## Communications to the Editor

(Chem. Pharm. Bull.) 38(1) 383—385 (1982)

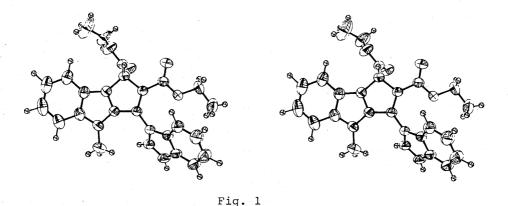
SYNTHESIS AND X-RAY CRYSTAL STRUCTURE DETERMINATION OF 1,4-DIHYDROCYCLOPENT[b]INDOLES<sup>1)</sup>

Takushi Kurihara,\* Keiko Nasu, Masatoshi Inoue, and Toshimasa Ishida Osaka College of Pharmacy, 2-10-65, Kawai, Matsubara, Osaka 580, Japan

Diethyl 1,4-dihydro-3- $\beta$ -indolyl-4-methylcyclopent[ $\underline{b}$ ] indole-1,2-dicarboxylates (2 and 5) were synthesized and their structures were unambiguously established by the X-ray analysis of 5.

KEYWORDS — pyrazolo[1,5-a]pyrimidine; triethyloxonium fluoroborate; indole; N-methylindole; 1,4-dihydrocyclopent[b]indole; X-ray analysis

Recently, we reported the reaction of 6,7-diethoxycarbonylpyrazolo[1,5-a] pyrimidine-3-carbonitrile ( $\frac{1}{4}$ ) with a variety of nucleophiles, such as phenol, naphthol, aniline, enamine of cyclohexanone and their analogs, in the presence of boron trifluoride (BF<sub>3</sub>)-etherate<sup>1</sup>) or triethyloxonium fluoroborate<sup>2</sup>) (Et<sub>3</sub>OBF<sub>4</sub>) to give the respective addition products in a 1,4-fashion in the pyrimidine ring of  $\frac{1}{4}$ . Here we would like to report a synthesis and X-ray crystal structure determination of novel 1,4-dihydrocyclopent[ $\frac{1}{4}$ ] indoles ( $\frac{1}{4}$  and  $\frac{1}{4}$ ), which were prepared by reaction of  $\frac{1}{4}$  with indoles in the presence of excess Et<sub>3</sub>OBF<sub>4</sub>.


Cyclopent[b]indole itself was first isolated by Paul and Weise<sup>3)</sup> as a hydrobromide salt in 1963, and many kinds of its 1,2,3,4-tetrahydro derivatives have been reported.<sup>4)</sup> However, to our knowledge 1,4-dihydrocyclopent[b]indole has so far been unknown, probably because of the presence of an unstable cyclopentadiene moiety in its molecule.

Two equivalents of N-methylindole added to a mixture of  $\frac{1}{2}$  and  $\text{Et}_3\text{OBF}_4$  in  ${\rm CH_2Cl_2}$  at room temperature furnished a 69.6% yield of 2 as orange needles,  ${\rm C_{27}H_{26}^-N_{2}^0}_4$  [MS m/z : 442 (M<sup>+</sup>)], mp 171-173°C, IR  $\nu$  max cm<sup>-1</sup> : 1720 and 1690 (CO), <sup>1</sup>H NMR (DMSO-d<sub>6</sub>)  $\delta$ : 0.97 and 1.24 (each 3H, each t,  $\underline{J}$ =7 Hz, 2 × CO<sub>2</sub>CH<sub>2</sub>C $\underline{H}$ <sub>3</sub>), 3.44 and 3.91 (each 3H, each s, 2 × NCH<sub>3</sub>), 3.80-4.35 (4H, m, 2 ×  $CO_2CH_2CH_3$ ), 4.84 (1H, s, CH, disappeared upon  $D_2O$  addition), 7.00-7.70 (8H, m, Ar-H), 7.79 [1H, s, C(2)-proton of indole ring], UV  $\lambda$  EtOH nm (log  $\epsilon$ ) : 369 (4.25), 260 (4.25), 218 (4.73). These analytical and spectral data clearly indicate lack of an aminopyrazole moiety in the molecule of  $\chi$ . These data show that  $\chi$  consists of two N-methylindoles and three carbons and one hydrogen as well as two  ${\rm CO_2C_2H_5}$  groups derived from the starting material. Treatment of  $\frac{1}{L}$  with N-methylindole in the presence of BF $_3$ -etherate as a catalyst yielded  $3^{1)}$ , which, by methylation with dimethylsulfate and KOH in acetone, was converted quantitatively to 4, mp 172-173°C. When this compound was then subjected to reaction with indole in the presence of  $\mathrm{Et_{3}OBF}_{4}$ , it furnished an 8.0% yield of 5 as orange needles,  $C_{26}^{H}_{24}^{N}_{20}^{O}_{4}$  [MS m/z : 428 (M<sup>+</sup>)], mp 190-191°C, together with a complex mixture. This product exhibited spectroscopic data similar to those of 2.

