(Chem. Pharm. Bull.) 30(2) 552—558 (1982)

Reaction of 4-Haloacetoacetate with Phenols in the Presence of Aluminum Chloride

HITOSHI KIMURA, HIROTOSHI SATO, CHIZUKO TSUCHIYA, TAKUO CHIBA, and TETSUZO KATO*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

(Received July 13, 1981)

Reaction of ethyl 4-bromoacetoacetate (1) with phenol in the presence of aluminum chloride gave ethyl 4-bromo-3-hydroxy-3-(2-hydroxyphenyl)butyrate (3a), which can be regarded as an intermediate of the Pechmann reaction. Similar reaction of ethyl 4-chloroacetoacetate (7) with phenol in the presence of aluminum chloride gave the 4-chloro derivative 8a.

Compound 3a was treated with either hydrogen chloride in ethanol or triethylamine followed by treatment with p-toluenesulfonic acid to give 4-bromomethylcoumarin (4a) or ethyl 3-benzo[b]furanacetate (6a), respectively.

Similarly, reactions of phenol derivatives 2 with 1 gave the corresponding 3-hydroxy-butyrates 3, which were transformed to the coumarins 4 and the 3-benzo[b] furanacetates 6.

Keywords—Pechmann reaction; ethyl 4-haloacetoacetate; phenols; ethyl 3-hydroxy-3-phenylbutyrates; 4-halomethylcoumarins; ethyl 3-benzo[b]furanacetates; mechanism of Pechmann reaction

Previously, we have reported that treatment of ethyl 4-bromoacetoacetate (1) in benzene under the conditions of the Friedel-Crafts reaction gave a number of products, from which 3,4-diphenylbutyric acid was isolated.¹⁾ This result indicates that the carbonyl carbon at the 3-position of the ester 1 adds to benzene as an electrophile, accompanied by the Friedel-Crafts reaction of the 4-bromocarbon with benzene. On the other hand, the reaction of β -ketoesters such as ethyl acetoacetate with phenol is well documented as the Pechmann reaction²⁾ and gives coumarin derivatives such as 4-methylcoumarin.^{3,4)} Dey et al.⁵⁾ and Seshadri et al.⁶⁾ reported the reaction of 1 with m-cresol and resorcinol to give the corresponding 4-bromomethylcomarins.

We now report that the reaction of 1 with phenol (2a) in the presence of aluminum chloride gave an adduct 3a which can be regarded as an intermediate in the Pechmann reaction.

When ethyl 4-bromoacetoacetate (1) was allowed to react with phenol (2a) in nitrobenzene in the presence of aluminum chloride at 60°C, ethyl 4-bromo-3-hydroxy-3-(2-hydroxyphenyl)-

Chart 1

butyrate (3a) was obtained in 71% yield. As detailed in the experimental section, elemental analyses and spectroscopic data were consistent with this structure.

Treatment of compound 3a with hydrogen chloride in ethanol afforded 4-bromomethyl-coumarin (4a) in 91% yield. Treatment of 3a with triethylamine in benzene gave ethyl 2,3-dihydro-3-hydroxybenzo[b]furan-3-acetate (5a) in 96% yield. This product was dehydrated, on heating in benzene in the presence of p-toluenesulfonic acid, to give ethyl 3-benzo[b]furanacetate (6a) in 97% yield. These chemical properties are also consistent with the structure 3a.

Similar reaction of ethyl 4-chloroacetoacetate (7) with phenol (2a) in the presence of aluminum chloride gave a 42% yield of ethyl 4-chloro-3-hydroxy-3-(2-hydroxyphenyl)butyrate (8a), which was transformed to 4-chloromethylcoumarin (9a) and 6a in 82 and 88% yields, respectively.

Similarly, reactions of phenol derivatives such as cresols (2b, c, d), methoxyphenols (2e, f, g), and chlorophenols (2h, i, j) with 1 were carried out. Of these, the reactions of 1 with o-and m-methoxyphenol (2e and 2f) and o-chlorophenol (2h) did not give the hydroxybutyrates corresponding to 3a. The results are summarized in Table I.

