[Chem. Pharm. Bull.] [28(9)2720—2733(1980)]

Anticoccidials. IV.¹⁾ A Convenient Synthesis of 2(1H)-Pyrazinone 4-Oxide Derivatives

MITSUHIKO MANO, TAKUJI SEO, and KIN-ICHI IMAI

Animal Health Products Division, Takeda Chemical Industries, Ltd.2)

(Received April 25, 1980)

2(1H)-Pyrazinone 4-oxide (emimycin) and its 1- and 6-substituted derivatives were synthesized by the reaction of a variety of 2-(hydroxyamino)acetamides with glyoxals.

Keywords—N-benzylidenecarbamoylmethylamine N-oxide; 2-(hydroxyamino)-acetamide; pyrazine; 2(1*H*)-pyrazinone 4-oxide; emimycin; anticoccidial activity

As a continuation of previous work directed at the development of novel anticoccidial agents, we became interested in preparing 2(1H)-pyrazinone 4-oxide (1) (emimycin) and its derivatives. This paper describes a convenient and general method for the preparation of this class of compounds which involves the reaction of 2-(hydroxyamino)acetamides with glyoxals.

Synthesis

Treatment of 2-chloro- or 2-iodoacetamide with (Z)-benzaldehyde oxime (4)³) provided N-benzylidenecarbamoylmethylamine N-oxide (2), which was then treated with hydroxylamine hydrochloride to afford 2-(hydroxyamino)acetamide hydrochloride (3) in good yield. Compound 3 was also obtained by hydrolysis with hydrochloric acid but was accompanied by an inseparable by-product. Condensation of 3 with glyoxal in the presence of sodium hydroxide gave 1, which was identical with an authentic sample⁴) (Chart 1).

Compound 3 was found to react with a variety of substituted glyoxals, including methyl, hydroxymethyl, styryl and aryl derivatives, to give 6-substituted 2(1H)-pyrazinone 4-oxides.

¹⁾ Part III: K. Imai and T. Seo, Eur. J. Med. Chem., 15, 207 (1980).

²⁾ Location: Jusohonmachi, Yodogawa-ku, Osaka 532, Japan.

³⁾ a) T. Poloński and A. Chimiak, J. Org. Chem., 41, 2092 (1976); b) E. Buehler and G.B. Brown, ibid., 32, 265 (1967).

⁴⁾ a) M. Bobek and A. Bloch, J. Med. Chem., 15, 164 (1972); b) P.T. Berkowitz, T.J. Bardos, and A. Bloch, ibid., 16, 183 (1973).

The compounds synthesized in this manner are summarized in Chart 2. In the proton magnetic resonance (PMR) spectra of the compounds (5, 6 and 8b—h)⁵⁾ small spin couplings (J=1.5-2 Hz) between 3-H and 5-H were observed, in agreement with the assigned structures.⁶⁾ The structure of 8a was confirmed by conversion to the known 6-phenyl-2(1H)-pyrazinone (9)⁷⁾ by reduction with sodium hydrosulfide. It is of interest to note that the formation of 6-aryl-2(1H)-pyrazinone 4-oxides (8) by the reaction of 3 with arylglyoxals is in contrast with the reaction of glycinamide with phenylglyoxal, which gave 5-phenyl-2(1H)-pyrazinone.^{7,8)}

A similar reaction of 2-(hydroxyamino)propionamide hydrochloride (11), prepared from N-benzylidene-(1-carbamoyl)-ethylamine N-oxide (10), with hydroxymethylglyoxal yielded 6-hydroxymethyl-3-methyl-2(1H)-pyrazinone 4-oxide (12), whose structure was confirmed by oxidation to 1,6-dihydro-5-methyl-6-oxo-2-pyrazinecarboxylic acid 4-oxide⁹⁾ (Chart 3).

We have further extended this reaction to the synthesis of 1-alkyl and 1-aryl derivatives. This requires N-(alkyl or aryl)-2-(hydroxyamino)acetamides. The N-alkyl derivatives (15) were prepared by hydrolysis of N-benzylidenealkylcarbamoylmethylamine N-oxides (14), which in turn were obtained by the reaction of N-alkyl-2-chloroacetamides (13) and 4 (Chart 4). The N-aryl derivatives (20) were prepared in a similar way starting from N-aryl-2-iodoacetamides (18), as shown in Chart 5.

⁵⁾ In the cases of 7 and 8a, the couplings could not be seen because the pyrazinone ring protons were overlapped by other signals.

⁶⁾ G.P. Syrova, Yu. N. Sheinker, I.S. Musatova, and A.S. Elina, Chem. Heterocycl. Compd., 8, 240 (1972).

⁷⁾ a) P.J. Lont and H.C. Van Der Plas, Rec. Trav. Chim. Pays-Bas, 92, 449 (1973); b) N. Sato, J. Heterocycl. Chem., 15, 665 (1978).

⁸⁾ S. Sugiura, S. Inoue, Y. Kishi, and T. Goto, Yahugahu Zasshi, 89, 1646 (1969).

⁹⁾ K. Imai, M. Mano, T. Seo, and T. Matsuno, Chem. Pharm. Bull., "accepted".

Chart 6

23a, b

20a, b

a: R=H **b**: R=4-F Condensation of 15 and 20 with glyoxal or methylglyoxal gave the desired 1-alkyl (16) and 1-aryl derivatives (21 and 23), respectively (Charts 4—6). The structure of 21a was confirmed by catalytic hydrogenation to 1-phenyl-2(1H)-pyrazinone (22), which was identical with the product obtained from glycinanilide and glyoxal.¹⁰⁾ The structure of 23 was deduced from the observation that the M-17 ion is more intense than the M-16 ion in the mass spectra (MS).¹¹⁾

This new method for the preparation of 2(1H)-pyrazinone 4-oxides has several advantages compared with previously known methods: (i) it does not require a peracid, (ii) it is suitable for large-scale production, and (iii) it is particularly useful for the preparation of the otherwise inaccessible 1-aryl derivatives.¹⁰⁾

Anticoccidial Activity

Anticoccidial screening in chickens against *Eimeria tenella* was carried out in battery experiments as described in the preceding paper. Indicators of efficacy included measurements of bloody droppings, mortality, cecal lesions and relative weight gain. Bloody droppings per bird were graded as follows: -(normal), +(mild), +(moderate), +(severe). The cecal lesions were scored by the procedure of Johnson and Reid. +(mild)

Of the compounds tested (1, 5—9, 12, 16, 21 and 23), 1 exhibited potent activity. The biological results for 1 are shown in Table I.

Minimum effective concentration in feed (%)	Bloody droppings at day 5 after infection	Mortality	Average cecal lesion score	Relative weight gain (%)
0.05		0/78a)	0.2	98.0
Infected unmedicated control	#	15/39 ^{b)}	4.0	41.0
Uninfected unmedicated control		$0/39^{b}$	0	100.0

Table I. Anticoccidial Activity of 2(1H)-Pyrazinone 4-Oxide (1)

Experimental

Melting points were determined with a Yanagimoto micro melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded with a Hitachi 260-10 spectrophotometer, ultraviolet (UV) spectra with a Perkin-Elmer 450 spectrophotometer, and MS with a Hitachi RMU-6D mass spectrometer. PMR spectra were taken with a Varian T-60, A-60A, EM-390, HA-100 or XL-100-12 spectrometer and chemical shifts are expressed in ppm (δ) using tetramethylsilane as an internal standard. The following abbreviations are used: s, singlet; d, doublet; t, triplet; m, multiplet; br, broad. Concentration operations were carried out under reduced pressure with a rotary evaporator.

Materials—Hydroxymethyl-, 14) styryl-, 15) 4-chlorophenyl-, 16) 3,4-dichlorophenyl-, 17) 4-bromophenyl-, 16)

a) 3 Birds \times 26 replicates. b) 3 Birds \times 13 replicates.

