Chem. Pharm. Bull. 28(5)1422—1431(1980)

Studies on Prostaglandins. VI.¹⁾ Synthesis of 16(S)-Methyl-20-methoxy-PGE₂ (YPG-209) having Oral Bronchodilator Activity and Its Analogs

HIDENORI IWAMOTO, NORIYOSHI INUKAI, ISAO YANAGISAWA, YOSHIO ISHII,
TOSHINARI TAMURA, TETSUYA SHIOZAKI, TOKUICHI TAKAGI,
KEN-ICHI TOMIOKA, and MASUO MURAKAMI

Central Research Laboratories, Yamanouchi Pharmaceutical Co., Ltd.2)

(Received September 29, 1979)

 $16(S)\text{-Methyl-}20\text{-methoxy-PGE}_2$ (YPG-209) (Is), $16(R)\text{-methyl-}20\text{-methoxy-PGE}_2$ (IR) and several analogs, such as $16(S)\text{-methyl-}20\text{-methoxy-PGA}_2$ (XIIIs) and -PGB $_2$ (XIVs), $16\text{-methyl-}20\text{-ethoxy-PGE}_2$ (XXVII $_a$), $16\text{-methyl-}20\text{-hydroxymethyl-PGE}_2$ (XXVII $_a$), $16\text{-methyl-}17\text{-oxa-}\omega\text{-dihomo-PGE}_2$ (XXVIII $_a$) and $20\text{-hydroxymethyl-PGE}_2$ (XXX), were synthesized by Corey's procedure and their biological activities were investigated. Among these derivatives, Is and IR possessed potent oral bronchodilator activity; the bronchoselectivity of Is was higher than that of IR.

The natural prostaglandins (PGs) have various well-known physiological activities, such as contractile activity on smooth muscles of the uterus, hypotensive activity, gastric antisecretory activity, antiaggregatory activity towards blood platelets, bronchodilator activity, $etc.^{3-6}$ Since Corey $et~al.^{7}$ and Upjohn's group⁸⁾ succeeded in the total synthesis of natural PGs, many laboratories have attempted to obtain PG derivatives which have higher, more long-lasting, and more selective biological activities than the natural PGs as pontential therapeutically useful medicines.^{1,3-13)} Among such derivatives, 15(S)-methyl-PGE₂-methyl ester,⁹⁾ 16-

Part V: N. Inukai, Y. Ishii, H. Iwamoto, T. Tamura, I. Yanagisawa, T. Shiozaki, K. Tomioka, and M. Murakami, Rep. Yamanouchi Cent. Res. Lab., No. 3, 64 (1977).

²⁾ Location: No. 1-8, Azusawa-1-chome, Itabashi-ku, Tokyo.

³⁾ a) K. Sakai and N. Nakamura, The Society Syn. Org. Chem. Japan, (YGKKAE), 36(2), 93 (1978); b) K. Sakai, ibid., 29(3), 205 (1971).

⁴⁾ K.C. Nicolaou, G.P. Gasic, and W.E. Barnette, Angew. Chem. Int. Ed. Engl., 17, 293 (1978).

⁵⁾ a) J.S. Bindra and R. Bindra, "Prostaglandin Synthesis," Academic Press, Inc., New York, 1977; b) "Advances in Prostaglandin and Thromboxane Research," Vol. 1 and 2, Ed. by B. Samuelsson and R. Paoletti, Raven Press, New York, 1976.

⁶⁾ T. Tamura, I. Yanagisawa, N. Inukai, H. Iwamoto, Y. Ishii, O. Hasegawa, H. Matsuda, T. Shiozaki, T. Takagi, K. Tomioka, and M. Murakami, Rep. Yamanouchi Cent. Res. Lab., No. 3, 50 (1977).

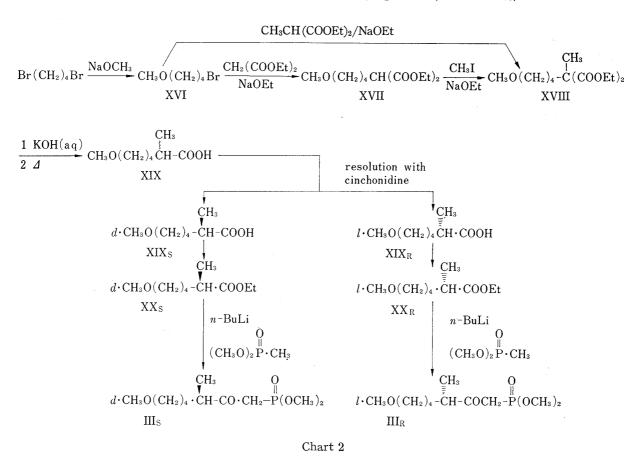
⁷⁾ a) E.J. Corey, N.M. Weinshenker, T.K. Schaaf, and W. Huber, J. Am. Chem. Soc., 91, 5675 (1969); b) E.J. Corey, T. K. Shaaf, W. Huber, U. Koelliker, and N.M. Weinshenker, ibid., 92, 397 (1970); c) E.J. Corey, R. Noyori, and T.K. Shaaf, ibid., 92, 2586 (1970).

⁸⁾ a) G. Just, C. Simonovitch, F.H. Lincoln, W.P. Schneider, U. Axen, G.B. Spero, and J.E. Pike, J. Am. Chem. Soc., 91, 5364 (1969); b) U. Axen, F.H. Lincoln, and J.L. Thompson, Chem. Commun., 1969, 303; c) W.P. Schneider, ibid., 1969, 304.

⁹⁾ a) E.W. Yankee, U. Axen, and G.L. Bundy, J. Am. Chem. Soc., 96, 5865 (1974); b) A. Robert and G.L. Bundy, Proc. Soc. Exp. Biol. Med., 148, 1155 (1975).

¹⁰⁾ M. Hayashi, H. Miyake, T. Tanouchi, S. Iguchi, Y. Iguchi, and F. Tanouchi, J. Org. Chem., 38, 1250 (1973).

¹¹⁾ B.J. Magerlein, D.W. Ducharme, W.E. Magee, W.L. Miller, A. Robert, and J.R. Weeks, *Prostaglandins*, 4, 143 (1973).


¹²⁾ a) N.S. Crossley, *Prostaglandins*, **10**, 5 (1975); b) P.J. Welburn and R.L. Jones, *ibid.*, **15**, 287 (1978); c) J. Bowler, N.S. Crossley, and R.I. Dowell, *ibid.*, **9**, 391 (1975).