TABLE I.

R-(R-C ₆ H ₄ -OH		Time (h)	Yield (%)		
2,	R	(°C)	(11)	3,	4	
political (a.i.)	н	60	3	71		
, , , , , , , , , , , , b , , ,	$o ext{-}\mathrm{Me}$	20	20	34		
c .	m-Me	60	3		36	
		20	7	63	5	
d	<i>p</i> -Me	40	20	61	6	
e	$o ext{-}\mathrm{MeO}$	60	72	Agricultural de la companya de la co		
ing a state of the	m-MeO	20	3	<u></u>	51	
g.	p-MeO	60	20	36	6	
h	o-Cl	60	72		Name of the last o	
aligned states i eta	m-Cl	60	24	41	6	
j	p-Cl	60	72	27	7	

4	R	Yield (%)	mp (°C)
a	Н	91	178
b	8-Me	86	163—164
c	$7\text{-}\mathrm{Me}$	94	233 (dec.)
ď	6-Me	82	178—179
g	6-MeO	86	171—172
i	7-C1	87	217—218
i	6-Cl	80	177—178

TABLE III.

6	R	Yield (%)	bp (°C/mmHg) or mp (°C)
a	Н	93	73/0.07
b	7-Me	87	118/1
Č	6-Me	92	113/1
ď	5-Me	89	110/1
ğ	5-MeO	85	115/1
i	6-Cl	95	120/1
i	5-C1	93	3536

The 3-hydroxybutyrates 3 thus obtained were cyclized with hydrogen chloride in ethanol to give the corresponding coumarins 4, whereas treatment of 3 with triethylamine in benzene followed by treatment with p-toluenesulfonic acid gave the corresponding 3-benzo[b]furanacetates 6. These results are summarized in Tables II and III.

Several views have been reported regarding the mechanism of the Pechmann synthesis of coumarins from phenols and β -ketoesters.²⁾ For instance, Pechmann and Duisberg³⁾ suggested that the 3-hydroxy-3-(2-hydroxyphenyl)butyrate **A** is an intermediate, while Robertson *et al.*⁷⁾ speculated that the cinnamate **B** might be formed as an intermediate. Another intermediate, phenyl acetoacetate **C** was also proposed.⁸⁾ However, these intermediates **A**, **B**, and **C** could not be isolated under the reported conditions of the Pechmann reaction. Therefore, it may be concluded from the results of our investigation that the 3-hydroxy-3-(2-hydroxyphenyl)butyrate **A** is probably the real intermediate in the Pechmann reaction.

Since the addition of ethyl 4-bromoacetoacetate (1) always occurs at the *ortho* positions of phenols, the pathway of the formation of 3a from phenol and 1 may be as shown in Chart 3. Namely, co-ordination of aluminum chloride with phenol gives phenoxyaluminum dichloride (**D**), which reacts with 1 via a quasi six-membered concerted mechanism followed by hydrolysis to give 3a.

Experimental

Melting points and boiling points are uncorrected. Infrared (IR) spectra were taken on a JASCO IR-S spectrophotometer. Proton nuclear magnetic resonance (¹H-NMR) spectra were recorded on JEOL JNM-PMX60 and Hitachi R-20 instruments using tetramethylsilane or 3-(trimethylsilyl)propanesulfonic acid sodium salt as an internal standard.

