Communications to the Editor

(Chem. Pharm. Bull.) 30(3)1102—1105(1982)

SYNTHESIS OF NEW SULFUR-CONTAINING PROSTAGLANDIN ${f I_1}^1)$

Kiyoshi Bannai, Takeshi Toru, Atsuo Hazato, Takeo Ōba, Toshio Tanaka, Noriaki Okamura, Kenzo Watanabe, and Seizi Kurozumi*
Institute for Bio-Medical Research, Teijin Co., Ltd.,
Hino, Tokyo 191, Japan

A synthesis of 4-thia-PGI $_1$ involving addition of alkylsulfenyl chloride to allylcyclopentanol and spontaneous intramolecular cyclization is described.

KEYWORDS—4-thia-prostaglandin I_1 : intramolecular cyclization with sulfenyl chloride; 2-allyl-4-hydroxycyclopent-2-en-1-one; stereochemistry; (1R,5S)-6,6-dimethyl-4-hydroxy-3-oxabicyclo[3.1.0]hexan-2-one

Although a number of PGI_2 analogs have been synthesized, there are a few reports of PGI_1 (5,6-dihydro- PGI_2) analogs, ²⁾ which are regarded as stable PGI_2 analogs. PGI_1 has a different biological profile from PGI_2 ; ³⁾ e.g., 6β - PGI_1 has strong anti-ulcer activity with weak vasodepressing and anti-aggregatory activities. Thus it is interesting to develop a new convenient synthesis of PGI_1 analogs aiming promising therapeutic agents free from side effects possibly derived from PGI_2 . In the course of our synthetic studies of stable PGI_2 analogs using sulfenyl chloride, ⁴⁾ we have paid attention to the unique reactivity of sulfenyl chloride to help us synthesize new sulfur-containing PGI_1 analogs. We report here the efficient synthesis of 4-thia- PGI_1 which involves the addition of methoxy-carbonylethylsulfenyl chloride to allylcyclopentanol $\mathfrak Z$ and spontaneous intramolecular cyclization.

For the synthesis of 4-thia-PGI₁, 2-allyl-4-hydroxycyclopent-2-en-1-one (dl)-la, 6) prepared from furfural according to the modified Piancatelli's method, 7) was selected as a key synthetic intermediate. The Michael addition of the protected allylcyclopentenone (dl)-lb with optically active mixed cuprate prepared from (1E,3S)-3-t-butyldimethylsilyloxy-1-lithio-octene and CuSPh gave a diastereomeric mixture 2' composed of allylcyclopentanone 2 and ent-15⁸-epi-2 in 50% yield. 9) Stereoselective reduction of cyclopentanone 2' was accomplished with L-Selectride 10) (THF, -70°C, 15 min) to give a diastereomeric mixture 3' composed of allylcyclopentanol 3 and ent-15-epi-3 in 71% yield. 9) Treatment of 3' with methoxycarbonylethylsulfenyl chloride 11) (1.2 eq. CH₂Cl₂, -60°C, 0.5 h) in the presence of K₂CO₃ (3 eq.) gave a diastereomeric mixture of protected 4-thia-PGI₁ methyl esters 4a, 5a, 6a, and 7a in 70% yield. 9) Deprotection with AcOH-THF-H₂O (3:2:2, r.t., 3 days) gave a diastereomeric mixture of four 4-thia-PGI₁ methyl esters 4b, 5b, 6b, and 7b in 22%, 16%, 17%, and 19% yields in decreasing order of polarity after isolation with silica gel column chromatography.

In order to determine the stereochemistry of the four 4-thia-PGI $_1$ methyl esters so obtained, two of them (4 and 5) were prepared from (R)-1a, which was

resolved using (1R,5S)-6,6-dimethy1-4-hydroxy-3-oxabicyclo[3.1.0]hexane-2-one 8¹² as a resolving agent. 13) The two 4-thia-PGI₁ methyl esters (4b and 5b) thus obtained were identical with two of the more polar components of the four isomers. Thus the two more polar components were assigned as 6α - and 6β -4-thia-PGI $_1$ methyl esters. 14 In the 1 H-NMR spectra of the two-4-thia-PGI $_{1}$ methyl esters (4b and 5b), the C-9 proton of the more polar isomer (4.48 ppm) appeared in a field lower than that of the less polar isomer (4.32 ppm). From these observations the more polar isomer was assigned to 6β -4-thia-PGI $_1$ methyl ester 4b and the less polar isomer, to 6α -4-thia-PGI₁ methyl ester 5b as in the case of PGI₁. This assignment was further supported by the fact that 6β -PGI $_1$ derivatives are more polar than their 6α -isomers. $^{16)}$ From these considerations the four stereoisomers of the 4-thia-PGI $_1$ methyl esters obtained as mentioned above were determined as 6β -4-thia-PGI $_1$ methyl ester 4b, 6a-4-thia-PGI1 methyl ester 5b, ent-15-epi-4b (6b) and ent-15-epi-5b $(7b)^{17}$ in decreasing order of polarity. Conversion of methyl esters 4b, 5b, 6b, and 7b to the corresponding acids 4c, 5c, 6c, and 7c was accomplished by the usual hydrolysis.

This synthetic method using the new key intermediate $\underline{1}$ enables us to prepare various chemically stable 4-thia-PGI $_1$ analogs. Preliminary tests showed that analog $\underline{5}b$ had preventive activity on ethanol elicited gastric lesions, while $\underline{4}b$ had weaker activity. Both compounds did not show inhibitory activity on platelet aggregation.

ACKNOWLEDGEMENT The authors are grateful to Professor S. Ikegami, Teikyo Univ., for valuable suggestions on the reaction of sulfenyl chloride.