¹³⁾ K. Tomioka, M. Terai, and H. Maeno, Arch. Int. Pharmacodyn. Ther., 226, 224 (1977).

methyl-PGE₂,¹⁰⁾ 16-dimethyl-PGE₂¹¹⁾ and 17-oxa-PGE₂-derivatives¹²⁾ have aroused particular interest.

Among several hundred derivatives of PGs which have been synthesized by our laboratories, this report describes the synthesis of 16(S)-methyl-20-methoxy-PGE₂ (YPG-209) (I_S) and 16(R)-methyl-20-methoxy-PGE₂ (I_R), which were shown to have oral bronchodilator activity by our laboratories,¹³⁾ and the synthesis of analogs, such as 16-methyl-20-ethoxy-PGE₂ (XXVII_a), 16-methyl-20-hydroxymethyl-PGE₂ (XXVII_a), 16-methyl-17-oxa- ω -dihomo-PGE₂ (XXVIII_a) and 20-hydroxymethyl-PGE₂ (XXX). Their biological activities are also discussed.

The synthesis of 16-methyl-20-methoxy-PGE₂ ($I_{s,R,RS}$) was carried out according to Corey's procedure⁷⁾ as shown in Chart 1. Corey's intermediate ($III)^{7,14}$) was reacted with sodium dimethyl-(7-methoxy-3(S)-methyl-2-oxo-heptyl)-phosphonate (III_s) to provide the enone (IV_s). III_s was synthesized from d-2(S)-methyl-6-methoxyhexanoic acid (XIX_s), obtained by the resolution of dl-2-methyl-6-methoxyhexanoic acid (XIX) with cinchonidine (Chart 2). The S-configuration of XIX_s was determined to be shown in Chart 3, by comparing d-2-methylhexanol ($XXIV_s$) derived from l-2-methyl-6-methoxyhexanoic acid (XIX_s) with l-2(S)-methylhexanol ($XXIV_s$) derived from d-2(S)-methylhexanoic acid (XXV) whose absolute configuration is known. ¹⁵⁾ 15α -Hydroxy-lactone (V_{as}) and the 15β -epimer (V_{bs}) were obtained by the reduction of IV_s with zinc borohydride, followed by the separation of V_{as} and V_{bs} using silica gel column chromatography. V_{as} preceded V_{bs} , and the ratio of V_{as} to V_{bs} was about 2.5 to 1. The configurations of the 15-hydroxy epimers (V_{as} and V_{bs}) were determined

¹⁴⁾ N. Inukai, H. Iwamoto, I. Yanagisawa, N. Nagano, T. Tamura, Y. Ishii, and M. Murakami, *Chem. Pharm. Bull.*, 24, 2566 (1976).

¹⁵⁾ a) P.A. Levene and A. Rothen, J. Org. Chem., 1, 76 (1936); b) W. Klyne and J. Buckingham, "Atlas of Stereochemistry," Chapman and Hall, London, 1974, p. 65.

XXIIIri

$$(R) \qquad (R) \qquad (R) \qquad (R)$$

$$l\text{-CH}_3O(\text{CH}_2)_4\text{-CH}\text{-COOH} \xrightarrow{\text{CH}_2N_2} l\text{-CH}_3O(\text{CH}_2)_4\text{-CH}\text{-COOCH}_3} \xrightarrow{\text{BBr}_3} l\text{-HO}(\text{CH}_2)_4\text{-CH}\text{-COOCH}_3} \\ XIX_R \qquad XXI_R \qquad XXII_R \qquad XXII_R$$

$$(R) \qquad (R) \qquad (R)$$

XXIVR

on the basis of their biological activities after completion of the syntheses of I_8 and its 15-epimer using V_{a8} and V_{b8} , respectively.¹⁶⁾ The conversion of V_{b8} to V_{a8} was achieved by a modified Robinson procedure using diethyl azodicarboxylate and triphenylphosphine in the presence of benzoic acid,¹⁷⁾ or by the reoxidation of V_{b8} to IV_8 , followed by reduction of IV_8 as described above. Deacylation of V_{a8} with potassium carbonate in methanol gave the dihydroxy lactone (VI_8) , which was converted into ditetrahydropyranyl derivative (VII_8) . VII_8 was reduced to the lactol $(VIII_8)$ with diisobutylaluminium hydride. The condensation of $VIII_8$ with the Wittig reagent derived from 5-triphenylphosphonio-pentanoic acid bromide and sodio methylsulfinylcarbanide in dimethylsulfoxide gave 11,15-ditetrahydropyranyl-16(S)-methyl-20-methoxy-PGF_{2 α} (IX_8) . Hydrolysis of IX_8 with acetic acid gave 16(S)-methyl-20-methoxy-PGF_{2 α} (XI_8) . Jones oxidation of IX_8 followed by removal of protecting groups gave 16(S)-methyl-20-methoxy-PGE₂ (YPG-209) (I_8) . Esterification of I_8 with diazomethane provided XII_8 . I_8 was also converted to 16(S)-methyl-20-methoxy-PGA₂ $(XIII_8)$ or 16(S)-methyl-20-methoxy-PGB₂ (XIV_8) by treating it with strong acid or base, respectively.

16(R)-Methyl-20-methoxy-PGE₂ (I_R), 15-epi-16(S)-methyl-20-methoxy-PGE₂ and 15-epi-16-(R)-methyl-20-methoxy-PGE₂, which are diastereoisomers of I_s, were also synthesized in a similar manner. Data for the synthesized diastereoisomers are summarized in Table I. Furthermore, we synthesized several analogs of I_s (listed in Table II) using the Corey's procedure⁷⁾; these include 16-methyl-20-ethoxy-PGE₂ (XXVII_s), 16-methyl-20-hydroxy-methyl-PGE₂ (XXVII_s), 16-methyl-17-oxa- ω -dihomo-PGE₂ (XXVIII_s), and 20-hydroxy-methyl-PGE₂ (XXX). Details of the syntheses of these analogs will be reported elsewhere. These diasteroisomers and analogs of I_s are of interest in connection with studies of the structure-biological activity relationships.

