Communications to the Editor

Chem. Pharm. Bull. 28(9)2850—2852(1980)

Structure of Gallotannins in Paeoniae Radix

The gallotannins (polygalloylglucoses) were isolated homogeneously from Paeoniae Radix and their structures were elucidated by ¹³C-nuclear magnetic resonance spectroscopy.

Keywords—gallotannin; Paeoniae Radix; *Paeonia albiflora* var. *trichocarpa*; high performance liquid chromatography; ¹³C-NMR: Sephadex LH-20 chromatography

Six gallotannins (penta—decagalloylglucoses) were obtained homogeneously from Paeoniae Radix (*Paeonia albiflora* Pallas var. *trichocarpa* Bunge) which has been used as an important Chinese medicine. The mixture of gallotannins was fractionated by column chromatography over Sephadex LH-20 (Table), and the homogeneity of each gallotannin, after rechromatography over Sephadex LH-20, was confirmed by high performance liquid chromatography (HPLC).

Table I. Column Chromatography of Acetone Extract from Paeoniae Radix on Sephadex LH-20°

Fraction NO.	Elution solvent (ml) EtOH:H ₂ O: acetone	Weight (g)	Substances	Composition ratio ^{b)} (%)
1	100: 0: 0 (200)	6.82	Glucosides	
2	100: 0: 0 (200)	1.46	Gallic acid, digallic acid	
3	100: 0: 0 (100) —	0.45		
4	90:10: 0 (100) —			
5	90:10: 0 (100) —	0.31		
6	80:20: 0 (100) —			
7	80:20: 0 (100) —		m . 11 1 1	g.
8	70:30: 0 (100) —	0.66 —	- Tetragalloylglucose	
9	70:30: 0 (100) —			
10	60:40: 0 (100) -	0.29	— Pentagalloylglucose ——	14
11	60:40: 0 (100) —		— Pentagalloylglucose —	
12	54:36:10 (100) —	0.32	— Pentagalloylglucose —— + — Hexagalloylglucose ——	
13	54:36:10 (100) —	0.55	— Hexagalloylglucose ——	20
14	48:32:20 (100) —			
15	48:32:20 (100) —		— Heptagalloylglucose——	18
16	42:28:30 (100) —		— Heptagalloylglucose —— + — Octagalloylglucose ——	
17	42:28:30 (100) —		— Octagalloylglucose —	17
18	36:24:40 (100) —		— Nonagalloylglucose ——	11
19	36:24:40 (100)		+ — Decagalloylglucose ——	10
20	36:24:40 (100) —	0.08	— Undecagalloylglucose —	

 $[\]alpha)\,$ To the 3.5 ID $\times 20\,\mathrm{cm}$ column was applied 13.3 g of the extract.

b) [amount of each gallotannin/total amount of the gallotannins (2.92 g, yield 0.41%)] × 100.

Fig. 1. High Performance Liquid Chromatogram of the Acetone Extract from Paeoniae Radix Column: Nucleosil 50—10 (3ID × 300mm) glass column. Solvent: n-hexane-MeOH-THF-HCOOH (52:33:11:1) (oxalic acid 40mg/100ml).

Fig. 2. Structure of the Gallotannins in Paeoniae Radix

Pentagalloylglucose (1a), $[\alpha]_D^{20} + 33.4^\circ$ (c=3.1, acetone), UV: $\lambda_{\max}^{\text{EtOH}}$ 280 nm (log ε =4.59), gave on methylation with diazomethane a permethyl derivative, MS m/e: 1150 (M+), IR: no hydroxyl absorption, which was identified as 1,2,3,4,6-pentakistri-O-methylgalloyl- β -D-glucose by comparison of its spectral data with those of authentic sample.¹⁾ The ¹³C-NMR spectrum²⁾ of 1a revealed the signals due to the glucose carbons at 93.3 (C-1), 74.0 (C-5), 73.3 (C-3), 71.7 (C-2), 69.3 (C-4) and

62.7 ppm (C-6). The assignment of these signals was performed by comparison with those of 1,2,3,4,6-pentaacetyl- β -D-glucose³⁾ and 1,2,3,4,6-pentabenzoyl- β -D-glucose.⁴⁾

Hexagalloylglucose (**1b**), UV $\lambda_{\text{max}}^{\text{EIOH}}$ nm (log ε): 280 (4.65), 300 sh. (4.47), gave equimolar amounts of methyl gallate and **1a** on methanolysis with aqueous methanol (acetate buffer, pH 5.5).⁵⁾ The ¹³C-NMR spectrum of **1b** showed the signals of the glucose carbons at 93.3 (C-1), 73.8 (C-5), 73.3 (C-3), 71.7 (C-2), 69.4 (C-4) and 63.1 ppm (C-6). In comparison with the resonances of **1a**, those of C-6 and C-4 were shifted to the downfield by 0.4 and 0.1 ppm, respectively, whereas that of C-5 was shifted to the upfield by 0.2 ppm. The downfield shift of C-6 was similar to that of the ester methyl carbon of methyl gallate when the *m*-hydroxyl group was galloylated.⁶⁾ Thus, the structure of **1b** was elucidated to be 6-*m*-digalloyl-1,2,3,4-tetragalloyl-β-D-glucose.

Hepta—decagalloylglucose (1c) also gave 1a and methyl gallate on methanolysis, indicating that these gallotannins are consisted of pentagalloylglucose core. The position of the polygalloyl side chain was determined to be C-6 in the glucose moiety by the presence of similar C-4, -5, -6 carbon signals as those of 1b on the ¹³C-NMR spectra.

