Chem. Pharm. Bull. 28(7)2272—2273(1980)

Formation of 3-Hydroxy-4-methoxyphenylalanine from 3,4-Dihydroxy-phenylalanine by Rat Liver Homogenate

The O-methylation of 3,4-dihydroxyphenylalanine with rat liver homogenate was investigated in the presence of S-adenosylmethionine and MgCl_2 in vitro. By catechol-O-methyltransferase, it was found that 3,4-dihydroxyphenylalanine was methylated to 3-hydroxy-4-methoxyphenylalanine.

Keywords—enzymatic methylation of 3,4-dihydroxyphenylalanine; 3-methoxy-4-hydroxyphenylalanine; 3-hydroxy-4-methoxyphenylalanine; rat liver; high-performance liquid chromatography

The methylation of 3,4-dihydroxyphenylalanine (DOPA) by catechol-O-methyltransferase (COMT) to 3-methoxy-4-hydroxyphenylalanine (3-O-methylDOPA) is known as the main metabolite.^{1,2)} However, the methylation to 3-hydroxy-4-methoxyphenylalanine (4-O-methylDOPA) in mammalian tissues has not been found. In this communication, it would

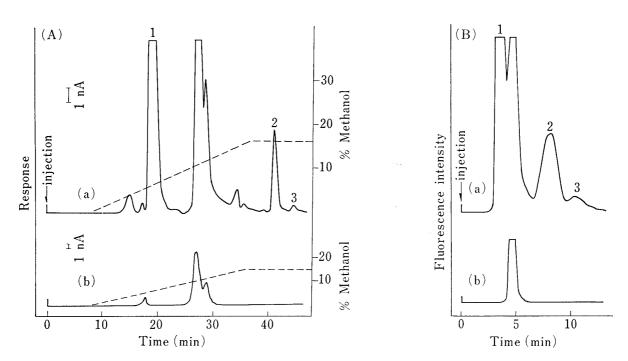


Fig. 1. High Performance Liquid Chromatograms of the Reaction Mixture equipped with a Voltammetry Detector (A) and a Fluorimetric Detector (B)

Injection sample: (a) After reaction of 3,4-dihydroxyphenylalanine with rat liver homogenate, S-adenosylmethionine and MgCl₂ for 30 min under the conditions described in the text. Injection sample: (b) Same as (a), except of 3,4-dihydroxyphenylalanine.

Injection: (A) Ten μ l of the sample prepared as described in the text was analyzed by HPLC. (B) Fifty μ l of the sample.

HPLC conditions: (A) Yanapak ODS was packed in 4.0×250 mm i.d. stainless steel column; column temperature, at room temperature; mobile phase, (1) $0.1\,\mathrm{m}$ phosphate buffer (pH 2.8) and (2) 16% methanol in $0.1\,\mathrm{m}$ phosphate buffer (pH 2.8); flow rate, $0.56\,\mathrm{ml/min}$; applied potential, $0.90\,\mathrm{V}$ rs. Ag/AgCl. (B) Hitachi \$3011-C resin was packed in $2.1 \times 500\,\mathrm{mm}$ i.d. stainless steel column; column temperature, 45° ; mobile phase, a mixture of equal volumes of $0.025\,\mathrm{m}$ sodium acetate and $0.05\,\mathrm{m}$ acetic acid; flow rate, $0.8\,\mathrm{ml/min}$; detection, excitation at $282\,\mathrm{nm}$ and emission at $322\,\mathrm{nm}$.

Peaks: 1=3,4-dihydroxyphenylalanine; 2=3-methoxy-4-hydroxyphenylalanine; 3=3-hydroxy-4-methoxyphenylalanine.

¹⁾ W. von Studnitz, Clinica Chimica Acta, 6, 526 (1961).

²⁾ T. Maeda, M. Tanaka, K. Tanaka and H. Shindo, J. Pharm. Dyn., 1, 288 (1978).

be reported that DOPA is methylated to 3-O-methylDOPA and 4-O-methylDOPA with rat liver COMT.

Male Wister Imamichi rats (320—330 g) were killed by decapitation, and the liver was removed and homogenized with a waring blender in two part volume of cold isotonic KCl solution at pH 7.0. The COMT enzyme solution was concentrated by the modification of the method of Axelrod et al.³) The initial reaction mixture contained 45 μmol of phosphate buffer (pH 7.7); 75 μmol of MgCl₂; 1.8 μmol of S-adenosylmethionine and 0.9 μmol of DOPA in a total volume of 2.95 ml. The reaction was initiated by the addition of enzyme. After incubation for 30 min at 37°, the reaction was terminated by the addition of 0.05 ml of 1.0 N HCl. After coagulation in boiling water and centrifugation down the precipitate, the supernatant of the reaction mixture was analyzed by the high-performance liquid chromatography (HPLC) equipped with a voltammetry and a fluorimetric detector. 4-O-MethylDOPA was synthesized by the method of Wilcox et al.⁴

The formation of 3-O-methylDOPA and 4-O-methylDOPA by the COMT enzyme solution from rat liver preparation in the presence of S-adenosylmethionine and MgCl₂ was studied in the case of presence of DOPA and absence, respectively. The elution profiles were illustrated in Fig. 1. The O-methylation of DOPA by the COMT enzyme solution was examined during 90 min from the initiation. From results of HPLC, the amount of 3-O-methylDOPA and 4-O-methylDOPA accumulated at 30 min followed with a steady increase over the next 60 min (not shown in Figure).

Table I. Enzymatic O-Methylation of 3,4-Dihydroxyphenylalanine by Rat Liver Homogenate

Modification to digest	$3 ext{-O-MethylDOPA} \ (\mu ext{g}/3.0 ext{ ml})$	$^{ ext{4-O-MethylDOPA}}_{ ext{($\mu ext{g}/3.0 ml)}}$
Complete system ^{a)}	23.82 ± 0.21	1.77 ± 0.06
-S-adenosylmethionine	N.D.*	N.D.*
-MgCl ₂	$\textbf{1.41} \pm \textbf{0.08}$	0.21 ± 0.05

a) Incubation mixture, see in the text for 30 minutes.

Table I shows the results by voltammetry detector for 30 min incubations of modyfying the standard incubation mixture used. It is seen that the O-methylation reaction of DOPA is essential for the addition of S-adenosylmethionine. The absence of MgCl₂ resulted in a decrement of the amount of O-methylDOPA to be found. Same values was obtained by fluorimetric detector of HPLC. From the results, a possibility was suggested that COMT in rat liver preparation is able to catalyze the methylation of DOPA to 4-O-methylDOPA in vivo.

A more detailed study is now under investigation in our laboratory, and will be the report of a future publication.

Kyoto College of Pharmacy 5 Nakauchicho, Misasagi, Yamashina-ku, Kyoto 607, Japan Tadashi Ishimitsu Shingo Hirose

Received May 14, 1980

^{*:} not detectable.

Values are means ± S.D. of three experiments.

³⁾ J. Axelrod and R. Tomochick, J. Biol. Chem., 233, 702 (1958).

⁴⁾ M. E. Wilcox, H. Wyler, T. J. Maby and A. S. Dreiding, Helv. Chim. Acta, 24, 252 (1965).