Ethyl 4-Bromo-3-hydroxy-3-(2-hydroxyphenyl) butyrate (3a) — A solution of ethyl 4-bromoacetoacetate (1) (2.1 g, 0.01 mol) in dry nitrobenzene (8 ml) was added dropwise to a mixture of anhydrous aluminum chloride (6.7 g, 0.05 mol) and phenol (2a) (4.7 g, 0.05 mol) in dry nitrobenzene (12 ml) with stirring at 60°C. After being stirred at 60°C for 3 h, the reaction mixture was poured into a mixture of concentrated hydrochloric acid (20 ml) and ice (50 g). The mixture was extracted with ether (50 ml × 3), and the ether layer was dried over sodium sulfate. After removal of the ether by evaporation, the oily residue was distilled under reduced pressure (at 0.3 mmHg) to remove nitrobenzene and phenol. The resulting residue was subjected to silica gel (60 g) column chromatography using chloroform as an eluent to afford the product 3a as a pale purple oil. Yield, 2.15 g (71%). Anal. Calcd for $C_{12}H_{15}BrO_4$: C, 47.54; H, 4.99; Br, 26.36. Found: C, 47.42; H, 4.98; Br, 26.49. IR v_{max}^{max} cm⁻¹: 3360, 1710. ¹H-NMR (CDCl₃) δ : 1.20 (3H, t, J=7 Hz, CH₂CH₃), 3.20 (2H, s, CH₂CO), 3.58, 3.86 (2H, ABq, J=11 Hz, CH₂Br), 4.15 (2H, q, J=7 Hz, OCH₂CH₃), 5.87 (1H, s, OH), 6.60—7.40 (4H, m, Ar–H), 8.85 (1H, s, OH).

4-Bromomethylcoumarin (4a)——A solution of 3a (0.31 g, 1 mmol) in absolute ethanol (20 ml) saturated with dry hydrogen chloride was stirred at room temperature for 24 h. After the solvent had been removed in vacuo, the residue was recrystallized from ether to give the product 4a as colorless needles, mp 177—178°C (lit.9) mp 176°C). Yield, 0.22 g (91%).

Ethyl 2,3-Dihydro-3-hydroxybenzo[b] furan-3-acetate (5a) — A mixture of 3a (0.31 g, 1 mmol) and triethylamine (0.2 g, 2 mmol) in benzene (10 ml) was stirred at room temperature for 4 h. The precipitates were filtered off, and the filtrate was concentrated under reduced pressure. The residual oil was purified by silica gel column chromatography using benzene as an eluent to afford the product 5a as a colorless oil. Yield, 0.21 g (96%). Anal. Calcd for $C_{12}H_{14}O_4$: C, 64.85; H, 6.35. Found: C, 65.02; H, 6.54. IR $\nu_{\text{max}}^{\text{cHCl}_3}$ cm⁻¹: 3560, 1720. ¹H-NMR (CDCl₃) δ : 1.27 (3H, t, J=7 Hz, CH₂CH₃), 2.82, 3.08 (2H, ABq, J=16 Hz, CH₂CO), 3.50—3.75 (1H, br, OH), 4.21 (2H, q, J=7 Hz, OCH₂CH₃), 4.44, 4.56 (2H, ABq, J=11 Hz, 2-H×2),

556 Vol. 30 (1982)

6.75—7.45 (4H, m, Ar-H). Similarly, reaction of **8a** (0.26 g, 1 mmol) with triethylamine (0.2 g, 2 mmol) gave **5a**. Yield, 0.20 g (91%).

Ethyl 3-Benzo[b]furanacetate (6a)——A mixture of 5a (0.21 g, 0.96 mmol) and p-toluenesulfonic acid (0.1 g) in benzene (20 ml) was refluxed for 3 h. The reaction mixture was washed with 2% sodium bicarbonate solution and then with saturated sodium chloride solution. The benzene layer was dried over sodium sulfate and concentrated in vacuo. The residual oil was distilled under reduced pressure to give the product 6a as a colorless oil, bp 73°C (0.07 mmHg) (lit. 10) bp 140—145°C (12 mmHg)). Yield, 0.19 g (97%).