¹⁰⁾ M. Mano, T. Seo, T. Hattori, T. Kaneko, and K. Imai, Chem. Pharm. Bull., 28, 2734 (1980).

¹¹⁾ F. Uchimaru, S. Okada, A. Kosasayama, and T. Konno, J. Heterocycl. Chem., 8, 99 (1971).

¹²⁾ M. Mano, T. Seo, T. Matsuno, and K. Imai, Chem. Pharm. Bull., 24, 2871 (1976).

¹³⁾ J. Johnson and W.M. Reid, Experimental Parasitol., 28, 30 (1970).

¹⁴⁾ W.E. Evans, Jr., C.J. Carr, and J.C. Krantz, Jr., J. Am. Chem. Soc., 60, 1628 (1938).

¹⁵⁾ M. Miyano, C.R. Dorn, and R.A. Mueller, J. Org. Chem., 37, 1810 (1972).

¹⁶⁾ N. Kornblum, J.W. Powers, G.J. Anderson, W.J. Jones, H.O. Larson, O. Levand, and W.M. Weaver, J. Am. Chem. Soc., 79, 6562 (1957).

¹⁷⁾ F. Kröhnke and E. Börner, Ber., 69, 2006 (1936).

4-methoxyphenyl-, ¹⁸⁾ 4-phenoxyphenyl-, ¹⁹⁾ 4-nitrophenyl-²⁰⁾ and 3-nitrophenylglyoxals, ²⁰⁾ N-propyl-, ²¹⁾ N-isopropyl-, ²²⁾ N-butyl-²²⁾ and N-isobutyl-2-chloroacetamides ²³⁾ were prepared by the reported procedures.

N-Benzylidenecarbamoylmethylamine N-Oxide (2)——Compound 4 (121 g, 1 mol) was dissolved with stirring in an ice-cooled solution of sodium (22.9 g, 950 mg-atom) in EtOH (2.5 l), and then 2-chloroacetamide (95 g, 1.01 mol) was added. The mixture was stirred at room temperature for 3 hr and cooled. The precipitate was collected by filtration, washed with cold EtOH and $\rm H_2O$, and recrystallized from MeOH to give colorless crystals (83.5 g, 47%), mp 186—190°. Anal. Calcd for $\rm C_9H_{10}N_2O_2$: C, 60.66; H, 5.66; N, 15.72. Found: C, 60.70; H, 5.65; N, 15.64.

2-(Hydroxyamino)acetamide Hydrochloride (3)—H₂NOH·HCl (2.08 g, 30 mmol) was dissolved in a solution of 2 (5.35 g, 30 mmol) in MeOH (150 ml) with heating. After stirring the mixture at room temperature for 1 hr, MeOH was removed and the residue was dissolved in AcOEt and H₂O. The aqueous layer was separated, washed with AcOEt and filtered. The filtrate was evaporated to dryness and the residue was recrystallized from aqueous EtOH to give colorless crystals (2.61 g, 69%), mp 135—138°. *Anal.* Calcd for $C_2H_6N_2O_2$ ·HCl: C, 18.98; H, 5.58; N, 22.14. Found: C, 19.09; H, 5.78; N, 22.07.

2(1H)-Pyrazinone 4-Oxide (1)—To a solution of 3 (5.6 g, 44 mmol) in MeOH (220 ml), 40% aqueous glyoxal (7.2 g, 50 mmol) was added at -40 to -30° with stirring. Next, 10 N NaOH (11 ml) was added dropwise at -40 to -30° over 20 min with stirring. After stirring at -30° for 1.5 hr, at -5 to 0° for 1 hr and at room temperature for 1 hr, the ice-cooled and stirred reaction mixture was treated with concentrated HCl (11 ml), followed by NaHCO₃ (8.8 g). The solvent was removed and the residue was dissolved in H₂O.

Table II. 6-Substituted 2(1H)-Pyrazinone 4-Oxides

Compou No.	nd R	Recrystn.	Yield (%)	mp (°C)	Formula		alysis Calcd Found	(,,,,
						С	H	N
5	CH ₃	90% EtOH–ether	60	268—270 ^{b)} (dec.)	$C_5H_6N_2O_2$	47.62 (47.37	4.80 4.64	22.21 21.85)
6	$\mathrm{CH_2OH}$	MeOH	18	225—230 (dec.)	$\mathrm{C_5H_6N_2O_3}$	42.26 (42.23)	$\frac{4.26}{4.25}$	19.71 19.64)
7	$\mathrm{CH}\text{=}\mathrm{CHC_6H_5}$	${ m MeOH}$	7	210—213 (dec.)	$C_{12}H_{10}N_2O_2$	67.28 (67.12	$\begin{array}{c} 4.71 \\ 4.43 \end{array}$	13.08 12.86)

Compound No.	$PMR^{a)}$	
5	c) 2.14 (3H, s, CH ₃), 7.05—7.17 (1H, m, 3-H or 5-H), 7.38 (1H, d, $J = 2$ Hz, 5-H or 3-H)	_
6	$^{d)}$ 4.29 (2H, s, CH ₂), 5.10—6.20 (1H, br, OH), 7.05 (1H, d, $J\!=\!2$ Hz, 3-H or 5-H), 7.39 (1H, d, $J\!=\!2$ Hz, 5-H or 3-H), 11.50—12.50 (1H, br, NH)	
7	$^{\rm c)}$ 6.90 (1H, d, $J\!=\!18$ Hz, CH=CH), 7.3—7.7 (7H, m, 3-H, 5-H and Ar–H), 7.70 (1H, d, $J\!=\!18$ Hz, CH=CH)	

- a) Measured in dimethyl sulfoxide (DMSO)-d₆.
- b) Lit.4a) mp>250° (dec.).
- c) Taken with a Varian XL-100-12 spectrometer.
- d) Taken with a Varian EM-390 spectrometer.
- e) Taken with a Varian T-60 spectrometer.

¹⁸⁾ H.-D. Becker and G.A. Russell, J. Org. Chem., 28, 1895 (1963).

¹⁹⁾ G. Cavallini, J. Med. Chem., 7, 255 (1964).

²⁰⁾ L. Steinbach and E.I. Becker, J. Am. Chem. Soc., 76, 5808 (1954).

²¹⁾ W.A. Jacobs, M. Heidelberger, and I.P. Rolf, J. Am. Chem. Soc., 41, 458 (1919).

²²⁾ A.J. Speziale and P.C. Hamm, J. Am. Chem. Soc., 78, 2556 (1956).

²³⁾ M. Backès, Bull. Soc. Chim. Fr., 1955, 1414.