The heterogeneity of gallotannins in Chinese and Turkish galls was recognized by many investigators.⁷⁾ However, homogenous gallotannins having the polygalloyl side chain have not yet been isolated from these galls. Gallotannins have been isolated homogeneously for the first time by combination of Sephadex LH-20 chromatography and HPLC, and ¹³C-NMR spectroscopy proved to be a useful method for the structure determination of gallotannins.

¹⁾ R. Armitage, G.S. Bayliss, J.W. Gramshaw, E. Haslam, R.D. Haworth, K. Jones, H.J. Rogers, and T. Searle, J. Chem. Soc., 1961, 1842.

²⁾ Measured in d_6 -acetone.

³⁾ M.R. Vignon and P.J.A. Vottero, Carbohydrate Research, 53, 197 (1977).

⁴⁾ P.A. Levene and G.M. Meyer, J. Biol. Chem., 76, 513 (1928).

⁵⁾ E. Haslam, R.D. Haworth, S.D. Mills, H.J. Rgers, R. Armitage, and T. Searle, J. Chem. Soc., 1961, 1836.

⁶⁾ The ester methyl carbon of methyl *m*-digallate appeared at 52.2 ppm and that of methyl gallate at 51.9 ppm.

⁷⁾ E. Fischer and A. Freudengerg, Chem. Ber., 53, 809 (1919); E. Haslam, J. Chem. Soc. (C), 1967, 1734.

Hokkaido Institute of Public Health N-19, W-12, Kita-ku, Sapporo, 060, Japan

Faculty of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka, 812, Japan

Received July 7, 1980

Makoto Nishizawa Takashi Yamagishi

Gen-ichiro Nonaka Itsuo Nishioka

Chem. Pharm. Bull. 28(9)2852—2854(1980)

Synthesis of (23R)-Calcidiol Lactone (25-Hydroxyvitamin D₃ 26,23-Lactone)¹⁾

(23R)-Calcidiol lactone(25-hydroxyvitamin D_3 26,23-lactone) was synthesized from bisnorcholenic acid. The configuration at C-23 was determined by transformation to 22- and 23-hydroxycholesterols.

Keywords—calcidiol lactone; 25-hydroxyvitamin D_3 26,23-lactone; metabolite of vitamin D_3 ; 22-hydroxycholesterol; 23-hydroxycholesterol

Calcidiol lactone²⁾ is a new metabolite of Vitamen D_3 . Although the preliminary tests of this metabolite showed interesting biological activity,^{2,3)} the configuration at C-23 and C-25 positions as well as the biological role of this metabolite are unknown yet. In order to confirm the reported structure and to elucidate the configuration at C-23 and C-25, it is necessary to synthesize four possible isomers. It would be also urged to prepare the natural calcidiol lactone for biological investigation. We describe herein a synthesis of (23R)-calcidiol lactone.

The 22-aldehyde 3-THP ether 1^4) derived from 22,23-bisnorcholenic acid was coupled with vinylmagnesium bromide to give a mixture of the 22-alcohols (2) in a 6: 1 ratio. The less polar major alcohol, mp 155—156°, possesses the 22*R*-configuration according to the precedents for this mode of reaction.⁵⁾ The 22-alcohol 2 was reacted with ethyl orthopropionate and propionic acid as catalyst in refluxing xylene to give 22,23-trans 26-ethyl ester 3a [mp 105—107.5°; NMR δ 1.11 ppm (3H, d, J=6.6 Hz, 27-H₃), 5.20—5.50 (3H, m, 6-H, 22-H, 23-H); IR 1720 cm⁻¹] in 96% yield. The 26-ester 3a was hydrolysed to the 3-hydroxy-26-acid 3b, mp 175—178°, by HCl-methanol and then KOH-methanol treatment. Iodolactonization⁶) of the acid with iodine in acetonitrile at -0° gave regio- and stereoselectively a single product 4a [mp 220—224°; 94% yield; NMR δ 1.28 (3H, d, J=6 Hz, 27-H₃), 2.50—3.10 (1H, m, 25-H), 4.10 (1H, dd, J=5.1, 5.7 Hz, 22-H), 4.60 (1H, m, 1/2w, 30 Hz, 23-H); IR 1768 cm⁻¹]. The iodolactone 4a was then reduced by freshly distilled tributyltinhydride in dry THF at room temperature to the lactone 5a [mp 223—224°; 85% yield; NMR δ 1.27 (3H, d, J=7.5 Hz, 27-H₃), 4.52 (1H, m, 1/2w 26 Hz, 23-H); IR 1760 cm⁻¹; CD (dioxane) [θ]²⁰ (nm): -19 (249) (negative maximum).

¹⁾ Studies on Steroids, Part LXXI, Part LXX: M. Ishiguro, S. Takatsuto, M. Morisaki, and N. Ikekawa, J.C.S. Chem. Comm., in press.

J.K. Wichmann, H.F. DeLuca, H.K. Schnoes, R.L. Horst, R.M. Shepard, and N.A. Jorgensen, Biochem., 22, 4755 (1979).

³⁾ R.L. Horst, Biochem. Biophys. Res. Comm., 89, 286 (1979).

⁴⁾ M. Ishiguro, H. Saito, A. Sakamoto, and N. Ikekawa, Chem. Pharm. Bull., 26, 3715 (1978).

⁵⁾ M. Anastosia, A. Fiecchi, and A. Sala, J.C.S. Chem. Comm., 1979, 858.

⁶⁾ P.A. Bartlett and J. Myerson, J. Am. Chem. Soc., 100, 3950 (1978).