The biological activities of I_s , I_R and related compounds are summarized in Table II. PGE_2 , 20-methoxy- PGE_2 (XXIX)^{12c)} and 20-hydroxymethyl- PGE_2 (XXX), after oral administration at 800 μ g/kg, showed no bronchodilator or diarrheal effect. However, I_{RS} , and XXVI_a, which carry methyl groups at the 16-position of XXIX and XXX, respectively, each

¹⁶⁾ The configuration of 15-hydroxy epimers of PG derivatives is generally determined on the basis of their biological activities. The 15α -hydroxy epimer(natural PG-type) shows strong biological activity, but the 15β -epimer shows little activity. X-Ray analysis of Is (YPG-209) is being carried out by Dr. G.T. DeTitta and Dr. M.E. Erman of the Medical Foundation of Buffalo, Inc.

¹⁷⁾ G.E. Robinson, Ger. Offen., 2505303 [Chem. Abstr., 83, 205829n (1975)].

Table I. 16-Methyl-20-methoxy-PGs

$$\begin{array}{c} O \\ CH_3 \\ COOR \\ OCH_3 \\ OCH_3 \\ \end{array}$$

Compound	R	Configuration at		NMR (CHCl $_3$) δ	$[\alpha]_D^{22}$ (Solvent)	
		C ₁₅	C ₁₆			
I _s (YPG-209)	Н	пОН	→CH ₃	0.88 (3H, d, J =7 cps, CH ₃), 3.33 (3H, s, OCH ₃), 5.28—5.52 (2H, -CH=CH-), 5.52—5.72 (2H, -CH=CH-), 3.8—4.2 (2H, broad, - $\dot{\text{C}}$ H-OH)	-65° ($c = 0.5$, CHCl ₃)	
${ m I}_{ m R}$	H	чинОН	····IIICH3	0.91 (3H, d, $J=7$ cps, CH ₃), 3.32 (3H, s, OCH ₃), 5.30—5.52 (2H, -CH=CH-), 5.56—5.76 (2H, -CH=CH-), 3.90—4.24 (2H, broad, - $\dot{C}\underline{H}$ -OH)	-58.5° ($c = 1.5$, CHCl ₃)	
${ m I}_{ m RS}$	Н	""IOH	~~СН₃	$\begin{array}{c} 0.70-1.10(3\mathrm{H,CH_3}),3.33(3\mathrm{H,s,OCH_3}),\\ 5.20-5.52(2\mathrm{H,-CH=CH-}),5.52-5.84\\ (2\mathrm{H,-CH=CH-}),3.80-4.30(2\mathrm{H,broad,-CH-OH}) \end{array}$	-51.5° ($c = 0.78$, CH ₃ OH)	
	Н	— OH	~~CH₃		-60.2_{\circ} ($c = 0.82$, CH ₃ OH)	
XII_S	CH ₃	чиЮН	− СН₃	0.88 (3H, d, $J=7$ cps, CH ₃), 3.34 (3H, s, OCH ₃), 3.64 (3H, s, COOCH ₃), 5.20 -5.48 (2H, -CH=CH-), $5.48-5.70$ (2H, -CH=CH-), $3.80-4.20$ (2H, -CH=OH)	-66.4° ($c = 0.4$, CHCl ₃)	
$X {1\!\!1}_R$	СН₃	HO	······ICH3	0.88 (3H, d, $J = 7$ cps, CH ₃), 3.33 (3H, s, OCH ₃), 3.66 (3H, s, COOCH ₃), 5.20—5.50 (2H, -CH=CH-), 5.50—5.70 (2H, -CH=CH-), 3.80—4.20 (2H, -CH=OH)	-58.0° ($c = 0.6$, CHCl ₃)	
			НО	CH_3 $COOR$ CH_3 OCH_3 OH		
XI_{RS}	Н	HO	~~CH₃	0.7—1.1 (3H, broad, CH ₃), 3.3 (3H, s, OCH ₃), 5.2—5.8 (4H, -CH=CH-), 3.7—4.0 (2H, broad, -CH-OH)	$+26.3^{\circ}$ (c=0.56, CH ₃ OH)	
	Н	— OH	~~CH₃	4.0—4.3 (1H, broad, -C <u>H</u> -OH)	$+13.0^{\circ}$ (c=0.37, CH ₃ OH)	

showed a more potent bronchodilator effect than the parent compound. XXVII_a and XXVIII_a also showed bronchodilator activity. Their ED_{50} values, however, were 5 times and 2 times, respectively, lower than that of I_{RS} . I_{RS} is a mixture of I_{S} and I_{R} (1:1). I_{S} (YPG-209), I_{R} and I_{RS} showed potent bronchodilator action. The bronchoselectivity of I_{S} was higher than that of I_{R} . Further details of the bronchodilator activity of I_{S} , I_{R} and I_{RS} have already been published by our laboratories¹³⁾ and details of the biological activities of other compounds listed in Tables I and II will be reported shortly.

TABLE II. Biological Activities

	HÖ	R_1 COOH R_2 R_2 R_2		Broncho- dilator effect ED_{50} $(\mu\mathrm{g}/\mathrm{kg}, p.o.)$	Diarrhea ED_{50} $(\mu\mathrm{g/kg}, p.o.)$ (b)	Broncho- selectivity b/a	lit.
	$\widehat{R_1}$	R_2	X	(a)			
PGE_2	Н	-H	CH_2	>800	>800		
XXIX	Н	$-OCH_3$	CH_2	>800	>800		12~c
XXX	H	$-\mathrm{CH_2OH}$	CH_2	>800	>800	_	
$\mathrm{XXVI}_{\mathtt{a}}$	~~CH₃	$-\mathrm{CH_2OH}$	CH_2	>800	>800	_	
I_{RS}	~СH₃	$-OCH_3$	CH_2	9.8	120	12.2	
I _S (YPG-209)	—CH₃	-OCH ₃	CH_2	7.0	140	20	
I_R	пСН3	$-OCH_3$	CH_2	9.0	44	4.9	
$XXVII_a$	~~CH₃	-OCH ₂ CH ₂	CH ₂	52	480	9.2	
$XXVIII_a$	мСH₃	-CH ₂ CH ₃	0	25	12.5	0.5	