Table III. 6-Aryl-2(1H)-pyrazinone 4-Oxides

		.H),	-1.5 ·H),	-1.5 5-H	2H, .H),	.H), 11H, Hz,	-1.5 I or	3.50	-1.5 3-H
$\mathrm{PMR}^{a)}$		o) 7.44—7.66 (4H, m, 3-H or 5-H and Ar-H), 7.74—8.00 (3H, m, 5-H or 3-H and Ar-H)	7.56 (2H, d, $J = 9$ Hz, Ar–H), 7.63 (1H, d, $J = 1.5$ Hz, 3-H or 5-H), 7.94 (2H, d, $J = 9$ Hz, Ar–H), 8.03 (1H, d, $J = 1.5$ Hz, 5-H or 3-H)	7.58—8.18 (3H, m, Ar–H), 7.66 (1H, d, $J=1.5$ Hz, 3-H or 5-H), 8.21 (1H, d, $J=1.5$ Hz, 5-H or 3-H)	7.61 (1H, d, $J = 1.5$ Hz, 3-H or 5-H), 7.64 (2H, d, $J = 9$ Hz, Ar-H), 7.86 (2H, d, $J = 9$ Hz, Ar-H), 8.01 (1H, d, $J = 1.5$ Hz, 5-H or 3-H)	3.83 (3H, s, OCH ₃), 7.05 (2H, d, $J = 9$ Hz, Ar–H), 7.51 (1H, d, $J = 1.5$ Hz, 3-H or 5-H), 7.79 (1H, d, $J = 1.5$ Hz, 5-H or 3-H), 7.84 (2H, d, $J = 9$ Hz, Ar–H)	6.95–7.64 (7H, m, Ar–H), 7.56 (1H, d, $J=1.5$ Hz, 3-H or 5-H), 7.88 (1H, d, $J=1.5$ Hz, 5-H or 3-H), 7.89 (2H, d, $J=9$ Hz, Ar–H)	d) 7.80 (1H, d, $J=2$ Hz, 3-H or 5-H), 8.15—8.50 (5H, m, 5-H or 3-H and Ar-H)	7.65—7.98 (1H, m, Ar–H), 7.74 (1H, d, J =1.5 Hz, 3-H or 5-H), 8.20—8.50 (3H, m, 5-H or 3-H and Ar–H), 8.72—8.85 (1H, m, Ar–H)
(%	z	14.89 14.79)	12.58 12.47)	10.90 10.80)	10.49 10.39)	12.84 12.46)	9.99 9.89)	18.02 17.74)	17.53 17.30)
Analysis (%) Calcd (Found)	H	4.29	$\frac{3.17}{3.01}$	2.35	$2.64 \\ 2.50$	4.62	4.32	$\frac{3.03}{2.88}$	3.30
An	၁	63.83 (63.77	53.95 (53.95	46.72 (46.57	44.97 (44.82	60.55	68.57 (68.33	51.51 (51.51	51.53 (51.51
Formula		$\mathrm{C_{10}H_8N_2O_2}$	$\mathrm{C_{10}H_7CIN_2O_2}$	$\mathrm{C_{10}H_6Cl_2N_2O_2}$	$\mathrm{C_{10}H_7BrN_2O_2}$	$C_{11}H_{10}N_{2}O_{3}$	$\mathrm{C_{16}H_{12}N_{2}O_{3}}$	$\mathrm{C_{10}H_7N_3O_4}$	$\mathrm{C_{10}H_7N_3O_4^{\star}}$ $1/7\mathrm{C_2H_5OH}$
()°)	=	270—273 (dec.)	289—290	284—285 (dec.)	301—302 (dec.)	265—266	246—247 (dec.)	286—288 (dec.)	251—252
$\begin{array}{c} \text{Yield} \\ (\%) \end{array}$		20	44	40	36	38	24	30	41
Recrystn. Yield solvent (%)		DMF^b)	Еtон	EtOH	Етон	EtOH	EtOH	$DMF-H_2O$ 30	EtOH
d R		Н	4-C1	$3,4$ -Cl $_2$	4-Br	4-OCH ₃	$4-\mathrm{OC_6H_5}$	$4-NO_2$	3-NO_2
Compound R		8 a	8 b	9 8	p8	&	8f	<u>භ</u> ග	8 h

Measured in DMSO-d₆ with a Varian A-60A spectrometer. N.N-Dimethylformamide.
Taken with a Varian XL-100-12 spectrometer.
Taken with a Varian T-60 spectrometer.

 $\begin{pmatrix} c \\ c \end{pmatrix}$

Table IV. N–Benzylidenealkylcarbamoylmethylamine N–Oxides $^{a)}$

Compound No.	R	Yield (%)	mp (°C)	Formula		alysis (Calcd (Found	
					ć	Н	N
14a	CH ₂ CH ₂ CH ₃	56	152—153	$C_{12}H_{16}N_2O_2$	65.43 (65.25	7.32 7.19	12.72 12.82)
14b	$\mathrm{CH_2} \langle \mathrm{CH_3}^{\mathrm{CH_3}}$	57	201—202	$\mathrm{C_{12}H_{16}N_2O_2}$	65.43 (65.21	$7.32 \\ 7.27$	12.72 12.75)
14c	CH ₂ CH ₂ CH ₂ CH ₃	67	150—151	$\rm C_{13} H_{18} N_2 O_2$	66.64	$7.74 \\ 7.86$	11.96 12.01)
14d	$\mathrm{CH_2CH}\langle_{\mathrm{CH_3}}^{\mathrm{CH_3}}$	70	164—165	${\rm C_{13}H_{18}N_2O_2}$	66.64 (66.74	7.74 7.58	11.96 11.89)

a) Recrystallized from 50% EtOH.

Table V. 1-Alkyl-2(1H)-pyrazinone 4-Oxides

Compound No.	R	Recrystn.	$Yield^{a)}$ $(%)$	mp (°C)	Formula		alysis Calcd Found	
			(, -)	,		ć	Н	N
16a	CH ₂ CH ₂ CH ₃	armonded.	27	Oil		-		
16b	$CH\langle {}^{CH_3}_{CH_3}$	AcOEt- petroleum ether	13	133—135	$\mathrm{C_7H_{10}N_2O_2}$	54.54 (54.54	6.54 6.59	18.17 18.04)
16c	$\mathrm{CH_2CH_2CH_2CH_3}$		28	Oil				
16d	$\mathrm{CH_{2}CH}\langle_{\mathrm{CH_{3}}}^{\mathrm{CH_{3}}}$		29	Oil				

Compound	PMR^b						
Ño.	Solvent	Chemical shift					
16a	CDCl ₃	1.00 (3H, t, $J=7$ Hz, CH ₃), 1.50—2.17 (2H, m, CH ₂ CH ₂ CH ₃), 3.92 (2H, t, $J=7$ Hz, CH ₂ CH ₂ CH ₃), 7.14 (1H, dd, $J=2$ Hz, 6 Hz, 5-H), 7.39 (1H, d, $J=6$ Hz, 6-H), 7.59 (1H, d, $J=2$ Hz, 3-H)					
16b	DMSO- d_6	1.31 (6H, d, $J = 7$ Hz, $2 \times CH_3$), 4.60—5.13 (1H, m, CH), 7.23 (1H, dd, $J = 2$ Hz, 6 Hz, 5-H), 7.55 (1H, d, $J = 2$ Hz, 3-H), 7.84 (1H, d, $J = 6$ Hz, 6-H)					
16c	CDCl3	0.98 (3H, t, $J = 7$ Hz, CH ₃), 1.20—2.07 (4H, m, CH ₂ CH ₂ CH ₂ CH ₃), 3.92 (2H, t, $J = 7$ Hz, CH ₂ CH ₂ CH ₂ CH ₃), 7.10 (1H, dd, $J = 2$ Hz, 6 Hz, 5-H), 7.27 (1H, d, $J = 6$ Hz, 6-H), 7.60 (1H, d, $J = 2$ Hz, 3-H)					
16d	CDCl ₃	0.97 (6H, d, $J=6$ Hz, $2 \times \text{CH}_3$), 1.82—2.53 (1H, m, CH), 3.75 (2H, d, $J=7$ Hz, CH ₂), 7.12 (1H, dd, $J=2$ Hz, 6 Hz, 5-H), 7.35 (1H, d, $J=6$ Hz, 6-H), 7.59 (1H, d, $J=2$ Hz, 3-H)					

 $a) \quad \text{Based on N-benzylidenealkylcarbamoylmethylamine N-oxide.} \\ b) \quad \text{Taken with a Varian T-60 spectrometer.}$

The aqueous solution was adjusted to pH 1 with concentrated HCl and adsorbed on a column of activated charcoal (Shirasagi for chromatography, Takeda Chemical Industries, Ltd.) (50 g). The column was washed with $\rm H_2O$ and eluted with $\rm EtOH-H_2O-28\%$ NH₄OH (25: 24: 1). The eluate (ca. 300 ml) was evaporated to dryness and the residue was recrystallized twice from 96% $\rm EtOH-ether$ (1: 1) with activated charcoal to give crystals (1.04 g, 21%), mp 245—250° (dec.) [lit.^{4a)} mp>250° (dec.)]. Anal. Calcd for $\rm C_4H_4N_2O_2$ · 1/4H₂O: C, 41.21; H, 3.89; N, 24.03. Found: C, 41.59; H, 3.53; N, 24.38. PMR (DMSO- d_6 , HA-100): 7.12 (1H, dd, J=2 Hz, 6 Hz, 5-H), 7.49 (1H, d, J=2 Hz, 3-H), 7.51 (1H, d, J=6 Hz, 6-H).

