e: 177 (M⁺).

8-Benzyl-3,4-dihydro-7-hydroxy-6-methoxyisocarbostyril (4e)—An isocyanate (662 mg) from 3e¹⁰ (1.08 g) was treated in the manner described above for 3d to give a reaction mixture, which was made alkaline with 10% NaOH. The alkaline layer was, after washing with CHCl₃, made acidic with 10% HCl and the product was taken up in CHCl₃. Usual work-up gave an amorphous mass (131 mg), purification of which by prep. TLC (SiO₂, AcOEt: acetone=2:1) provided 4e (76 mg, 7%), mp 172—172.5° (C_6H_6). Anal. Calcd for $C_{17}H_{17}NO_3$: C, 72.05; H, 6.05; N, 4.95. Found: C, 71.97; H, 6.05; N, 4.99. NMR¹⁴) δ : 2.80 (2H, t, J=7 Hz, C_4 -H), 3.30 (2H, td, J=7, 3 Hz, C_3 -H), 3.82 (3H, s, OCH₂), 4.70 (2H, s, C_4 -Ph), 6.72 (1H, s, C_5 -H), 6.80—7.30 (5H, m, C_6H_5), 7.42 (1H, s, OH, disappeared on addition of C_2O); IR v_{max}^{KBF} cm⁻¹: 3530 (OH), 3170 (NH), 1650 (NHCO); MS m/e 283 (M⁺).

Despite extensive purification of the neutral portion, no identifiable product could be obtained.

5-Benzyl-3,4-dihydro-6-hydroxy-7-methoxyisocarbostyril (4f)——A phenolic residue (498 mg) derived from 3f¹¹⁾ (2.39 g) as described above was chromatographed on SiO₂ (Kanto Chemicals) (elution with C_6H_6 -iso-PrOH=60: 1) to afford a product (250 mg), which was purified by prep. TLC (Al₂O₃, C_6H_6 -iso-PrOH=8: 1), giving 4f (115 mg, 5%), mp 194—195° (CCl₄). Anal. Calcd for $C_{17}H_{17}NO_3 \cdot 1/4H_2O$: C, 70.94; H, 6.13; N, 4.87. Found: 70.69; H, 6.17; N, 5.14. NMR¹⁴⁾ δ : 2.78 (2H, t, J=7 Hz, C_4 -H), 3.40 (2H, td, J=7, 3 Hz, C_3 -H), 3.88 (3H, s, OCH₂), 4.10 (2H, s, C_4 -Ph), 6.70—7.00 (1H, bs, NH), 7.18 (5H,s, C_6 H₅), 7.50 (1H, s, C_8 -H), 8.12 (1H, s, OH, disappeared on addition of D_2O); IR $v_{\rm max}^{\rm RBr}$ cm⁻¹: 3450 (OH), 3200 (NH), 1660 (NHCO); MS m/e: 283 (M⁺).

No identifiable product could be obtained from the neutral portion.

Acknowledgement The authors are indebted to Dr. T. Moroe of Takasago Perfumery Co. Ltd., for kindly supplying a starting material. Thanks are also due to Misses N. Sawabe and K. Ohdachi of this faculty for NMR and MS spectral mesurements, and to Sankyo Co. Ltd., for elemental analysis.

¹⁴⁾ This was taken with a JEOL 4H-100 spectrometer in acetone- d_6 solutoin.