Ethyl 4-Chloro-3-hydroxy-3-(2-hydroxyphenyl)butyrate (8a)—Following a procedure similar to that given for compound 3a, ethyl 4-chloroacetoacetate (7) (3.3 g, 0.02 mol) was allowed to react with phenol (2a) (9.4 g, 0.10 mol) in the presence of anhydrous aluminum chloride (13.4 g, 0.10 mol) to afford the product 8a as a pale yellow oil. Yield, 2.20 g (42%). Anal. Calcd for $C_{12}H_{15}ClO_4$: C, 55.71; H, 5.84; Cl, 13.70. Found: C, 55.57; H, 5.89; Cl, 13.57. IR $\nu_{\max}^{CHCl_3}$ cm⁻¹: 3320, 1705. ¹H-NMR (CDCl₃) δ : 1.26 (3H, t, J=7 Hz, CH₂CH₃), 3.13 (2H, s, CH₂CO), 3.71, 3.87 (2H, ABq, J=12 Hz, CH₂Cl), 4.08 (2H, q, J=7 Hz, OCH₂CH₃), 5.70 (1H, s, OH), 6.60—7.33 (4H, m, Ar–H), 8.76 (1H, s, OH).

4-Chloromethylcoumarin (9a)¹¹⁾——In the manner described for 4a, 8a (0.26 g, 1 mmol) was treated with dry hydrogen chloride in absolute ethanol to give the product 9a as colorless needles (recrystallized from benzene), mp 144—145°C. Yield, 1.60 g (82%). Anal. Calcd for $C_{10}H_7ClO_2$: C, 61.72; H, 3.63; Cl, 18.22. Found: C, 61.84; H, 3.71; Cl, 18.25. IR v_{max}^{chCl} cm⁻¹: 1725, 1610. ¹H-NMR (CDCl₃) δ: 4.70 (2H, s, CH₂Cl), 6.61 (1H, s, 3-H), 7.32—7.84 (4H, m, Ar-H).

Reaction of 1 with o-Cresol (2b) ——As described for 3a, a mixture of 1 (2.1 g, 0.01 mol), 2b (5.4 g, 0.05 mol), and anhydrous aluminum chloride (6.7 g, 0.05 mol) in dry nitrobenzene (20 ml) was stirred at 20°C for 20 h. After removal of ether, nitrobenzene, and 2b, the residue was subjected to silica gel column chromatography using n-hexane-benzene (1: 2) as an eluent to afford ethyl 4-bromo-3-hydroxy-3-(2-hydroxy-3-methylphenyl) butyrate (3b) as a colorless oil. Yield, 1.10 g (34%). Anal. Calcd for $C_{13}H_{17}BrO_4$: C, 49.23; H, 5.40. Found: C, 49.10; H, 5.26. IR $\nu_{max}^{CHO_1}$ cm⁻¹: 3340, 1705. ¹H-NMR (CDCl₃) δ : 1.20 (3H, t, J=7 Hz, CH_2CH_3), 2.24 (3H, s, CH_3), 3.17 (2H, s, CH_2CO), 3.53, 3.81 (2H, ABq, J=11 Hz, CH_2Br), 4.13 (2H, q, J=7 Hz, OCH_2CH_3), 5.88 (1H, s, OH), 6.50—7.30 (3H, m, Ar-H), 9.03 (1H, s, OH).

Reaction of 1 with m-Cresol (2c)——a) A mixture of 1 (2.1 g, 0.01 mol), 2c (5.4 g, 0.05 mol), and anhydrous aluminum chloride (6.7 g, 0.05 mol) in dry nitrobenzene (20 ml) was stirred at 60°C for 3 h. The reaction mixture was poured into a mixture of concentrated hydrochloric acid and ice. Ether was added to this mixture with stirring, and the crystals that separated were collected and recrystallized from benzene to give 4-bromomethyl-7-methylcoumarin (4c) as colorless plates, mp 233°C (dec.) (lit.9 mp 236°C (dec.)), 0.85 g. The ether—soluble fraction was concentrated and the oily residue was distilled in vacuo to remove nitrobenzene and 2c. The resulting residue was recrystallized from benzene to give 4c, 0.05 g. Total yield, 0.90 g (36%).

