Chem. Pharm. Bull. 28(4)1345—1346(1980)

Isobaimonidine, a New Fritillaria Alkaloid from the Aerial Part of Fritillaria verticillata

The third epimer of verticine, isobaimonidine, was isolated from the aerial part of *Fritillaria verticillata*, and its absolute configuration was chemically determined as (22S, 25S)- 5α -cevanine- 3α , 6α , 20β -triol.

Keywords—Liliaceae; *Fritillaria verticillata*; a new *Fritillaria* alkaloid; a epimer of verticine; 5α -cevanine- 3α -ol series; alkaloid from aerial part

In the course of our biogenetic studies on *Fritillaria* alkaloids, we have already reported two new cevanine alkaloids, baimonidine (2) from the aerial part, and isoverticine (3) from the bulb of the mature *Fritillaria verticillata* Where var. *Thunbergii* Baker, Liliaceae. In continuation of our work on the separation of alkaloids in the same mature plant, a new minor alkaloid, isobaimonidine (1) was isolated from the aerial part.

Compound	R_1	R_2	R_3	R ₄
Isobaimonidine (1)	Н	ОН	H	ОН
Baimonidine (2)	Η	OH	OH	\mathbf{H}
Isoverticine (3)	OH	H	OH	H
Verticine (4)	OH	H	H	OH
6α -Ol-3-one deriv. (5a)	=()	H	OH
Verticinone (6)	OH	H	=()

Fig. 1

Isobaimonidine (1), [mp 238—241°; [α]_D —59.2° (c 0.25, CHCl₃); IR $\nu_{\text{max}}^{\text{CHCl}_5}$: 3600, 3550—3100, 2780 and 1020 cm⁻¹], revealed a parent molecular peak at m/e 431 and a base peak at m/e 112°) in mass spectrum. The IR spectrum of 1 showed diagnostic absorption bands contributed to trans-quinolizidine moiety at 2780 cm⁻¹, 3) and hydroxyl group at 3600, and 3550—3100 cm⁻¹. The ¹H-NMR spectrum (100 MHz) of 1 exhibited three methyl signals, two singlets at δ 0.80 and 1.02, a doublet at δ 1.07, and two multiplets centered at δ 3.33 ($W_{1/2}$ =24 Hz) and 4.16 ($W_{1/2}$ =8 Hz), which associated with hydrogens bearing hydroxyl group. Thus it can be concluded that 1 is a cevanine alkaloid having a tertiary and two secondary hydroxyl groups. The chemical shifts of the methyl protons and the half height width of protons bearing hydroxyl group in 1 have analogies with those of verticine (4)⁴) and those of its epimers, 1) as shown in Table I, and suspect the structure of 1 as $\delta\alpha$ -cevanine- 3α , 6α , 20β -triol.

In order to establish the absolute configuration of 1, we conducted the conversion of 4 to 1. 4 was oxidized with Fetizon's reagent (Ag₂CO₃ on Celite)⁵⁾ to 6α -ol-3-one deriv. (5a), [MS m/e: 429 (M⁺), 414, 411, and 112 (base peak); IR $v_{\text{max}}^{\text{CHCls}}$ cm⁻¹: 3600, 3570—3150, 2800, 1700, 1130, and 1030; ¹H-NMR: in Table I; CD (c 3.58×10⁻¹, methanol) [θ]₂₈₈ (nm):

¹⁾ K. Kaneko, M. Tanaka, K. Haruki, N. Naruse, and H. Mitsuhashi, Tetrahedron Lett., 1979, 3737.

²⁾ H. Budzikiewicz, Tetrahedron, 20, 2267 (1964).

³⁾ F. Bohlmann, Chem. Ber., 91, 2157 (1958).

S. Itô, M. Kâtô, K. Shibata, and T. Nozoe, Chem. Pharm. Bull., 9, 253 (1961); 11, 1337 (1963); S. Itô,
Y. Fukazawa, T. Okuda, and Y. Iitaka, Tetrahedron Lett., 1968, 4801.

TABLE I.	¹ H Chemical	Shifts in	ppm	Relative	to	TMS in	n CDCl ₂
----------	-------------------------	-----------	-----	----------	----	--------	---------------------

Compound	C-3	C-6	C-19a)	C-21 ^a)	$C-27^{b}$
1	4.16c)	3.33^{d}	0.80	1.02	1.07
2	$4.24^{c)}$	3.840)	1.02	1.05	1.11
3	3.63^{d}	3.85%	1.03	1.03	1.09
4	3.50^{d}	3.44^{d}	0.81	1.02	1.11
5a		3.45^{d}	1.06	1.02	1.12
6	3.56^{d}	handandelijk	0.76	1.02	1.10

Multiplicity: a) s, b) d, J=7 Hz, c) m, $W_{1/2}=8$ Hz, d) m, $W_{1/2}=24$ Hz.

+3000 (positive maximum); ref. verticinone (6),⁴⁾ CD (c 4.78×10^{-1} , methanol) [θ]₂₉₅ (nm): -2800 (negative maximum)⁶].

5a was acetylated by usual manner, resulting 6α -acetate (5b) was reduced with isobornyl-oxyaluminum dichloride. The product, after being saponified, was purified by column chromatography on silica gel and afforded 1 and 4, 38% and 15% yield, respectively. The physical constants of 1 agreed completely with those of natural product and melting point of 1 was not depressed by admixture with the natural product.

1 corresponds 3rd epimer of 4, concerning configurations of hydroxyl groups at C-3 and C-6 in 5α -cevanine skeleton, then it seems most reasonable to suspect that 4 and its three epimers, 1, 2, and 3 are derived from common precursor which is transformed from solanidine. It is interesting to note that regarding configuration of hydroxyl group at C-3 in 5α -cevanine alkaloid, α -hydroxyl epimers, 1 and 2, were only isolated from the aerial part, but not found from the bulb, on the contrary, β -hydroxyl epimers, 3 and 4, were mainly isolated from the bulb. On the basis of these consideration, the biogenesis of *Fritillaria* alkaloid are subject under active investigations.

Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo Nishi-6-chome, Kita-ku, Sapporo 060, Japan

Received February 20, 1980

Kô Kaneko Nobuaki Naruse Kimiaki Haruki Hiroshi Mitsuhashi

⁵⁾ E.R.H. Jones, G.D. Meakins, J. Pragnell, W.E. Müller, and A.L. Wilkins, J. Chem. Soc., Perkin I, 1974, 2376.

⁶⁾ I. Kitagawa, M. Kobayashi, and T. Sugawara, Chem. Pharm. Bull., 26, 1852 (1978); 26, 1864 (1978).

⁷⁾ E.L. Eliel and D. Nasipuri, J. Org. Chem., 30, 3809 (1965).

⁸⁾ K. Kaneko, N. Kawamura, T. Kuribayashi, M. Tanaka, H. Mitsuhashi, and H. Koyama, *Tetrahedron Lett.*, 1978, 4801.