Communications to the Editor

(Chem. Pharm. Bull.) 30(1) 366—369 (1982)

A FACILE ONE-POT SYNTHESIS OF DIACYLPYRROLES 1,3)

Shonosuke Zen*and Kazuho Harada
School of Pharmaceutical Sciences, Kitasato University
Shirokane, Minato-ku, Tokyo 108, Japan

Various diacylpyrrole derivatives (1) were synthesized in good yields by using ß-diketones (4) such as dibenzoylmethane in reaction with primary aliphatic nitro compounds (2) and acetyl chloride. The structures of 1 were established by chemical and spectral data. This reaction mechanism is discussed.

KEYWORDS — aliphatic nitro compound; β-diketones; dibenzoylmethane; O-acylation; 1,3-dipolar cycloaddition; nitrile oxide; l-azirine; pyrroles; N-methyl pyrroles

This communication deals with a convenient method of synthesizing diacylpyrrole derivatives (1) from β -diketones (4) using primary aliphatic nitro compounds (2)and acetyl chloride. In our previous reports, 2,4 a new route for generating nitrile oxides (3) was developed by the O-acylation of 2 with acetyl chloride in N,Ndimethylacetamide(DMA). One-pot synthesis of various heterocycles containing an N-O bond, i.e. isoxazolines etc., was presented to illustrate the usefulness of this method. During the course of studies, we found a novel synthetic reaction forming an unusual product (1) in the reaction of 3 with a dipolar ophile, $\frac{1}{4}$, such as dibenzoylmethane. This general procedure is shown as follows: 1.8g (8 mmol) of 4, 0.15 ml of acetyl chloride, and 4 ml of 1N sodium methoxide in methyl alcohol were added to a DMA solution of phenylnitromethane (2, 0.27g, 2 mmol) contained 2 ml of sodium methoxide solution with cooling at 0° C. It was stirred overnight at ambient temperature. Then ice water was added and the mixture was extracted with benzene, dried (Na₂SO₄) and concentrated to furnish crude crystals which were chromatographed on silica gel with benzene-ethyl acetate (20:1). This gave yellowish crystals, 0.31g of 2,4-dibenzoyl-3,5-diphenylpyrrole (la) in a 36% yield [mp $234-235^{\circ}$ C (chloroform-methyl alcohol); $IRV_{max}^{KBr}cm^{-1}$: 3270 (NH), 1660 (C=O); $UV\lambda_{max}^{MeOH}nm$ (log ϵ): 209 (4.67), 253 (4.61), 332 (4.33); $^{1}H-NMR$ (CDCl₃) δ : 6.85-7.30 (20H, m, 4C₆H₅), 10.17 (1H, s, NH, exchangeable with deuterium oxide); 13 C-NMR(CDCl₃) δ : 123.2 (s,C(3)), 126.8 (s,C(4)), 130.3 (s,C(5)), 131.3 (s,C(2)), 187.8 (s,carbonylß), 194.2 (s,C(5)), 187.8 (s,C(4)), 187.8 (s,C(5)), 194.2 (s,C(5)), 187.8 (carbonyla); MS m/z: 427 (M⁺)]. Furthermore, methylation of $\underline{l}a$ by methyl iodide gave the corresponding N-methyl derivative (lMa) in an 83% yield [mp 143-145°C (methyl alcohol); 1 H-NMR(CDCl₃) δ : 3.83 (3H, s, N-CH₃); MS m/z: 441 (M⁺)].

The following aliphatic nitro analogs (2) and ß-diketones (4) were employed in the above-mentioned procedure. 2: phenylnitromethane, bp-chlorophenylnitromethane, p-tolylnitromethane, and nitroethane; 4: dibenzoylmethane, bis(p-toluoyl)methane, bis(p-to

The proposed reaction mechanism seems to be reasonable as shown in Chart 1. Initially, 1,3-dipolar cycloaddition of nitrile oxide (3) to dipolarophile, ß-di-ketone (4) gives the anticipated cyclo-adduct, isoxazoline (5), which undergoes elimination of benzoic acid to form 1-azirine (6). And another 4 reacts with its C=N bond to afford aziridine (7) and 8, the enol-form of 7, cyclizes to five-membered cyclic compound, 9, via a fission of C-N bond of 8. Finally, the dehydrated product, pyrrole (1) is yielded from 9 as observed by Ohta. This mechanism was confirmed by the following results: (i) Photoreaction of 3,5-diphenylisoxazole with 4 (R^2 =H) under a Pyrex filtered light gave 2,4-dibenzoyl-3,5-diphenylpyrrole (1a) almost exclusively. (ii) Isolated 1-azirine 6a (R^3 =C6Hs, R^2 =H) 11, 12) reacted with 4 (R^2 =H) to give the corresponding 1a. (iii) Isolated nitrile oxide 3b (R^3 =p-CH₃C₆H₄) 14) reacted with 4 (R^2 =H) to give both azirine 6b and 1b. (iv) In the R^3 -NMR spectra of pyrroles (1b and 1e) and N-methyl pyrroles (1Mb and 1Me), the characteristic p-methyl signals of the tolyl group located at the C-3 position were observed at 6 2.07-2.13 (3H, CH₃). These data also indicate that the α -carbon of 2 was introduced into the carbon atom at the C-3 ring.

A detailed study of the reaction is now in progress.