Experimental¹⁸⁾

 4β -[8-Methoxy-4(S)-methyl-3-oxo-1-(trans) octenyl]-2-oxo-5α-p-phenylbenzoyloxy-3, 3a β , 4α,5 β ,6,6a β -hexahydro-2H-cyclopenta[b]furan (IVs)——a) A suspension of 528 mg of 50% oily NaH in 45 ml of dry dimethoxyethane (DME) was prepared under a nitrogen stream and after adding dropwise a solution of 2.93 g of dimethyl-(7-methoxy-3(S)-methyl-2-oxo)heptylphosphonate (IIIs) in 20 ml of dry DME, the whole was stirred for 90 minutes at room temperature. Next, a solution of 4.04 g of Corey's intermediate (II) in 80 ml of dry tetrahydrofuran (THF) was further added dropwise and the resulting mixture was stirred for 90 minutes at room temperature. The reaction mixture was neutralized with dry ice powder, and after adding 150 ml of H₂O and saturating with NaCl, the resulting mixture was extracted 4 times with 50 ml each of CH₂Cl₂. The extracts were combined, washed with H₂O, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The oily product obtained was subjected to silica gel column chromatography and developed using a mixture of ether and n-hexane (3:1 by volume ratio) to provide 3.3 g of IVs showing [α]^{2b} -86.3° (c=1.0, CHCl₃). IR(film) cm⁻¹: 2950, 2875, 1780, 1720, 1710, 1680, 1630, 1615. NMR of IVs δ : 1.07 (3H, d, J=7 cps, CH₃), 3.28 (3H, s, OCH₃), 6.32 (1H, d, J=16 cps, -CH=CH-CO-), 6.74 (1H, dd, J=16 cps, -CH=CH-CO-), 5.35 (1H, m, -CH-OCO-PhPh).

b) In a similar manner, the 4(R)-isomer of IV_S (IV_R) was synthesized from dimethyl-(7-methoxy-3(R)-methyl-2-oxo)-heptylphosphonate (III_R): $[\alpha]_{D}^{25}$ -118° (c=3.8, CHCl₃). IR (film) cm⁻¹: 2950, 2875, 1780, 1720, 1710, 1675, 1630, 1615.

 4β -[3(S)-Hydroxy-8-methoxy-4(S)-methyl-1-(trans) octenyl]-2-oxo-5α-p-phenylbenzoyloxy-3,3a β ,4α,5 β ,6,-6a β -hexahydro-2H-cyclopenta[b]furan (V_{aS}) and Its 3(R)-Hydroxy-isomer (V_{bS})—a) A suspension of 1.65 g of NaBH₄ and 2.98 g of anhydrous ZnCl₂ in 200 ml of dry ether was prepared, and after stirring for 90 minutes at room temperature, a solution of 3.3 g of IVs in 50 ml of dry THF was added dropwise, followed by stirring for 2 hours at room temperature. The reaction mixture was neutralized with dry ice powder and after adding 150 ml of H₂O, the resulting mixture was extracted 3 times with 50 ml each of ether. The extracts were combined, washed with H₂O, dried over anhydrous MgSO₄, and then concentrated under reduced pressure to provide 2.8 g of an oily product. The oily product was subjected to silica gel column chromatography and developed using a mixture of ether and n-hexane (4:1 by volume) as the eluting solution to provide 1.26 g of V_{aS} showing $[\alpha]_D^{2b}$ -126.1° (c=0.3, CHCl₃) and 0.5 g of the 3(R)-hydroxy-isomer (V_{bS}) showing

¹⁸⁾ All boiling points and melting points are uncorrected. NMR spectra were recorded in CDCl₃ unless otherwise indicated, using tetramethylsilane as an internal standard, on a JEOL JNM-MH-100 instrument. Optical rotations were measured with a Perkin-Elmer 141 polarimeter.

[α]²² -110.5° (c=2, CHCl₃). IR (film) cm⁻¹: 3450, 2940, 2870, 1770, 1710, 1605. NMR of V₂ δ : 0.82 (3H, d, J=7 cps, CH₃), 3.27 (3H, s, OCH₃), 3.95 (1H, m, $-\dot{C}\underline{H}$ –OH), 5.5—5.7 (2H, -CH=CH-), 5.25 (1H, m, $-\dot{C}\underline{H}$ –OCO–PhPh).

b) The 4(R)-isomer (V_{aR}) and 4(RS)-isomer (V_{aRS}) of V_{aS} were synthesized from IV_R and IV_{RS}, respectively, by the same procedure. V_{aR}: $[\alpha]_D^{25} - 83^{\circ}$ (c = 1.5, CHCl₃). IR(film) cm⁻¹: 3500, 2950, 2875, 1780, 1720, 1605. V_{aRS}: $[\alpha]_D^{25} - 74.1^{\circ}$ (c = 2.37, CHCl₃).

 4β -[3(S)-Hydroxy-8-methoxy-4(S)-methyl-1-(trans) octenyl]-2-oxo-5 α -hydroxy-3, $3a\beta$, 4α , 5β , 6, $6a\beta$ -hexa-hydro-2H-cyclopenta[b] furan (VI_S)—a) A solution of 1.21 g of V_as in 40 ml of dry methanol (MeOH) was prepared, and after adding 169 mg of anhydrous K₂CO₃, the mixture was stirred for 3 hours at room temperature. The reaction mixture was then neutralized with 147 mg of glacial acetic acid (g-AcOH) and MeOH was distilled off under reduced pressure. After adding 30 ml of H₂O to the residue thus obtained and saturating with NaCl, the mixture was extracted 3 times with 30 ml each of ether. The extracts were combined, washed with saturated saline solution, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The oily product thus obtained was subjected to silica gel column chromatography and developed using a mixture of CHCl₃ and ethyl acetate (AcOEt) (1: 4 by volume) to provide 651.7 mg of VI_S showing $[\alpha]_{\rm p}^{\rm 23}$ -1.73° (c=1.2, CHCl₃). IR(film) cm⁻¹: 3400, 2950, 2875, 1770. NMR of VI_S δ : 0.85 (3H, d, J=7 cps, CH₃), 3.32 (3H, s, OCH₃), (2H, m, -CH-OH), 5.3—5.7 (2H, -CH-CH-).

b) The 4(R) and 4(RS)-isomers of VI_S were synthesized from V_{aR} and V_{aRS}, respectively, in a similar manner. 4(R)-Isomer (VI_R): $[\alpha]_D^{25} + 7.1^{\circ}$ (c = 1.6, CHCl₃). IR(film) cm⁻¹: 3400, 2950, 2875, 1765. 4(RS)-Isomer (VI_{RS}): $[\alpha]_D^{25} + 2.43^{\circ}$ (c = 1.85, CHCl₃).