6-Hydroxymethyl-2(1*H*)-pyrazinone 4-Oxide (6) (Table II) — Hydroxymethylglyoxal (352 mg, 4 mmol) was added to a solution of 3 (508 mg, 4 mmol) in MeOH (20 ml) at -40 to -30° with stirring, then $12.5 \,\mathrm{N}$ NaOH (0.8 ml) was added dropwise at -40 to -30° . After stirring at -30° for 1.5 hr and at -5 to 0° for 2 hr, the ice-cooled and stirred reaction mixture was adjusted to pH 3 with concentrated HCl. The solvent was evaporated off and $\mathrm{H}_2\mathrm{O}$ (5 ml) was added to the residue. After cooling, the precipitate was collected by filtration, washed with a small amount of cold $\mathrm{H}_2\mathrm{O}$ and recrystallized with activated charcoal to give colorless needles (100 mg). UV $\lambda_{\mathrm{max}}^{0.1\mathrm{NHCl}}$ nm (ε): 220 (19300), 270 (8000), 330 (5800); $\lambda_{\mathrm{max}}^{\mathrm{H}_2\mathrm{O}}$ nm (ε): 221.5 (18700), 270 (7500), 330 (5800); $\lambda_{\mathrm{max}}^{\mathrm{H}_2\mathrm{O}}$ nm (ε): 230 (23800), 254 (7300), 330 (6500).

6-Phenyl-2(1H)-pyrazinone 4-Oxide (8a) (Table III)——A solution of 3 (6.325 g, 50 mmol) in MeOH (250 ml) was treated with phenylglyoxal hydrate (7.608 g, 50 mmol) and 12.5 N NaOH (10 ml) in the manner described for **6** (the reaction mixture was adjusted to pH 5) to give needles (4.7 g). UV $\lambda_{\text{max}}^{\text{n.i.NHO}}$ nm (ε): 244 (17900), 347.5 (8500); $\lambda_{\text{max}}^{\text{Hu}_{0}}$ nm (ε): 243 (19100), 345 (10400); $\lambda_{\text{max}}^{\text{o.i.NNaOH}}$ nm (ε): 242 (24900), 342.5 (10500).

6-Phenyl-2(1*H***)-pyrazinone (9)**—Na₂S₂O₄ (2 g) was added to a suspension of **8a** (940 mg, 5 mmol) in EtOH (100 ml) and H₂O (50 ml), and the mixture was refluxed for 30 min, followed by addition of further Na₂S₂O₄ (500 mg) and refluxing for 30 min. The EtOH was then removed and the reaction mixture cooled. The precipitate was collected by filtration, washed with H₂O and recrystallized from EtOH to give crystals (510 mg, 59%), mp 238—241° (lit.^{7a)} mp 239—241°). *Anal.* Calcd for C₁₀H₈N₂O: C, 69.76; H, 4.68; N, 16.27. Found: C, 69.76; H, 4.61; N, 16.43. PMR (DMSO- d_6 , T-60): 7.4—7.7 (3H, m, Ar–H), 7.9—8.0 (2H, m, Ar–H), 8.00 (1H, s, 3-H or 5-H), 8.27 (1H, s, 5-H or 3-H).

N-Benzylidene-(1-carbamoyl)-ethylamine N-Oxide (10)—2-Bromopropionamide²⁴) (7.61 g, 50 mmol) was treated in the manner described for 2. The reaction mixture was concentrated and diluted with H_2O . After cooling, the precipitate was collected by filtration, washed with H_2O and recrystallized twice from AcOEt to give colorless needles (5.4 g, 56%), mp 173—174°. Anal. Calcd for $C_{10}H_{12}N_2O_2$: C, 62.49; H, 6.29; N, 14.57. Found: C, 62.32; H, 6.34; N, 14.33.

6-Hydroxymethyl-3-methyl-2(1H)-pyrazinone 4-Oxide (12)——Compound 10 (12.5 g, 65 mmol) was treated in the manner described for 3 to give 11 as a colorless liquid. Next, 11 was treated according to the procedure described for 6. The reaction mixture was adjusted to pH 2 with concentrated HCl and cooled.

TABLE VI. Substituted 2-Chloro- and 2-Iodo-N-arylacetamides

XCH₂CONH-

Compound No.	\mathbf{X}_{\perp}	R	Recrystn. solvent	Yield (%)	mp (°C)
17c	C1	3-F	AcOEt-petroleum ether	89	118—120
17d	Cl	$2 ext{-}\mathrm{F}$	AcOEt-petroleum ether	89	84 86
17r	CI	$4\text{-COC}_6\text{H}_5$	AcOEt-petroleum ether	96	123 - 124
18b	Ι	4-F	${ m EtOH-\hat{H}_{s}O}$	94	139141
18c	Ι	3-F	EtOH-H ₂ O	97	113—115
18 d	I	$2 ext{-}\mathrm{F}$	EtOH-H ₂ O	96	110-111
18g	I	2-Cl	EtOH–H ₂ O	95	117—119
18i	\mathbf{I}	3,5-Cl ₂	EtOH-H,O	71	132—133
18k	I	4-CH ₃	EtOH-H ₂ O	93	161163
181	I	3-CH ₃	EtOH-H ₂ O	94	88— 89
18 o	Ι	3-OCH ₃	EtOH-H.O	71	89— 90
18p	I	2-OCH_3	EtOH-H ₂ O	94	87 89
18r	I	4-COC ₆ H ₅	EtOH-H ₂ O	95	167—168
18t	I	4-NO ₂	EtOH "	68	210-212
18u	I	$3-NO_2$	EtOH-H ₂ O	96	134136
18v	I	$2-NO_{2}^{2}$	EtOH-H ₂ O	80	91— 93

²⁴⁾ C.A. Bischoff, Ber., 30, 2310 (1897).

The precipitate was collected by filtration and washed with MeOH and cold $\rm H_2O$ (20 ml) to give a powder (7.55 g, 74%), mp 235—238° (dec.). For analysis, 300 mg of the powder was recrystallized from 90% EtOH to afford crystals (180 mg), mp 235—240° (dec.). Anal. Calcd for $\rm C_6H_8N_2O_3$: C, 46.15; H, 5.16; N, 17.94. Found: C, 46.40; H, 5.11; N, 17.88. PMR (DMSO- d_6 , T-60): 2.14 (3H, s, CH₃), 4.31 (2H, d, J=4 Hz, CH₂), 5.34—5.80 (1H, br, OH), 7.12 (1H, s, 5-H), 11.92—12.37 (1H, br, NH). UV $\lambda_{\rm max}^{0.1 \rm NHCl}$ nm (ε): 221.5 (18000), 265 (6800), 317.5 (6600); $\lambda_{\rm max}^{\rm Ho}$ nm (ε): 222 (18500), 265 (6700), 317.5 (6700); $\lambda_{\rm max}^{\rm NINAOH}$ nm (ε): 226 (25700), 254 (shoulder) (5900), 325 (7600). MS m/e (relative intensity): 156 (M⁺) (100), 140 (M⁺-16) (24), 139 (M⁺-17) (98), 111 (33), 110 (50).