b) In the manner described for 3a, a mixture of 1 (2.1 g, 0.01 mol), 2c (5.4 g, 0.05 mol), and anhydrous aluminum chloride (6.7 g, 0.05 mol) in dry nitrobenzene (20 ml) was stirred at 20°C for 7 h. After removal of ether, nitrobenzene, and 2c, ether was added to the residue. The ether-insoluble material was collected and recrystallized from benzene to give 4c. Yield, 0.12 g (5%). The ether solution was concentrated and the residue was recrystallized from cyclohexane to give ethyl 4-bromo-3-hydroxy-3-(2-hydroxy-4-methylphenyl)butyrate (3c) as colorless needles, mp 101-102°C. Yield, 2.00 g (63%). Anal. Calcd for $C_{13}H_{17}BrO_4$: C, 49.23; H, 5.40. Found: C, 48.86; H, 5.65. IR $v_{max}^{cHCl_3}$ cm⁻¹: 3340, 1705. ¹H-NMR (CDCl₃) δ : 1.18 (3H, t, J=7 Hz, CH_2CH_3), 2.24 (3H, s, CH_3), 3.15 (2H, s, CH_2CO), 3.50, 3.80 (2H, ABq, J=11 Hz, CH_2Br), 4.12 (2H, q, J=7 Hz, OCH_2CH_3), 5.76 (1H, s, OH), 6.46-6.95 (3H, m, Ar-H), 8.70 (1H, s, OH).

Reaction of 1 with p-Cresol (2d)——As described for 3a, a mixture of 1 (2.1 g, 0.01 mol), 2d (5.4 g, 0.05 mol), and anhydrous aluminum chloride (6.7 g, 0.05 mol) in dry nitrobenzene (20 ml) was stirred at 40°C for 20 h. After removal of ether, nitrobenzene, and 2d, the residue was subjected to silica gel column chromatography. Elution with n-hexane-ethyl acetate (19:1) gave ethyl 4-bromo-3-hydroxy-3-(2-hydroxy-5-methylphenyl)butyrate (3d) as a colorless oil. Yield, 1.95 g (61%). Anal. Calcd for $C_{13}H_{17}BrO_4$: C, 49.23; H, 5.40. Found: C, 48.84; H, 5.48. IR $r_{max}^{CHCl_3}$ cm⁻¹: 3340, 1705. ¹H-NMR (CDCl₃) δ : 1.10 (3H, t, J=7 Hz, CH_2CH_3), 2.13 (3H, s, CH_3), 3.16 (2H, s, CH_2CO), 3.49, 3.75 (2H, ABq, J=11 Hz, CH_2Br), 4.08 (2H, q, J=7 Hz, OCH_2CH_3), 5.66 (1H, s, OH), 6.60—7.05 (3H, m, Ar=H), 8.50 (1H, s, OH). Subsequent elution with n-hexane-ethyl acetate (19:1) gave 4-bromomethyl-6-methylcoumarin (4d) as colorless needles (recrystallized from cyclohexane), mp 178—179°C (lit. 9) mp 177°C). Yield, 0.15 g (6%).

Reaction of 1 with m-Methoxyphenol (2f)——A mixture of 1 (2.1 g, 0.01 mol), 2f (6.2 g, 0.05 mol), and anhydrous aluminum chloride (6.7 g, 0.05 mol) in dry nitrobenzene (20 ml) was stirred at 20°C for 3 h. The reaction mixture was poured into a mixture of concentrated hydrochloric acid and ice. Ether was added to this mixture with stirring, and the crystals that separated were collected and recrystallized from benzene to give 4-bromomethyl-7-methoxycoumarin (4f) as colorless needles, mp 208°C (dec.) (lit.9 mp 204°C), 1.15 g. The ether-soluble fraction was concentrated and the oily residue was distilled in vacuo to remove nitrobenzene and 2f. The residue was subjected to silica gel column chromatography using benzene as an eluent to afford 4f, 0.21 g, Total yield, 1.36 g (51%).