 4β -[8-Methoxy-4(S)-methyl-3(S)-tetrahydropyran-2-yloxy-1-(trans) octenyl]-2-oxo-5α-(tetrahydropyran-2-yloxy)-3,3a β ,4α,5 β ,6,6a β -hexahydro-2H-cyclopenta[b] furan (VII_S)—a) A solution of 650 mg of VIs in 13 ml of dry CH₂Cl₂ was prepared, and after adding 699 mg of 2,3-dihydropyran and 4 mg of β -toluenesulfonic acid monohydrate, the whole was stirred for 30 minutes at room temperature. When the reaction was over, 50 ml of CHCl₃ and 20 ml of dilute aqueous NaHCO₃ solution were added to the reaction mixture, followed by shaking. The organic layer was separated, washed with H₂O, and dried over anhydrous MgSO₄, then the solvent was distilled off under reduced pressure. The residue obtained was applied to a silica gel column and developed using a mixture of ether and n-hexane (1: 2 by volume) as an eluting solution to provide 869 mg of oily VII_S which crystallized gradually (mp 40—53°): IR(film) cm⁻¹: 2940, 2860, 1775. NMR of VII_S δ : 0.85 (3H, d, J=7 cps, CH₃), 3.32 (3H, s, OCH₃), 3.9 (2H, m, -CH-OTHP), 5.3—5.6 (2H, -CH=CH-).

b) In a similar manner, the 4(R) and 4(RS)-isomers of VII_S were synthesized from VI_R and VI_{RS}, respectively. 4(R)-Isomer (VII_R): $\lceil \alpha \rceil_{27}^{27} - 27.4^{\circ}$ (c = 1.75, CHCl₃). IR(film) cm⁻¹: 2950, 2875, 1780.

 4β -[8-Methoxy-4(S)-methyl-3(S)-(tetrahydropyran-2-yloxy)-1-(trans) octenyl]-2-hydroxy-5-(tetrahydropyran-2-yloxy)-3,3a β ,4 α ,5 β ,6,6a β -hexahydro-2H-cyclopenta[b]furan (VIIIs)——A solution of 555 mg of VIIs in 40 ml of dry toluene was prepared under a nitrogen stream and the solution was cooled to -60° with dry ice-acetone. Next, 3.36 ml of a toluene solution containing 328.3 mg of diisobutylaluminum hydride was added dropwise under a nitrogen stream and the mixture was stirred for 30 minutes; 0.3 ml of AcOEt and 0.3 ml of MeOH were then added successively to the mixture at the same temperature. After warming to room temperature, 50 ml of H₂O was added to the mixture, yielding a white precipitate. This was filtered off and the filtrate was separated into an aqueous layer and an organic layer. The aqueous layer was extracted twice with 50 ml each of benzene and the extracts were combined with the organic layer. The mixture was washed with saturated saline solution, dried over anhydrous MgSO₄, and concentrated under reduced pressure below room temperature to provide 492.2 mg of VIIIs. IR(film) cm⁻¹: 3400, 2940, 2860.

The 4(R)-isomer (VIII_s) and 4(RS)-isomer (VIII_{RS}) of VIIIs were synthesized by the same procedure using VII_R and VII_Rs, respectively. IR of VIII_R (film) cm⁻¹: 3400, 2940, 2875.

11,15-Ditetrahydropyranyl-16(S)-methyl-20-methoxy-PGF_{2 α} (IX_S)—a) Dry dimethyl sulfoxide (DMSO) (7 ml) was added to 211.5 mg of 50% oily NaH under a nitrogen stream, and after heating to 60—65°, the mixture was stirred for about 1 hour until the evolution of hydrogen gas ceased. The mixture was then cooled to room temperature and 1.01 g of 4-carboxybutyl-triphenylphosphonium bromide was added. A solution of 442.9 mg of VIIIs in 5 ml of dry DMSO was then added to the clear red solution thus obtained and the mixture was stirred for 1 hour at room temperature. The reaction mixture was neutralized with dry ice powder and then a mixture of 60 ml of ether and 30 ml of H₂O saturated with dry ice was further added. The organic layer was separated and the aqueous layer was extracted 3 times with 30 ml each of AcOEt. The extracts were combined with the organic layer and the mixture was washed with ice water, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue thus obtained was subjected to silica gel column chromatography and developed using a mixture of AcOEt and n-hexane (1: 1 by volume) to provide 262 mg of IX_S showing $[\alpha]_{2}^{12} + 76.8^{\circ}$ (c=2.0, CHCl₃). IR(film) cm⁻¹: 3450, 2950, 2875, 1740, 1720. NMR of IX_S δ : 0.85 and 0.9 (3H, d, J=7 cps, CH₃), 3.32 (3H, s, OCH₃), 5.2—5.7 (4H, -CH=CH-).

b) The 16(R) and 16(RS)-isomers of IXs were synthesized from VIII_R and VIII_{RS}, respectively, in a similar manner. 16(R)-Isomer (IX_R): $[\alpha]_p^{25} + 5.8^{\circ}$ (c=1.25, CHCl₃). 16(RS)-Isomer (IX_{RS}): $[\alpha]_p^{25} + 1.32^{\circ}$ (c=1.14, CHCl₃).

11,15-Ditetrahydropyranyl-16(S)-methyl-20-methoxy-PGE₂ (X_S)—a) A solution of 262 mg of IXs in 7.7 ml of ether was prepared and cooled to 0° to -5°, then 7.7 ml of a solution prepared from 2.0 g of CrO₃, 9.65 g of MnSO₄·nH₂O, 2.13 ml of conc. H₂SO₄ and H₂O to make the total volume 50 ml, precooled to 0°, was added. The whole was stirred for 3 hours at the same temperature. When the reaction was over, 10 ml of H₂O was added and the mixture was extracted 3 times with 30 ml each of ether. The extracts were combined, washed with H₂O, dried over anhydrous MgSO₄, and concentrated under reduced pressure to provide 260 mg of X_S. The crude oil (X_S) obtained was used for the next steps without further purification.

b) Using the same procedure, the 16(R)- and 16(RS)-isomers of X_S were synthesized by oxidation of IX_R and IX_{RS} , respectively.