TABLE VII. N-Benzylidenearylcarbamoylmethylamine N-Oxides

Compound No.	R	Recrystn.	Yield (%)	mp (°C)	Formula		alysis Calcd (Found	.,.,
			,	()		ć	H	N
19a	Н	EtOH	60	188—190	$C_{15}H_{14}N_2O_2$	70.85 (70.84	5.55 5.43	11.02 11.06)
19b	4-F	EtOH	55	174—176	$\mathrm{C_{15}H_{13}FN_2O_2}$	66.17 (66.02	$\frac{4.81}{4.50}$	10.29 10.37)
19c	3-F	EtOH	47	191—193	$\mathrm{C_{15}H_{13}FN_2O_2}$	66.17 (66.26	4.81 4.65	10.29 10.56)
19d	2-F	EtOH	51	179—181	$\mathrm{C_{15}H_{13}FN_2O_2}$	66.17 (65.85	4.81 4.58	10.29 10.55)
19e	4-C1	EtOH	37	198—200 (dec.)	$\mathrm{C_{15}H_{13}ClN_2O_2}$	62.40 (62.53	$\frac{4.54}{4.27}$	9.70 9.76)
19 f	3-C1	EtOH	61	187—189	$\mathrm{C_{15}H_{13}ClN_2O_2}$	62.40 (62.35	$\begin{array}{c} 4.54 \\ 4.66 \end{array}$	9.70 9.67)
19g	2-C1	EtOH	43	163—165	$\mathrm{C_{15}H_{13}ClN_2O_2}$	62.40 (62.49)	$\frac{4.54}{4.56}$	9.70 9.69)
19h	$3,4\text{-Cl}_2$	MeOH	52	200—203 (dec.)	$\mathrm{C_{15}H_{12}Cl_2N_2O_2}$	55.75 (55.81	$\frac{3.74}{3.53}$	8.67 8.73)
19i	$3,5\text{-}\mathrm{Cl}_2$	MeOH	34	199—200	$^{\mathrm{C_{15}H_{12}Cl_{2}N_{2}O_{2}}}_{1/2\mathrm{H_{2}O}}$	54.24 (54.02	3.94 3.96	8.43 8.32)
19 j	4-Br	EtOH	62	202—204 (dec.)	$C_{15}H_{13}BrN_2O_2$	54.07 (54.06	3.93 3.78	8.41 8.35)
19k	4-CH_3	EtOH	61	199—200	$\mathrm{C_{16}H_{16}N_2O_2}$	71.62 (71.45	$6.01 \\ 5.94$	10.44 10.65)
191	3-CH_3	EtOH	75	193—195	$\mathrm{C_{16}H_{16}N_2O_2}$	71.62 (71.68	$6.01 \\ 5.79$	10.44 10.48)
19m	2-CH_3	EtOH	58	183—185	${\rm C_{16}H_{16}N_2O_2}$	71.62 (71.45	6.01 5.96	10.44 10.58)
19n	4-OCH_3	EtOH	69	179—181	${\rm C_{16}H_{16}N_2O_3}$	67.59 (67.72	5.67 5.60	9.85 10.12)
190	3-OCH_3	EtOH	78	145—146	$\rm C_{16} H_{16} N_2 O_3$	67.59 (67.64	5.67 5.34	9.85 9.86)
19p	$2\text{-}\mathrm{OCH}_3$	EtOH	66	167—169	$\rm C_{16}H_{16}N_2O_3$	67.59	5.67 5.41	9.85 9.96)
19 q	$4\text{-OC}_6\mathrm{H}_5$	EtOH	33	200—201	$C_{21}H_{18}N_2O_3$	72.82 (72.80	5.24 5.06	8.09 8.12)
19r	4-COC_6H_5	EtOH	14	194195	${\rm C_{22}H_{18}N_2O_3}$	73.73 (74.16	5.06 4.81	7.82 8.01)
$19s^{a}$	$4-N(CH_3)_2$	EtOH	34	204—205	${\rm C_{17}H_{19}N_3O_2}$	68.67 (68.48	6.44 6.38	14.13 14.40)
19t	$4-NO_2$	EtOH	37	213—215	${\rm C_{15}H_{13}N_3O_4}$	60.20 (60.26	4.38 4.51	14.04 13.97)
19u	3-NO_2	EtOH	57	201—202	$\mathrm{C_{15}H_{13}N_3O_4}$	60.20 (60.09	4.38 4.27	14.04 14.18)
19 v	2-NO_2	EtOH	48	153—154.5	$C_{15}H_{13}N_3O_4$	60.20 (60.19	4.38 4.15	10.04 14.07)

a) Prepared from 2-chloro-N-[(4-dimethylamino)phenyl]acetamide.