Table I. Yields, Melting Points, IR and ¹H-NMR

Data of Pyrrole Derivatives (1 and 1M)

Compd.a)	R ¹	R ²	R ³	Yield/%	mp/°C	IR vNH cm	1 NH	-NMR N-CH3
la ≳	Н	Н	C 6H 5	36	234-235	3270	10.17	
lMa	СН3	Н	C ₆ H ₅	83	143-145			3.82
1b ≈	Н	Н	p-CH ₃ C ₆ H ₄	49	230-231	3250	10.20	
1Mb →	СН3	Н	p-CH ₃ C ₆ H ₄	75	142-143			3.80
<u>lc</u>	Н	H	p-C1C6H4	45	232-233	3240	10.05	
1Mc	СН3	Н	p-C1C6H4	80	166-168			3.80
₫₫	H	СНз	C 6H5	42	227-228	3240	10.20	
1Md	СН3	СН3	C ₆ H ₅	80	164-166			3.80
<u>le</u>	Н	СН3	p-CH ₃ C ₆ H ₄	56	231-233	3240	10.22	77
1Me	СН3	СН3	p-CH ₃ C ₆ H ₄	82	162-164			3.77
1£	Н	C1	C 6H5	33 ^{b)}	265-267	3240	10.53	
1Mf	СНЗ	C1	C ₆ H ₅	85	195-196			3.75
1g ∼	Н	C1	p-C1C ₆ H ₄	29	264-266	3240	10.50	
1Mg	СН3	C1	p-C1C6H4	80	194-196			3.73
<u>l</u> h	Н	Н	СН3	5 ^b)	175-176	3240		

a) All compounds gave satisfactory microanalyses.

b) Reacted at 80°C.

 $(4):(R^2C_6H_4CO)_7CH_7 \longrightarrow R^2C_6H_4C(OH)=CHCOC_6H_4R^2$

*By dehydration from 5,4-acylisoxazoles were obtained as repoted in Ref. 2.

Chart 1

REFERENCES AND NOTES

- 1) The Synthetic Reaction of Aliphatic Nitro Compounds. XIX; Presented in part at the 8th International Congress of Heterocyclic Chemistry, Graz (Austria), August 1981, Abstr.p. 499; Part XVIII of this series is ref.2.
- 2) K. Harada, E. Kaji, and S. Zen, Nippon Kagaku Kaishi, 1981, 1195.
- 3) Melting points are uncorrected; $^{1}\text{H-}$ and $^{13}\text{C-NMR}$ spectra were measured using TMS as an internal standard.
- 4) E.Kaji, K. Harada, and S. Zen, Chem. Pharm. Bull., <u>26</u>, 3254(1978); K. Harada, E. Kaji, and S. Zen, ibid., <u>28</u>, 3296(1980).
- 5) A. Sieglitz and O. Horn, Chem. Ber., 84, 607(1951).
- 6) N. Kornblum, H. O. Larson, R. K. Blackwood, D. C. Mooherry, E. P. Olivets, and G. E. Garakam, J. Am. Chem. Soc., 78, 1497(1956).
- 7) N. Kornblum, R. A. Smiley, R. K. Blackwood, and D. C. Iffland, J. Am. Chem. Soc., 77, 6269 (1955).
- 8) S. Sato, H. Kato, and M. Ohta, Bull. Chem. Soc. Jpn., 40, 2936(1967).
- 9) a) Generally, the photorearrangement of 3,5-diphenylisoxazole gives 2,5-diphenyloxazole by light of 3130Å wavelength via an intermediate, 1-azirine (6, R^2 =H, R^3 =C₆H₅): $C_6H_5 \longrightarrow C_6H_5$ $C_6H_5 \longrightarrow C_6H_5$
 - P. Beak and W. R. Messer, "Organic Photochemistry" Vol. II, ed. by O. L. Chapman, Marcel Dekker, New York, 1969, p. 136.
 - b) Bis(2,4-pentanedionato)nickel(Ni(acac)₂) was added in the reaction as catalyst.

- 10) Similarly, 3-p-tolyl- and 3-p-chlorophenyl-5-phenylisoxazole also gave the corresponding pyrroles (1b and 1c) in the photoreaction.
- 11) E. F. Ullman and B. Singh, J. Am. Chem. Soc., <u>88</u>, 1844(1966).
- Similarly, 1-azirine 6b (R^3 =p-CH₃C₆H₄, R^2 =H) and 6c (R^3 =p-ClC₆H₄, R^2 =H)¹³) also gave the corresponding 1b and 1c; both 6b and 6c, syrup, were confirmed by the method of UV and IR as reported by Ullman (ref. 11).
- 13) P. F. S. Filho and U. Schuchardt, Angew. Chem. Int. Ed. Engl., <u>16</u>, 647(1977): They obtained a number of pyrroles by the reaction of 1-azirine with ketone, which was activated by Ni(acac)₂. This result is closely related to the above-mechanism reported in the present paper.
- 14) G. Barbaro, A. Battaglia, and A. Dondoni, J. Chem. Soc., B, 1970, 588;
 A. Quilico "Five and Six-membered Compounds with Nitrogen and Oxygen" ed. by
 R. H. Wiley, Interscience, New York, 1962, p. 21.
- 15) Signals of p-methyl groups of C-2 and C-4 of pyrroles and N-methyl derivatives (1d, 1e, 1Md, 1Me) were observed at one signal, δ 2.23-2.28 and also, that of C-5 were observed at 2.33-2.38.

(Received October 28, 1981)