16(S)-Methyl-20-methoxy-PGE₂ (YPG-209) (I_s)—A solution of 260 mg of X_s in 4 ml of a mixture of AcOH, H₂O and THF (19: 11: 3 by volume) was prepared and stirred for 3 hours at 40°. The solvent was distilled off under reduced pressure and the residue obtained was applied to a silica gel column chromatography and developed using AcOEt to provide 119.2 mg of I_s (YPG-209), which was crystallized in a deep-freeze as needles having low melting point: IR(CHCl₃) cm⁻¹: 3350, 2925, 2850, 1730, 1710. *Anal.* Calcd for $C_{22}H_{34}O_5$ (M⁺—18): mass, 378.24042. Found: mass, 378.23912.

16(R)-Methyl-20-methoxy-PGE₂ (I_R) was synthesized from X_R in the manner described above. IR-(CHCl₃) cm⁻¹: 3400, 2950, 2880, 1750, 1720.

16(RS)-Methyl-20-methoxy-PGE₂ (I_{RS}) was also synthesized. IR(CHCl₃) cm⁻¹: 3350, 2925, 2850, 1725, 1700. MS m/e: 378 (M⁺-18), 360 (M⁺-36).

16-Methyl-20-methoxy-PGF_{2 α} (XI_{RS})——A solution of 122.3 mg of IX_{RS} in 5 ml of mixture of AcOH, H₂O and THF (19: 11: 3 by volume) was prepared and stirred for 3 hours at 40°. The solvents were distilled off under reduced pressure and the residue obtained was subjected to silica gel column chromatography using a mixture of AcOEt and *n*-hexane as the eluting solution to provide 45.3 mg of XI_{RS}. IR(CHCl₃) cm⁻¹: 3350, 2920, 2850, 1700. MS m/e: 380 (M⁺-18), 372 (M⁺-36).

The 15-epimer of XI_{RS} was synthesized from V_{RS} by the same procedure. IR(CHCl₃) cm⁻¹: 3380, 2920, 2850, 1700. Anal. Calcd for $C_{22}H_{36}O_5$ (M⁺-18): mass, 380.25602. Found: mass, 380.25422.

16(S)-Methyl-20-methoxy-PGE₂ Methyl Ester (XII_S) and 16(R)-Methyl-20-methoxy-PGE₂ Methyl Ester (XII_S)—a) A solution of 124.6 mg of I_{RS} in 20 ml of ether was prepared and then an ether solution containing CH_2N_2 was added dropwise until the mixture became yellow, indicating completion of the reaction. The solvent was then distilled off under reduced pressure and the residue obtained was subjected to silica gel column chromatography using a mixture of AcOEt and n-hexane as the eluting solution to provide 40.6 mg of 16(R)-methyl-20-methoxy-PGE₂ methyl ester (XII_R) from the first eluate, followed by 28.8 mg of 16(S)-methyl-20-methoxy-PGE₂ methyl ester (XII_S). IR(CHCl₃) cm⁻¹; 3350, 2920, 2850, 1720, 1680. MS m/e 392 (M⁺-18), 374 (M⁺-36), 361 (M⁺-18-OCH₃).

b) 16(S)-Methyl-20-methoxy-PGE $_2$ (Is) was dissolved in ether and the solution was treated with CH_2N_2 as described above. The solvent was evaporated off to give XIIs in quantitative yield. Using the same procedure, XIIR was also prepared from IR.

16(S)-Methyl-20-methoxy-PGA₂ (XIII_s)——I_s (396 mg) was dissolved in a mixture of AcOH (20 ml) and H₂O (3 ml). The solution was allowed to stand overnight at 65° under a nitrogen stream. The reaction solution was concentrated under reduced pressure and the residual oil was purified by silica gel column chromatography using a mixture of AcOEt and n-hexane as the eluting solvent. A yellowish oil (320 mg) showing [α]²² +110.2° (c=1.0, CHCl₃) was obtained. IR(CHCl₃) cm⁻¹: 3400, 2920, 2850, 1695, 1580. NMR of XIIIs δ : 0.72—0.96 (3H, -CH₃), 3.8—4.1 (1H, broad, -CH-OH). 3.31 (3H, s, -OCH₃), 5.20—5.7 (4H, -CH=CH-), 6.18 and 7.51 (each 1H, dd, J=7 cps, -C₁₀H=C₁₁H-). Anal. Calcd for C₂₂H₃₄O₅: mass, 378.24043. Found: mass, 378.24353.

16(S)-Methyl-20-methoxy-PGB₂ (XIVs)——A solution of 396 mg of I_S in a mixture of ethanol (EtOH) (16 ml) and 1 n NaOH aqueous solution (16 ml) was prepared and left for 1 hour at 30—40° under a nitrogen stream. The solution was concentrated to remove EtOH under reduced pressure and the residual aqueous solution was acidified with 1 n HCl solution. The oil precipitated was extracted with AcOEt. The extracted solution was washed with H₂O and dried over anhydrous MgSO₄, then AcOEt was evaporated off. The residual oil was purified by column chromatography on silica gel using a mixture of AcOEt and n-hexane as the eluting solvent. A colorless oil (289 mg) was obtained: $[\alpha]_D^{22} + 38.9^{\circ}$ (c=1.5, CHCl₃). IR(CHCl₃) cm⁻¹: 3350, 2920, 2850, 1700, 1680, 1630, 1590. Anal. Calcd for C₂₂H₃₄O₅: mass, 378.24048. Found: mass, 378.24268. NMR of XIVs δ : 0.9 (3H, d, J=7 cps, -CH₃), 3.31 (3H, s, -OCH₃), 4.1—4.32 (1H, broad, -CH-OH), 6.30 (1H, dd, J=16 cps, =C₁₄H), 6.89 (1H, d, J=16 cps, C₁₃H=).

1-Bromo-4-methoxybutane (XVI)—A solution of 55.5 g of NaOMe in 180 ml of MeOH was prepared, and 120 g of dibromobutane was added dropwise under cooling with stirring. The resulting mixture was stirred overnight at room temperature, then refluxed for 1 hour. NaBr precipitated was removed by filtration, and the filtrate was concentrated. The residue obtained was distilled under reduced pressure to provide 45 g (yield 48.5%) of XVI having a boiling point of 52—73° (20—22 mmHg) (lit., 19) 60—62° (15 mmHg)).

¹⁹⁾ A. Kirrmann and L. Wartski, Bull. Soc. Chim. France, 1966, 3825 [Chem. Abstr., 66, 54765j (1967)].