Table VIII. N-Aryl-2-(hydroxyamino) acetamides

HONHCH2CONH-«

Compound No. Refraction (°C) Reaction (°C) Reaction (°C) 20a H A Room temperature (°C) 20b 4-F A 50 20c 3-F A 50 20c 3-F A 50 20c 4-C A 50 20c 4-C A 50 20c 2-C A 80 20c 3-C A 50 20c 3-C A 50 20c 4-Br A 50 20l 4-CH3 A 50 20l 4-CH3 A 50 20n 4-CH3 A 50 20n 4-CH3 A 50 20n 4-CH3 A 50 20n 4-CCH3 A 50 20n 4-CCH3 A 50 20c 4-CCGH3 A 50 20c 4-CCGH3				Analysis (%)	(%)
H 4-F 3-F 4-Cl 3-Cl 3,4-Cl 3,5-Cl 4-Br 4-CH 3,5-Cl 4-Br 4-CH 3-CH 3-CCH 3-CCH 3-CCH 4-CCH 3-CCH 3-CCH 3-CCH 3-CCH 4-CCH 3-CCH 3-CCH 3-CCH 4-CCH 3-CCH 3-CCH 4-CCH 4-CCCH 4-CCCH 4-CCCH 4-CCCCH 4-CCCCH 4-CCCCH 4-CCCCCH 4-CCCCCH 4-CCCCCH 4-CCCCCH 4-CCCCCCCCCC	Re	(a) Yield mp	Formula	Calcd	Found
H A 4-F A 3-F A 4-C1 A 4-C1 A 3-C1 B 2-C1 A 3-4-C12 A 4-CH ₃ A 4-CH ₃ A 3-CH ₃ B 4-CCH ₃ B 4-CCH ₃ B 4-CCH ₃ B 6-CCCH ₃ B 6-CCCH ₃ B 6-CCC ₆ H ₅ A 4-CCC ₆ H ₅ A	(hr)			C H N	C H N
4-F A 3-F A 4-Cl 4-Cl 3-Cl 3,4-Cl 3,4-Cl 3,4-Cl 4-Br 4-Br 4-CH 3-CH 3-CH 3-CCH 3-CCCH 3-CCCH 3-CCCH 3-CCCH 3-CCCH 3-CCCH 3-CCCCH 3-CCCCH 3-CCCCH 3-CCCCH 3-CCCCCH 3-CCCCCCCCCC	00 A 10 A	72 126—127	$C_8H_{10}N_2O_2$	57.82 6.07 16.86	57.95 5.92 16.52
3-F A 2-F A 4-Cl A 3-Cl B 2-Cl B 2-Cl A 3,4-Cl ₂ A 3,5-Cl ₂ C 4-Br A 4-CH ₃ A 3-CH ₃ B 4-CH ₃ B 4-CH ₃ B 6,7 4-CCH ₃ B 6,7 4-CC ₆ H ₅ A		33 106—107	$C_sH_9FN_2O_2$	4.93 15.21	4.88
2-F A 4-Cl A 3-Cl B 2-Cl A 3,4-Cl ₂ A 3,4-Cl ₂ A 4-Br A 4-CH ₃ A 3-CH ₃ B 4-CH ₃ B 4-CH ₃ B 4-CH ₃ B 4-CH ₃ B 4-CCH ₃ B 6,7 4-CC ₆ H ₅ A	9.5	40 122—123	$C_8H_9FN_2O_2$	4.93 15.21	4.84
4-C1 A 3-C1 B 2-C1 A 3,4-C1 ₂ A 3,5-C1 ₂ C 4-Br A 4-CH ₃ A 3-CH ₃ A 3-CH ₃ B 4-OCH ₃ B 6,7 4-OCH ₃ B	13	25 114—115		52.17 4.93 15.21	52.19 4.87 15.01
3-C1 B 2-C1 A 3,4-C1 ₂ A 3,5-C1 ₂ C 4-Br A 4-CH ₃ A 3-CH ₃ B 4-OCH ₃ B 3-OCH ₃ B 3-OCH ₃ B 3-OCH ₃ B	50 22 A	$22 \frac{143-145^{b}}{(dec)}$	$^{\prime\prime}$ $_{\rm C_8H_9CIN_2O_2}$	47.89 4.52 13.96	47.54 4.84 14.01
2-C1 A 3,4-Cl ₂ A 3,4-Cl ₂ A 4-Br A 4-CH ₃ A 2-CH ₃ B 4-OCH ₃ B 2-OCH ₃ B 2-OCH ₃ B 3-OCH ₃ B	50 30 A	13 118—119	C,H,CIN,O,	13.96	4.52
3,4-Cl ₂ A 3,5-Cl ₂ C 4-Br A 4-CH ₃ A 3-CH ₃ A 2-CH ₃ B 4-OCH ₃ B 2-OCH ₃ B 2-OCH ₃ B 4-OC ₆ H ₅ A 4-OC ₆ H ₅ A 4-OC ₆ H ₅ A	, ∞	57 106—108	$C_8^{\prime}H_9^{\prime}CIN_2^{\prime}O_2^{\prime}$	4.52 13.96	4.28
3,5-Cl ₂ C 4-Br A 4-CH ₃ A 3-CH ₃ A 2-CH ₃ B 4-OCH ₃ B 3-OCH ₃ B 2-OCH ₃ B 3-OCH ₃ B	က	47 121—122	$C_8H_8Cl_2N_2O_2$	40.88 3.43 11.92	41.29 3.35 11.99
4-Br A 4-CH ₃ A 3-CH ₃ A 2-CH ₃ B 4-OCH ₃ B 3-OCH ₃ B 2-OCH ₃ B	oom 3 B mperature	28	$C_8H_8Cl_2N_2O_2\cdot HCl\cdot 1/2(H_2NOH\cdot HCl)$	31.37 3.62 11.43	31.25 3.48 11.83
4-CH ₃ A 3-CH ₃ A 2-CH ₃ B 4-OCH ₃ B 2-OCH ₃ B 2-OCH ₃ B 2-OCH ₃ B 2-OCH ₃ A 4-COC ₆ H ₅ A 4-N(CH ₃) ₂ A	50 15 A	$22 \frac{140-142}{(dec)}$	$\mathrm{C_8H_9BrN_2O_2}$	39.21 3.70 11.43	39.33 3.78 11.53
3-CH ₃ 3-CH ₃ 4-OCH ₃ 5-CH ₃ 5-CCH ₃ 6-CCH ₃ 6-CC ₆ H ₅ 7-CC ₆ H ₅ 7-CCC ₆ H ₅ 7-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	50 18 A	16 141—143	$C_9H_{12}N_2O_2$	6.71 15.54	6.73
2-CH ₃ B 4-OCH ₃ B 2-OCH ₃ B 4-OC ₆ H ₅ A 4-COC ₆ H ₅ A	13	26 110—111	$\mathrm{C_9H_{12}^-N_2O_2}$	$6.71 \cdot 15.54$	6.78
4-OCH ₃ 3-OCH ₃ B 4-OC ₆ H ₅ A 4-COC ₆ H ₅ A 4-N(CH ₃) ₂ A	18	23 125—126	$\mathrm{C_9H_{12}N_2O_2}$	6.71 15.54	6.74
3-OCH ₃ B 2-OCH ₃ B 4-OC ₆ H ₅ A 4-COC ₆ H ₅ A	18	$21 140 - 141^{d}$		55.09 6.16 14.28	55.31 6.16 13.74
2-OCH ₃ B 4-OC ₆ H ₅ A 4-COC ₆ H ₅ A 4-N(CH ₃) ₂ A	oom e o	19 82—84	$\mathrm{C_9H_{12}N_2O_3}$	55.09 6.16 14.28	54.95 6.06 14.02
4-OC ₆ H ₅ A 4-COC ₆ H ₆ A 4-N(CH ₃) ₂ A	50 18 A	14 89—91	$\mathrm{C_9H_{12}N_2O_3}$	55.09 6.16 14.28	54.68 6.06 14.12
$4\text{-COC}_6\ddot{\mathbf{H}}_5$ A $4\text{-N(CH}_3)_2$ A	2.5	_	I	1	1
$4-N(CH_3)_2$ A	10	28 149—150	1		1
	50 0.5 A		${ m C_{10}H_{15}N_3O_2}$	57.40 7.23 20.08	57.79 7.28 19.41
$20t 4-NO_2 A 50$	50 2 C	$44 \frac{171-174}{(dec.)}$	$C_8H_9N_3O_4$	45.50 4.30 19.90	45.41 4.26 20.07
- 3-NO A	-	43 104—105	ţ		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 1 C	75 136—138	$C_8H_9N_3O_4$	45.50 4.30 19.90	45.35 4.16 19.84

A: AcoBet-petroleum ether, B: EtOH-ether, C: EtOH, D: CHCl₃-MeOH.
S.C. Bell, R.J. McCaully, and S.J. Childress, J. Org. Chem., 33, 216 (1968), reported mp 144—146°.
Obtained as a mixture of the hydrochloride and hydroxylamine hydrochloride.
S.C. Bell, R.J. McCaully, and S.J. Childress, J. Haerocycl. Chem., 4, 647 (1967), reported mp 137—138°. Isolated as the hydrochloride.
A trace amount of impurity was detected by TLC. $\begin{pmatrix} c \\ c \\ c \end{pmatrix}$

4-Oxides
pyrazinone
2(1H)-
1-Aryl-
TABLE IX.