Reaction of 1 with p-Methoxyphenol (2g)——In the manner described for 3a, a mixture of 1 (2.1 g, 0.01

mol), 2g (6.2 g, 0.05 mol), and anhydrous aluminum chloride (6.7 g, 0.05 mol) in dry nitrobenzene (20 ml) was stirred at 60°C for 20 h. After removal of ether, nitrobenzene, and 2g, the residue was subjected to silica gel column chromatography. Elution with n-hexane-benzene (1: 2) gave ethyl 4-bromo-3-hydroxy-3-(2-hydroxy-5-methoxyphenyl) butyrate (3g) as a pale yellow oil. Yield, 1.20 g (36%). Anal. Calcd for $C_{13}H_{17}BrO_5$: C, 46.86; H, 5.14. Found: C, 46.66; H, 4.85. IR $v_{max}^{\text{CHCl}_1}$ cm⁻¹: 3360, 1710. ¹H-NMR (CDCl₃) δ : 1.22 (3H, t, J=7 Hz, CH_2CH_3), 3.18 (2H, s, CH_2CO), 3.72 (3H, s, CCH_3), 3.59, 3.83 (2H, CCH_3), CCH_3 , 4.18 (2H, q, CCH_3), 5.74 (1H, s, CCH_3), 5.74 (1H, s, CCH_3), 6.53—6.83 (3H, m, CCH_3), 8.24 (1H, s, CCH_3), 6.50 (1H, s, CCH_3), 6.50 (1H, s, 3-H), 7.05—7.40 (3H, m, CCH_3), 4.47 (2H, s, CCH_3), 6.50 (1H, s, 3-H), 7.05—7.40 (3H, m, CCH_3), 6.50 (1H, s, 3-H), 7.05—7.40 (3H, m, CCH_3), 6.50 (1H, s, 3-H), 7.05—7.40 (3H, m, CCH_3), 6.50 (1H, s, 3-H), 7.05—7.40 (3H, m, $CCCH_3$)

Reaction of 1 with m-Chlorophenol (2i)—A mixture of 1 (2.1 g, 0.01 mol), 2i (6.4 g, 0.05 mol), and anhydrous aluminum chloride (6.7 g, 0.05 mol) in dry nitrobenzene (20 ml) was stirred at 60°C for 24 h. The reaction mixture was poured into a mixture of concentrated hydrochloric acid and ice. Ether was added to this mixture with stirring, and the crystals that separated were collected and recrystallized from benzene to give 4-bromomethyl-7-chlorocoumarin (4i) as colorless needles, mp 217—218°C. Yield, 0.17 g (6%). Anal. Calcd for C₁₀H₆BrClO₂: C, 43.91; H, 2.21. Found: C, 43.99; H, 2.16. IR ν^{ChCl₂}_{max} cm⁻¹: 1730, 1605. ¹H-NMR (CF₃CO₂H) δ: 4.56 (2H, s, CH₂Br), 6.80 (1H, s, 3-H), 7.40—8.00 (3H, m, Ar-H). The ether-soluble fraction was concentrated and the oily residue was distilled in vacuo to remove nitrobenzene and 2i. The residue was subjected to silica gel column chromatography using n-hexane-chloroform (4: 1) as an eluent to afford ethyl 4-bromo-3-(4-chloro-2-hydroxyphenyl)-3-hydroxybutyrate (3i) as colorless needles (recrystallized from cyclohexane), mp 103—104°C. Yield, 1.40 g (41%). Anal. Calcd for C₁₂H₁₄-BrClO₄: C, 42.69; H, 4.18. Found: C, 42.92; H, 4.12. IR ν^{CHCl₃}_{max} cm⁻¹: 3300, 1710. ¹H-NMR (CDCl₃) δ: 1.23 (3H, t, J=7 Hz, CH₂CH₃), 3.15 (2H, s, CH₂CO), 3.58, 3.80 (2H, ABq, J=11 Hz, CH₂Br), 4.16 (2H, q, J=7 Hz, OCH₂CH₃), 5.88 (1H, s, OH), 6.70—7.13 (3H, m, Ar-H), 8.98 (1H, s, OH).