Diethyl 4-Methoxybutylmalonate (XVII)——A mixture of a solution of NaOEt (obtained from 250 ml of absolute EtOH and 4.23 g of Na) and 29.5 g of diethyl malonate, was stirred for 20 minutes at room temperature, then 30.7 g of XVI was added. After stirring overnight at room temperature, the mixture was refluxed for 2 hours. The solvent was distilled off under reduced pressure, and after adding ice- H_2O and ether to the residue, the resulting mixture was shaken well. The ether layer was separated and washed with H_2O , then dried over anhydrous MgSO₄. The solvent was distilled off to provide 40 g of XVII as an oily product. NMR of XVII δ : 3.30 (3H, s, OCH₃), 3.36 (2H, t, J=7 cps, CH₃OCH₂-).

Diethyl 1-Methyl-5-methoxypentanedicarboxylate (XVIII)—a) A mixture of a solution of sodium ethylate (obtained from 200 ml of absolute EtOH and 3.74 g of Na) and 40 g of XVII was stirred at room temperature for 20 minutes, then 46.2 g of CH_3I was added dropwise. After stirring at room temperature overnight, the mixture was refluxed for 2 hours. The reaction solution was concentrated, then ice- H_2O and ether were added to the residue, and the whole was shaken well. The ether layer was separated, washed with H_2O , and then dried over anhydrous MgSO₄. The solvent was evaporated off and the residue obtained was distilled under reduced pressure to provide 24.8 g of XVIII having a boiling point of 92—94° (0.15 mmHg). NMR of XVIII δ : 1.4 (3H, s, CH_3), 3.30 (3H, s, CCH_3), 3.36 (2H, t, J=7 cps, CH_3OCH_2 –).

b) XVIII was also prepared by reacting XVI with diethyl methylmalonate in the presence of NaOEt in a similar manner.

2-Methyl-6-methoxyhexanoic Acid (dl-XIX) — KOH (49.6 g) was dissolved in a mixture of 30 ml of $\rm H_2O$ and 140 ml of EtOH, then 45 g of XVIII was added. The reaction mixture was refluxed for 2 hours, then concentrated, and 50 ml of ice- $\rm H_2O$, was added to the residue. This solution was acidified with conc. HCl under cooling. The oily product that precipitated was extracted 3 times with 50 ml each of AcOEt. The extracts were washed with $\rm H_2O$ and dried over anhydrous MgSO₄. The solvent was evaporated off and the residue was heated at 160° for 2 hours for decarboxylation, then distilled under reduced pressure to provide 25 g (yield 90%) of XIX having a boiling point of 108—112° (0.3—0.6 mmHg). NMR of XIX δ : 1.18 (3H, d, J=7 cps, CH₃), 3.34 (3H, s, OCH₃), 3.40 (2H, t, J=7 cps, CH₃OCH₂-), 2.4 (1H, m, $-\dot{\rm C}$ H-CO-).

Optical Resolution of *dl*-XIX—Cinchonidine was added to a solution of *dl*-XIX in acetone—H₂O mixture (4:1 by volume) to provide the diastereoisomers of the cinchonidine salts of *d*- and *l*-2-methyl-6-methoxy-hexanoic acid. The diastereoisomers were separated by fractional crystallization and treated in a conventional manner to provide the following two optical isomers.

d-2(S)-Methyl-6-methoxyhexanoic acid (XIX_S): $[\alpha]_D^{25}+15.0^\circ$ (c=4.0, CHCl₃). Cinchonidine salt of XIX_S: $[\alpha]_D^{25}-77.2^\circ$ (c=1.0, CHCl₃), mp 78—81°. l-2(R)-Methyl-6-methoxyhexanoic acid (XIX_R): $[\alpha]_D^{25}-14.0^\circ$ (c=4.0, CHCl₃). Cinchonidine salt of XIX_R: $[\alpha]_D^{25}-83.7^\circ$ (c=1.0, CHCl₃), mp 65—67°.

Assignment of the absolute configurations of XIXs and XIXR obtained above was accomplished as shown in Chart 3.

Ethyl d-2(S)-Methyl-6-methoxyhexanoate (XX_S) and Ethyl l-2(R)-Methyl-6-methoxyhexanoate (XX_R)—a) A solution of 5.3 g of XIX_S in 50 ml of EtOH saturated with HCl gas was prepared and allowed to stand at room temperature for 2 days, then 100 ml of saturated saline solution was added and the mixture was extracted with AcOEt. The extracts were washed with 50 ml of saline solution saturated with NaHCO₃ and twice with 50 ml each of saturated saline solution, and were then dried over anhydrous MgSO₄. The solvent was evaporated off and the residue obtained was distilled under reduced pressure to provide 4.7 g (yield 88.7%) of XX_S having a boiling point of 113° (23 mmHg): $[\alpha]_{5}^{25}$ +14.9° (c=4.0, CHCl₃).

b) In a similar manner, starting from the corresponding l-(R)-compound (XIX_R), XX_R having [α]²⁵ -14.0° (c=4.0, CHCl₃) was obtained.

Dimethyl-(7-methoxy-3(S)-methyl-2-oxo)-heptyl-phosphonate (III_s) and Dimethyl-(7-methoxy-3(R)-methyl-2-oxo)-heptyl-phosphonate (III_R)—a) A solution of 6.2 g of dimethyl methylphosphonate in 45 ml of dry THF was prepared and 30 ml of n-hexane solution containing n-BuLi (1.58 mol/l) was added dropwise with stirring below -60° under a nitrogen atmosphere. Next, 4.7 g of a solution of XX_s in 20 ml of dry THF cooled below -60° was added dropwise. When this was completed, the reaction mixture was stirred at below -60° for 2 hours, and then at room temperature for 1—2 hours, then 3.5 ml of g-AcOH at 0° was added carefully. The solvent was evaporated off and 30 ml of ice-H₂O was added to the residue. This solution was saturated with NaCl and then extracted 3 times with 30 ml each of AcOEt. The extracts were washed twice with 30 ml of saturated saline solution and then dried over anhydrous MgSO₄. The solvent was evaporated off and the residue was distilled under reduced pressure. 5.0 g (yield 75%) of III_s having a boiling point of 130—142° (0.2—0.3 mmHg) was obtained: $[\alpha]_{p}^{\infty} + 14.5^{\circ}$ (c=4.0, CHCl₃). NMR of III_s δ : 1.12 (3H, d, J=7 cps, -CH-CH₃), 2.7 (1H, m, -CH-CH₃), 3.13 (2H, d, J=20 cps, -CH₂-P), 3.30 (3H, s, OCH₃), 3.68 and 3.86 (each 3H, s, P-OCH₃).

b) In a similar manner, III_R was obtained using XX_R : $[\alpha]_D^{25}$ -13.8° $(c=2.45, CHCl_3)$.