O ← Z Z ← <	= = R

$\mathrm{PMR}^{b)}$	(5H, S, Ar-H), 7.64 (1H ₂ d, J=2 Hz, 8 Hz, 5-H), 7.42	7.78 (1H, d, $J = 6$ Hz, 6-H) 4. 7.23—7.73 (5H, m, 5-H and Ar-H), 7.78 (1H, d, $J = 2$ Hz, 3-H), 7.92 (1H, d, $J = 6$ Hz,	o-H) (17.77–7.75 (5H, m, 5-H and Ar–H), 7.73 (1T, d, $J = 2$ Hz, 3-H), 7.85 (1H, d, $J = 6$ Hz,	6-H) d) 7.20—7.78 (5H, m, 5-H and Ar-H), 7.80 (1H, d, $J = 2$ Hz, 3-H), 7.93 (1H, d, $J = 6$ Hz,	o 7.24 (1H, dd, J=2 Hz, 6 Hz, 5-H), 7.39—7.59 (4H, m, Ar-H), 7.64 (1H, d, J=2 Hz,	3-H), $I.I9$ (1H, d, $J=6$ Hz, 6-H) a) 7.67 (1H, dd, $J=2$ Hz, 6 Hz, 5-H), 7.50 — 7.70 (4H, m, Ar–H), 7.80 (1H, d, $J=2$ Hz, 3 H), 7.03 (1H, d, $J=2$ Hz,	$^{(4)}$ 7.29 (1H, dd, $J=0$ Hz, 6-H) $^{(5)}$ 7.29 (1H, dd, $J=2$ Hz, 6 Hz, 5-H), 7.43— $^{(5)}$ 7.67 (4H, m, Ar-H), 7.73 (1H, d, $J=2$ Hz, 3-H), $^{(5)}$ 3.49 (1H, d, $J=6$ Hz, e,	0.11) (111) (1,11) (1,1) (1,11)	6) 7.27 (1H, dd, J=2 Hz, 6 Hz, 5-H), 7.55—7.75 (3H, m, Ar–H), 7.69 (1H, d, J=2 Hz, g, H), 7.67 (1H, d, J=2 Hz, g, H)	2-11), 7.67 (111, α , $J=0$ Hz, 0-11) (2) 7.31 (1H, dd, $J=2$ Hz, 6 Hz, 5-H), 7.44 (2H, d, $J=9$ Hz, Ar-H), 7.73 (1H, d, $J=2$ Hz, 3-H), 7.77 (2H, d, $J=9$ Hz, Ar-H), 7.87 (1H, d, $J=6$ Hz, 6-H)
(%) X	14.89	13.59 13.33)	13.59 13.32)	$\frac{13.59}{13.57}$	12.58 12.66)	12.58 12.54)	12.58 12.61)	10.90 11.08)		10.49
Analysis (%) Calcd (Found) H	4.29	3.42	3.42	3.42 3.32	3.17	$\frac{3.17}{3.06}$	$\frac{3.17}{3.30}$	2.35	$2.35 \\ 2.30$	2.64
An	63.83 (64.00	58.26 (58.20	58.26 (58.03	58.26 (57.84	53.95 (53.82	53.95 (54.11	53.95 (53.72	46.72 (46.77	46.72 (46.89	44.97 (45.08
Formula	C ₁₀ H ₈ N ₂ O ₂	$\mathrm{C_{10}H_7FN_2O_2}$	$\mathrm{C_{10}H_7FN_2O_2}$	$\mathrm{C_{10}H_7FN_2O_2}$	$C_{10}H_7CIN_2O_2$	$\mathrm{C_{10}H_7CIN_2O_2}$	$160-162 C_{10}H_7CIN_2O_2$	$-246 C_{10}H_6Cl_2N_2O_2$	$-211 C_{10}H_6Cl_2N_2O_2$	$-201 \mathrm{C_{10}H_7BrN_2O_2}$
mp (°C)	206—208 (dec.)	225—227 (dec.)	235—238 (dec.)	223—226 (dec.)	197—198 (dec.)	227—229 (dec.)	160—162	245—246	210—211	199—201
$_{(\%)}^{\rm Yield}$	53	31	44	45	47	42	43	31	D	61
Method Recrystn. ^{a)} Yield solvent (%)	A	A	A	А	O	O	В	А	D	В
Method	A	A	A	Ą	В	A	В	Α	А	Д
ıd R	н	4-F	3-F	2-F	4-Cl	3-CI	2-C1	$3,4$ -Cl $_2$	$3,5$ - Cl_2	4-Br
Compound No.	21a	21b	21c	21d	21e	21f	21g	21h	21i	21 j

Compound	2	Method	Method Recrystm." Yield	Yield	dw (ǰ)	Formula	(F)	Calcd (Found)	6	PMR^{b}
No.	:		solvent	8	<u>)</u>		l o	H	/ Z	
21k	4-CH ₃	В	В	64	173—175	$C_{11}H_{10}N_{2}O_{2}$	65.34 (65.13	4.98 4.87	13.85 13.85)	6) 2.35 (3H, s, CH ₃), 7.25 (1H, dd, $J = 2$ Hz, 6Hz, 5-H), 7.28 (4H, s, Ar–H), 7.65 (1H, d, r, c, tr, 2, tr, 7.70 (1H, d, $I = 1$ H, I
211	3 -CH $_3$	В	В	57	155—157	$C_{11}H_{10}N_2O_2$	65.34 (64.94	4.98	13.85 13.91)	J = 2.112, 3.11, 1.10 (111, d.) J = 5.112, 5.11, 1.10 (111, d.) J = 5.112, 5.11, 1.27 (111, d.) J = 2.12 (
21m	2-CH_3	В	æ	72	145—147	$145-147 C_{11}H_{10}N_2O_2$	65.34 (64.95	4.98	13.85 13.81)	and Ar—H), 7.77 (1H, d, $f = 2$ Hz, 3-H), 7.77
21n	4-0CH ₃	В	В	72	175—178	$\mathrm{C_{11}H_{10}N_{2}O_{3}}$	60.55 (60.43	4.62	12.84 12.66)	Ar-H), 7.23 (1H, dd, $J = 2$ Hz, 6 Hz, $J = 9$ Hz, $Ar = 1$, Ar
210	3-0CH ₃	В	В	41	202—203	$203 ext{ } ext{ } $	60.55 (60.54	4.62 4.59	12.84 12.97)	J = 2 Hz, 3-H), 7.77 (1H, d, $J = 6 Hz$, 6-H) d) 3.79 (3H, s, OCH ₃), 6.92—7.63 (5H, m, 5-H and Ar-H), 7.70 (1H, d, $J = 1 \text{ Hz}$, 3-H), 7.82 (1H, d, $I = 6 \text{ Hz}$, 6-H)
21p	2-0CH ₃	В	В	53	153—155	$\mathrm{C_{11}H_{10}N_2O_3}$		4.62 4.55	12.84 12.61)	and Ar-H), 7.65–7.82 (2H, m, 3-H and 6-H)
21q	$4\text{-OC}_6\mathrm{H}_5$	В	Q	51	191—192	$C_{16}H_{12}N_2O_3$	68.57 (68.61	4.32 4.29	9.99 9.90)	7) 6.96—7.62 (10H, m, 5-H and Ar-H), 7.70 (1H, d, $J = 2$ Hz, 3-H), 7.83 (1H, d, $J = 6$ Hz, 6.H)
21r	4-COC,H5	H B	D	78	222—223	$G_{17}H_{12}N_{2}O_{3}$	69.86 (69.59	4.14	$9.58 \\ 9.11)$	7.33 (1H, dd, $J = 2$ Hz, 6 Hz, 5-H), 7.45—7.90 (10H, m, 3-H and Ar–H), 7.93 (1H, d, $I = 6$ Hz, 6-H)
21s	$4-N(CH_3)_2$	3)2 A	А	39	234—235 (dec.)	$C_{12}H_{13}N_3O_2$	62.33 (61.92	5.67	18.17 17.57)	J = 0.112, $J = 0.112$, $J = 0.112$, $J = 0.12$, J
21t	4-NO_2	В	Ą	10	194—197 (dec.)	$\mathrm{C_{10}H_7N_3O_4}$	51.51 (51.42	3.03 3.08	18.02 17.99)	$J=2~{ m Hz},~3-{ m H},~7.71~(1{ m H},~{ m d},~J=6~{ m Hz},~6-{ m H})$ $P=7.33~(1{ m H},~{ m dd},~J=2~{ m Hz},~6~{ m Hz},~5-{ m H},~7.73$ $(1{ m H},~{ m d},~J=2~{ m Hz},~3-{ m H}),~7.78~(2{ m H},~{ m d},~J=9~{ m Hz},~{ m Ar},~{ m Hz},~{ m Ar},~{ m d},~J=6~{ m Hz},~6-{ m H}),~8.35~(2{ m H},~{ m d},~{ $
21u	$3-NO_2$	B	A	15	206—209 (dec.)	$\mathrm{C_{10}H_7N_3O_4}$	51.51 (51.41	3.03	18.02 17.98)	a, $J = 3$ Hz, $A_1 = 11$ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
21v	2-NO_2	В	A	10	201—203 (dec.)	$\mathrm{C_{10}H_7N_3O_4}$	51.51 $(51.32$	3.03 3.19	18.02 17.42)	8.31 (6H, m, 3-H, 6-H and Ar-H)

a) A: EtOH, B: AcOEt-petroleum ether, C: MeOH, D: AcOEt.
b) Measured in DMSO-d_e.
c) Taken with a Varian HA-100 spectrometer.
d) Taken with a Varian T-60 spectrometer.
e) Taken with a Varian EM-390 spectrometer.
f) Taken with a Varian A-60A spectrometer.