Reaction of 1 with p-Chlorophenol (2j)——In the manner described for 3a, a mixture of 1 (2.1 g, 0.01 mol), 2j (6.4 g, 0.05 mol), and anhydrous aluminum chloride (6.7 g, 0.05 mol) in dry nitrobenzene (20 ml) was stirred at 60°C for 72 h. After removal of ether, nitrobenzene, and 2j, the residue was subjected to silica gel column chromatography. Elution with n-hexane—ethyl acetate (19:1) gave ethyl 4-bromo-3-(5-chloro-2-hydroxyphenyl)-3-hydroxybutyrate (3j) as colorless prisms (recrystallized from cyclohexane), mp 67—68°C. Yield, 0.90 g (27%). Anal. Calcd for $C_{12}H_{14}BrClO_4$: C, 42.69; H, 4.18. Found: C, 42.48; H, 4.21. IR $\nu_{\max}^{CRCl_4}$ cm⁻¹: 3340, 1705. ¹H-NMR (CDCl₃) δ : 1.25 (3H, t, J=7 Hz, CH_2CH_3), 3.18 (2H, s, CH_2CO), 3.59, 3.81 (2H, ABq, J=11 Hz, CH_2Br), 4.19 (2H, q, J=7 Hz, OCH_2CH_3), 5.85 (1H, s, OH), 6.73—7.30 (3H, m, Ar–H), 8.75 (1H, s, OH). Subsequent elution with n-hexane—ethyl acetate (19:1) gave 4-bromomethyl-6-chlorocoumarin (4j) as colorless needles (recrystallized from ethyl acetate), mp 177—178°C. Yield, 0.20 g (7%). Anal. Calcd for $C_{10}H_6BrClO_2$: C, 43.91; H, 2.21. Found: C, 44.03; H, 2.17. IR $\nu_{\max}^{CHCl_4}$ cm⁻¹: 1725, 1605. ¹H-NMR (CDCl₃) δ : 4.43 (2H, s, CH_2Br), 6.53 (1H, s, 3-H), 7.16—7.75 (3H, m, Ar–H).

4-Bromomethylcoumarin Derivatives 4b-d, g, i, j: General Procedure——In the manner described for 4a, 3 (1 mmol) was treated with dry hydrogen chloride in absolute ethanol to give the product 4. Yields and melting points are summarized in Table II. 4b (R=8-Me): colorless needles (recrystallized from *n*-hexane-benzene (1:1)), Anal. Calcd for C₁₁H₉BrO₂: C, 52.20; H, 3.58; Br, 31.58. Found: C, 52.48; H, 3.55; Br, 31.45. IR ν_{max}^{CHCl₁} cm⁻¹: 1725, 1605. ¹H-NMR (CDCl₃) δ: 2.30 (3H, s, CH₃), 4.48 (2H, s, CH₂Br), 6.49 (1H, s, 3-H), 7.05—7.70 (3H, m, Ar-H).