Methyl l-2(R)-Methyl-6-methoxyhexanoate (XXI_R)——XIX_R ([α]²²_D -11.6° (c=1.0, CHCl₃): e.e. =83%) was treated with CH₂N₂ in ether to obtain its methyl ester (XXI_R) in quantitative yield. [α]²²_D -13.5° (c=2.0, CHCl₃): NMR of XXI_R δ : 1.13 (3H, d, J=7 cps, CH₃), 2.44 (1H, m, -CH-CH₃), 3.28 (3H, s, OCH₃), 3.32 (2H, t, J=6 cps, -CH₂-OCH₃), 3.63 (3H, s, -COOCH₃).

Methyl l-2(R)-Methyl-6-hydroxyhexanoate (XXII_R)——A solution of XXI_R (1.27 g) in CH₂Cl₂ (6.5 ml) was added dropwise to 2 g of BBr₃ in CH₂Cl₂ (6.5 ml) with stirring at 0° . The stirring was continued for

1 hour at 0° , then 35 ml of 5% aqueous NaHCO₃ was added to the reaction solution and the mixture was shaken well. The organic layer was separated and washed with 5% aqueous NaHCO₃ and H₂O, then dried over anhydrous MgSO₄. The dried solution was concentrated under reduced pressure. The oily residue obtained was purified by column chromatography on silica gel using CHCl₃ followed by AcOEt as eluting solvents. A colorless oil (261 mg) was obtained: $[\alpha]_D^{20} - 13.4^{\circ}$ (c=3.0, CHCl₃). NMR of XXII_R δ : 1.13 (3H, d, J=7 cps, $-\dot{C}H-CH_3$), 2.42 (1H, m, $-\dot{C}H-CH_3$), 3.6 (2H, t, J=8 cps, HO- CH_2 -), 3.64 (3H, s, $-COOCH_3$).

Methyl l-2(R)-Methyl-6-p-toluenesulfonyloxyhexanoate (XXIII_R) — XXII_R (255 mg) and p-toluene-sulfonyl chloride (320 mg) were dissolved in pyridine (2.35 ml) and the solution was stirred for 3.5 hours at room temperature. CH₂Cl₂ (70 ml) and H₂O were added to the reaction mixture and the whole was shaken well. The organic layer was separated and washed with 5% aqueous NaHCO₃ and saturated saline solution, then dried over anhydrous MgSO₄. The solvent was evaporated off under reduced pressure. The residual oil was purified by column chromatography using CHCl₃ as an eluting solvent. 338 mg of colorless oil (XXIII_R) showing $[\alpha]_D^{22} - 8.44^{\circ}$ (c = 2.0, CHCl₃) was obtained. NMR of XXIII_R δ : 1.1 (3H, d, J = 7 cps, $-\dot{C}H - CH_3$), 2.4 (1H, m, $-\dot{C}H - CH_3$), 2.45 (3H, s, $CH_3 - Ph - D$), 4.02 (2H, t, J = 6 cps, $-D - CH_2 - D$).

d-2(R)-Methylhexanol (XXIV $_R$)—XXIII $_R$ (173.5 mg) in THF (2.2 ml) was added to a suspension of LiAlH $_4$ (158 mg) in THF (2.2 ml). The mixture was stirred for 5.5 hours at 60—65°. The mixture was cooled to 0° in an ice-H $_2$ O bath, then ether (50 ml) was added, followed by ice-H $_2$ O (1.5 ml) and cold 10% H $_2$ SO $_4$ (3 ml), with stirring. The ether layer was separated and washed with 5% aqueous NaHCO $_3$ and saturated saline solution, then dried over MgSO $_4$. The dried solution was concentrated under reduced pressure and the residual oil was purified by column chromatography on silica gel using CHCl $_3$ as an eluting solvent. The product was a colorless oil (57.6 mg) showing $[\alpha]_0^{20}$ +8.36° (c=3.5, CHCl $_3$). NMR of XXIV $_R$ δ : 0.88 (3H, t, J=6 cps, CH $_3$ -CH $_2$ -), 0.9 (3H, d, J=7 cps, CH $_3$ -CH $_3$ -), 2.48 (2H, m, -CH $_2$ -OH).

l-2(S)-Methylhexanol (XXIV_s)—a) d-2(S)-Methylhexanoic acid (XXV) ([α]³⁰_D +15.8° (c=1.0, CHCl₃))¹⁵) was converted to its methyl ester (XXVI) by treatment with CH₂N₂ in ether in quantitative yield; [α]³⁰_D +20.3° (c=1.0, CHCl₃). NMR of XXVI δ: 0.82 (3H, t, J=6 cps, -CH₂CH₃), 1.1 (3H, d, J=7 cps, CH₃), 2.38 (1H, m, -CH-COOCH₃), 3.60 (3H, s, -COOCH₃).

b) XXVI (73.8 mg) in THF (1.5 ml) was added dropwise to a suspension of LiAlH₄ (92.5 mg) in THF (2 ml) during 10 minutes with stirring, and the reaction mixture was further stirred for 2 hours at 70°, then cooled to 0°. Ether (10 ml) was added, followed by ice-H₂O (1.5 ml) and cold 10% H₂SO₄ (2 ml). The ether layer was washed with saturated saline solution and dried over anhydrous MgSO₄. The solvent was evaporated off to leave a colorless oil (56.0 mg) (XXIV_S) showing $[\alpha]_{\rm b}^{\rm 20}$ -21.1° (c=3.5, ether), and $[\alpha]_{\rm b}^{\rm 20}$ -9.2° (c=2.5, CHCl₃). NMR of XXIV_S δ : 0.88 (3H, t, J=6 cps, -CH₂CH₃), 0.9 (3H, d, J=7 cps, CH₃-CH-), 2.48 (2H, m, -CH₂-OH).

Acknowledgement The authors wish to thank the Physico-analytical Section of the Institute of Research and Development for measurements of NMR and mass spectra and elemental micro-analyses.