N-Benzylideneisopropylcarbamoylmethylamine N-Oxide (14b) (Table IV)——Compound 14b (1.205 g) was prepared from 13b (1.39 g, 10.2 mmol) in the manner described for 2.

1-Isopropyl-2(1H)-pyrazinone 4-Oxide (16b) (Table V)—A mixture of 14b (20 g, 91 mmol) and concentrated HCl (200 ml) was stirred at 50° for 8 hr and concentrated. The residue was diluted with $\rm H_2O$. The solution was washed with benzene and filtered. The filtrate was evaporated to dryness and the residue was recrystallized from MeOH-ether (1:1) to give 15b (11.6 g) as colorless needles, which gave two spots on thin layer chromatography (TLC) (silica gel). A solution of 15b (12.3 g, 72.8 mmol) in MeOH (250 ml) was treated with 40% aqueous glyoxal (16.5 g, 109 mmol) and 10 N NaOH (18.1 ml) according to the procedure described for 1. The ice-cooled and stirred reaction mixture was treated with concentrated HCl (18.2 ml), followed by NaHCO₃ (14.6 g). The solvent was removed and the residue was extracted with hot CHCl₃ (500 ml×4). The extract was dried over MgSO₄ and concentrated. The residue was chromatographed on silica gel (Merck) (50 g) with CHCl₃ as the eluent, and recrystallization gave colorless needles (1.89 g).

2-Chloro- and 2-Iodo-N-arylacetamides (17 and 18)——Compounds 17 and 18 were prepared by the method of Adams and Deebel.²⁵⁾ New compounds are listed in Table VI.

N-Benzylidene-(4-methylphenyl)-carbamoylmethylamine N-Oxide (19k) (Table VII)——Compound 19k (19.8 g) was prepared from 18k (33 g, 120 mmol) in the manner described for 2.

2-Hydroxyamino-N-(4-methylphenyl)acetamide (20k) (Table VIII)—(Method A) A mixture of 19k (19.1 g, 71.4 mmol) and concentrated HCl-MeOH (1:1) (1.2 l) was stirred and concentrated. The residue was diluted with $\rm H_2O$ and the solution was washed with benzene. The aqueous layer was made alkaline with $\rm Na_2CO_3$ and extracted with AcOEt (300 ml \times 3). The extract was dried over $\rm Na_2SO_4$ and concentrated. The residue was recrystallized to give needles (2.08 g).

2-Hydroxyamino-N-(2-methylphenyl)acetamide (20m) (Table VIII)——(Method B) Compound 19m (17.5 g, 65.4 mmol) was treated in the manner described for 20k. After removal of AcOEt, the residue was chromatographed on silica gel (100 g) with CHCl₃-MeOH (9:1) as the eluent, and recrystallization gave colorless needles (2.69 g).

2-Hydroxyamino-N-(3,5-dichlorophenyl)acetamide Hydrochloride (20i) (Table VIII)——(Method C) A solution of 19i (9.45 g, 29.2 mmol) in MeOH (1 l) was treated with $\rm H_2NOH \cdot HCl$ (2.05 g, 29.5 mmol) in the manner described for 3. After removal of MeOH, the residue was triturated with ether. The precipitate was collected by filtration and recrystallized to give colorless needles (5.15 g).

1-Phenyl-2(1H)-pyrazinone 4-Oxide (21a) (Table IX)——(Method A) Compound 20a (3.32 g, 20 mmol) was treated in the manner described for 1. After removal of the solvent, the residue was extracted with

Table X. 1-Aryl-5-methyl-2(1H)-pyrazinone 4-Oxidesa)

$$\begin{array}{c} O \\ \uparrow \\ N \\ O \\ N \end{array} \begin{array}{c} \uparrow \\ R \end{array}$$

Compound No.	R	Yield (%)	mp (°C)	Formula	Analysis (%) Calcd (Found)			PMR ^{b)}
					Ć	Н	N	
23a	Н	9	183—184	$\mathrm{C_{11}H_{10}N_2O_2}$	65.34 (65.27	4.98 4.87	13.85 13.81)	c) 2.11 (3H, s, CH ₃), 7.48 (5H, s, Ar–H), 7.73 (1H, s, 3-H or 6-H), 7.89 (1H, s, 6-H or 3-H)
23b	4-F	5	188—189	$\mathrm{C_{11}H_9FN_2O_2}$	60.00 (60.20	4.12 4.09	12.72 12.65)	^{d)} 2.12 (3H, s, CH ₃), 7.12— 7.73 (4H, m, Ar–H), 7.74 (1H, s, 3-H or 6-H), 7.93 (1H, s, 6-H or 3-H)

a) Recrystallized from EtOH.

b) Measured in DMSO-ds.

c) Taken with a Varian EM-390 spectrometer.

d) Taken with a Varian T-60 spectrometer.

²⁵⁾ J.S. Adams, Jr. and G.F. Deebel, J. Chem. Eng. Data, 12, 619 (1967).

CHCl₃. The extract was dried over MgSO₄ and concentrated. The residue was recrystallized with activated charcoal to give needles (1.985 g). UV $\lambda_{\max}^{0.1\text{NHCl}}$ nm (ε): 223 (24400), 280 (11200), 332.5 (5400); $\lambda_{\max}^{1.1\text{NBC}}$ nm (ε): 282 (8300), 330 (5300).

1-(4-Methylphenyl)-2(1H)-pyrazinone 4-Oxide (21k) (Table IX)——(Method B) Compound 20k (1.44 g, 8 mmol) was treated in the manner described for 21a. Crude products were chromatographed on silica gel

(50 g) with CHCl₃ as the eluent, and recrystallization gave needles (1.036 g).

1-Phenyl-2(1H)-pyrazinone (22)—A mixture of 21a (188 mg, 1 mmol) and Raney Ni (0.2 ml) in MeOH (15 ml) was hydrogenated at room temperature for 3 hr. The catalyst was filtered off and the filtrate was concentrated. The residue was chromatographed on silica gel (10 g) with CHCl₃ as the eluent, and recrystallization from AcOEt-petroleum ether gave a colorless powder (60 mg, 35%), mp 140—142°. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1650 (c=0).

5-Methyl-1-phenyl-2(1*H*)-pyrazinone 4-Oxide (23a) (Table X)—Compound 23a (207 mg) was prepared from 20a (1.88 g, 11.3 mmol) and 40% aqueous methylglyoxal (3.17 g, 17 mmol) in the manner described for 21k. MS m/e (relative intensity): 202 (M+) (41), 186 (M+-16) (24), 185 (M+-17) (63), 157 (76), 130 (61), 104 (27), 77 (100).

Acknowledgement The authors are grateful to Drs. S. Yamatodani and T. Kanzaki for their encouragement throughout this work. Thanks are also due to Mr. T. Yamazaki and Mr. T. Matsuno for testing anticoccidial activity.