TABLE IV

			Analys	sis (%)	IR	
6	R	Formula	Calcd C	(Found) H	$v_{\max}^{\text{CHCI}_8}$ cm ⁻¹	$^{1} ext{H-NMR}$ (CDCl $_{3}$) δ
b	7-Me	$C_{13}H_{14}O_{3}$	71.54 (71.48	6.47 6.29)	1730	1.24 (3H, t, J=7 Hz), 2.50 (3H, s), 3.65 (2H, s), 4.16 (2H, q, J=7 Hz), 6.87—7.53 (3H, m), 7.60 (1H, s)
c	6-Me	$C_{13}H_{14}O_{3}$	71.54 (71.24)	$6.47 \\ 6.41)$	1730	1.26 (3H, t, $J = 7$ Hz), 2.46 (3H, s), 3.67 (2H, s), 4.19 (2H, q, $J = 7$ Hz), 6.96—7.48 (3H, m), 7.55 (1H, s)
d	5-Me	$C_{13}H_{14}O_3$	71.54 (77.27	$6.47 \\ 6.72)$	1730	1.22 (3H, t, J=7 Hz), 2.40 (3H, s), 3.62 (2H, s), 4.16 (2H, q, J=7 Hz), 6.95—7.42 (3H, m), 7.55 (1H, s)
g	5-MeO	$C_{13}H_{14}O_{4}$	66.66 (66.48	6.02 6.10)	1730	1.26 (3, t, $J=7$ Hz), 3.64 (2H, s), 3.82 (3H, s), 4.17 (2H, q, $J=7$ Hz), 6.74—7.10 (2H, m), 7.33 (1H, d, $J=9$ Hz), 7.57 (1H, s)
i	6-Cl	$C_{12}H_{11}ClO_3$	60.39 (60.14	4.65 4.61)	1730	1.25 (3H, t, $J = 7$ Hz), 3.65 (2H, s), 4.18 (2H, q, $J = 7$ Hz), 7.09—7.56 (3H, m), 7.59 (1H, s)
j	5-C1	$C_{12}H_{11}ClO_3$	60.39 (60.60	4.65 4.80)	1730	1.28 (3H, t, $J = 7$ Hz), 3.65 (2H, s), 4.09 (2H, q, $J = 7$ Hz), 7.20—7.56 (3H, m), 7.62 (1H, s)

Ethyl 3-Benzo[b] furanacetate Derivatives 6b-d, g, i, j: General Procedure——A mixture of 3 (1 mmol) and triethylamine (0.2 g, 2 mmol) in benzene (10 ml) was stirred at room temperature for 4 h. After the precipitates had been filtered off, the filtrate was concentrated under reduced pressure. p-Toluenesulfonic acid (0.1 g) and benzene (20 ml) were added to the residual oil 5. After refluxing for 3 h, the reaction mixture was washed with 2% sodium bicarbonate and then with saturated sodium chloride. The benzene layer was dried and concentrated in vacuo. The oily residue was subjected to silica gel column chromatography using n-hexane—ether (9:1) as an eluent to give the product 6. Yields and boiling points (or melting point) are summarized in Table III. Elemental analysis, IR and ¹H-NMR spectral data are listed in Table IV.

Acknowledgement We are indebted to the Central Analysis Room of the Institute for elemental analyses. This research was supported in part by a Grant from the Takeda Science Foundation.

References

- 1) T. Kato and H. Kimura, Chem. Lett., 1979, 337.
- 2) S. Sethna and R. Phadke, "Organic Reactions," Vol. 7, ed. by R. Adams, John Wiley and Sons, Inc., New York, 1953, p. 1.
- 3) H.v. Pechmann and C. Duisberg, Ber., 16, 2119 (1883).
- 4) E.H. Woodruff, "Organic Syntheses," Coll. Vol. III, ed. by E.C. Horning, John Wiley and Sons, Inc., New York, 1955, p. 581.
- 5) B.B. Dey and Y.S. Sankarnarayan, J. Indian Chem. Soc., 11, 687 (1934).
- 6) T.R. Seshadri and S. Varadarajan, J. Sci. Ind. Research (India), 11, 39 (1952).
- 7) A. Robertson, R.B. Waters, and E.T. Jones, J. Chem. Soc., 1932, 1681.
- 8) R.N. Lacey, J. Chem. Soc., 1954, 854.
- 9) B.B. Dey and K. Radhabai, J. Indian Chem. Soc., 11, 635 (1934).
- 10) V. Titoff, H. Müller, and T. Reichstein, Helv. Chim. Acta, 20, 883 (1937).
- 11) P. Hardt and K.J. Boosen, Ger. Patent 2243203 (1973) [C.A., 79, 42196e (1973)].