EtO<sub>2</sub>C 
$$CO_2$$
Et  $R_2$   $CO_2$ Et  $CO_2$ Et  $CO_2$ Et  $CO_2$ Et  $R_1$ =Me  $R_2$ =H  $R_2$ =H  $R_2$ =H  $R_2$ =H  $R_2$ =H  $R_3$ =CO<sub>2</sub>Et  $R_4$ =H  $R_4$ H  $R$ 

Thus, in order to obtain definitive evidence for the structure of 2 and 5, an X-ray crystallographic analysis of 5 was carried out.

Crystal data: monoclinic, space group  $P2_1/n$ ,  $\underline{a}=13.326(3)$   $\mathring{A}$ ,  $\underline{b}=9.210(2)$   $\mathring{A}$ ,  $\underline{c}=18.872(4)$   $\mathring{\underline{A}}$ ,  $\beta=105.41(2)$ °, V=2232.9(9)  $\mathring{A}^3$ , Z=4, Dm=1.267(1) g·cm<sup>-3</sup>, and Dx=1.274 g·cm<sup>-3</sup>. The structure was determined by the direct method (program MULTAN<sup>5</sup>) and refined by the block-diagonal least-squares method with anisotropic temperature factors for non-hydrogen atoms and aisotropic ones for hydrogen atoms. The R-value for 3800 independent reflactions is 0.071. The structure was unambigously established as diethyl 1,4-dihydro-3- $\beta$ -indolyl-4-methylcyclopent[ $\underline{b}$ ] indole-1,2-dicarboxylate (5), whose stereoscopic view is presented in Fig. 1. Hence, the



structure of 2 was determined to be diethyl 1,4-dihydro-4-methyl-3- $\beta$ -N-methyl-indolylcyclopent[ $\underline{b}$ ] indole-1,2-dicarboxylate.

The transformation of 1 into 2 probably involves the initial formation of the adduct (8). So the nucleophilic attack of the second N-methylindole at C(5)-position of 8 may form 9. Subsequent intramolecular cyclization leaving the amino-

Chart 2

pyrazole moiety followed by prototropy would ultimately yield 2 as shown in Chart 2. It should be noted that although the C(1)-proton signal of 2 or 5 disappeared upon D2O addition in DMSO-d6, no exchange was observed in CDCl3 in its  $^1\mathrm{H}$  NMR spectrum, respectively. In addition, treatment of 2 with KOH in EtOH afforded the unexpected 1-hydroxycyclopent[b]indole (6),  $^6$  C27H26N2O5 [MS m/z : 458 (M<sup>+</sup>), mp 197-198°C]. Compound 5 gave 7, C26H24N2O5 [MS m/z : 444 (M<sup>+</sup>), mp 173-174°C], under similar conditions.

The chemical reactivity of these 1,4-dihydrocyclopent  $[\underline{b}]$  indoles is now under investigation.

## REFERENCES AND NOTES

- 1) This paper constitutes Part II of a series entitled "Reaction of Pyrazolo[1,5-a] pyrimidine Derivatives with Nucleophiles." Part I: T. Kurihara and K. Nasu, Chem. Pharm. Bull., 29, 2520 (1981).
- 2) This work was presented at the 31st Meeting of the Kinki Branch, Pharmaceutical Society of Japan, Kobe, November, 1981.
- 3) H. Paul and A. Weise, Tetrahedron Lett., 1963, 163.
- 4) Y. Kanaoka, Y. Ban, O. Yonemitsu, K. Irie, and K. Miyashita, Chem. and Ind., 1965, 473; G. Kempter, M. Schwalba, W. Stoss and K. Walter, J. Prakt. Chem., 18, 39 (1962); G. Domschk, G. Heller and U. Natzeck, Chem. Ber., 99, 939 (1966).
- 5) G. Germain, P. Main, and M.M. Woolfson, Acta. Crystallogr., Sect. A, 27, 368 (1971).
- 6) Compound  $\delta$ : IR  $\nu$   $^{\text{KBr}}_{\text{max}}$  cm $^{-1}$ : 3340 (OH), 1720 and 1690 (CO);  $^{1}\text{H}$  NMR (DMSO-d $_{6}$ )  $\delta$ : 0.88 and 1.06 (each 3H, each t,  $\underline{\text{J}}$ =7 Hz, 2  $\times$  CO $_{2}$ CH $_{2}$ CH $_{3}$ ), 3.44 and 3.90 (each 3H, each s, 2  $\times$  NCH $_{3}$ ), 3.70-4.25 (4H, m, 2  $\times$  CO $_{2}$ CH $_{2}$ CH $_{3}$ ), 5.91 (1H, broad s, OH), 6.95-7.60 (8H, m, Ar-H), 7.78 [1H, s, C(2)-proton of indole ring].

(Received December 3, 1981)