REFERENCES AND NOTES

- 1) Prostaglandin Chemistry XVII. For part XVI; T. Tanaka, K. Bannai, T. Toru, T. \overline{\overline{O}}ba, N. Okamura, K. Watanabe, and S. Kurozumi, Chem. Pharm. Bull., \overline{30}, 51 (1982).
- F. Cassidy, R. W. Moore, and G. Wootton, Tetrahedron Lett., 22, 253 (1981);
 G. L. Bundy and J. M. Baldwin, ibid., 22, 1371, (1981);
 K. C. Nicolaou, R. L. Magolda, and W. E. Barnette, J. Chem. Soc., Chem. Commun., 1978, 375;
 J. C. Sih and D. R. Graber, J. Org. Chem., 43, 3798 (1978);
 J. C. Sih, R. A. Johnson, E. G. Nidy, and D. R. Graber, Prostaglandins, 15, 409 (1978);
 M. A. W. Finch and S. M. Roberts, J. Chem. Soc., Perkin Trans. I. 1981, 1312, and references cited therein.
- 3) B. J. R. Whittle and N. K. Boughton-Smith, "prostacyclin", ed. by J. R. Vane and S. Bergström, Raven Press, New York, 1979, p.159; G. L. Kauffman, Jr., B. J. R. Whittle, D. Aures, J. R. Vane, and M. I. Grossman, Gastroenterology, 77, 1301 (1979); A. H. Soll and B. J. R. Whittle, Prostaglandins, 21, 353 (1981); K. Schrör, Arch. Pharm., 306, 213 (1979); B. H. Crane, T. L. Maish, Y. T. Madox, E. J. Corey, I. Székely, and P. W. Ramwell, J. Pharmacol. Exp. Ther., 206, 132 (1978).
- 4) K. Bannai, T. Toru, T. Ōba, T. Tanaka, N. Okamura, K. Watanabe, and S. Kurozumi, Tetrahedron Lett., 22, 1417 (1981); T. Toru, K. Watanabe, T. Ōba, T. Tanaka, N. Okamura, K. Bannai, and S. Kurozumi, *ibid.*, 21, 2539 (1980).

- 5) S. Ikegami, J. Ohishi, and Y. Shimizu, Heterocycles, <u>6</u>, 387 (1977); S. Ikegami, J. Ohishi, and Y. Shimizu, Tetrahedron Lett., 1975, 3923.
- 6) M. Gill, H. P. Bainton, and R. W. Rickards, Tetrahedron Lett., 22, 1437 (1981).
- 7) G. Piancatelli, A. Scettri, G. David, and M. D'Auria, Tetrahedron, $\underline{34}$, 2775 (1978).
- 8) PG-numbering.
- 9) Each diastereomer could not be separated by silica gel column chromatography.
- 10) R. Davis and K. G. Untch, J. Org. Chem., 44, 3755 (1979).
- 11) This reagent was prepared from the corresponding thiol and N-chlorosuccinimide in $\mathrm{CH}_2\mathrm{Cl}_2$ or benzene.
- 12) J. Martel, Japan patent 46-24694, Japan Kokai 54-130556, Japan Kokai 54-130557.
- 13) A benzene solution of (dl)-la and the resolving agent 8 was refluxed azeotropically (3h) in the presence of pyridinium p-toluenesulfonate (catalytic amount) to give adducts (R)-9 and (S)-9 in 40% and 42% yield, respectively, after separation by silica gel column chromatography. The resolving agent moiety of (R)-9 was removed by refluxing its dioxane-water solution (3h) to obtain (R)-la in 90% yield. The absolute configuration of (R)-la was determined from the CD spectrum study of the corresponding benzoate lc ([θ]₂₂₉=+1.1×10 5 in cyclohexane); see N. Harada and K. Nakanishi, Acc. Chem. Res., 5, 257 (1972).
- 14) The more polar property of natural prostaglandin isomer to the ent-15-epi isomer is generally observed; see A. F. Kluge, K. C. Untch, and J. H. Fried, J. Am. Chem. Soc., 94, 7827 (1972).
- 15) R. A. Johnson and E. G. Nidy, "Chemistry, Biochemistry and Pharmacological Activity of Prostanoids", ed. by S. M. Roberts and F. Scheinmann, Pergamon Press, Oxford, 1978, p.274; I. Tömosközi, G. Galambos, G. Kovács, and L. Radics, Tetrahedron Lett., 1978, 581.
- 16) N. A. Nelson, J. Am. Chem. Soc., 99, 7362 (1977).
- 17) 4b NMR (CDCl₃) δ 3.70 (3H, s), 3.98-4.30 (3H, m), 4.48 (1H, m), 5.54 (2H, m); MS (20 eV) (bis-TMS derivative) m/e 515.2675 (M-CH₃, calcd for C₂₅H₄₇O₅SSI₂, 551.2685) 530 (M⁺), 515, 499, 440; 5b NMR (CDCl₃) δ 3.70 (3H, s), 3.76-4.16 (3H, m), 4.32 (1H, m), 5.54 (2H, m); MS (20 eV) (bis-TMS derivative) m/e 530 (M⁺), 515, 499, 440; 6b NMR (CDCl₃) δ 3.70 (3H, s), 3.98-4.34 (3H, m), 4.48 (1H, m), 5.60 (2H, m); MS (20 eV) (bis-TMS derivative) m/e 530 (M⁺), 515, 499, 440; 7b NMR (CDCl₃) δ 3.70 (3H, s), 3.79-4.20 (3H, m), 4.32 (1H, m), 5.54 (2H, m); MS (20 eV) (bis-TMS derivative) m/e 530 (M⁺), 515, 499, 440.

(Received January 29, 1982)