(Chem. Pharm. Bull.) 30(3) 843-850 (1982)

Reactivity of Isocoumarins. IV.1) Reaction of 1-Ethoxyisochroman with Nucleophilic Reagents

Masatoshi Yamato,* Tadataka Ishikawa, and Shinji Yamada

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka 1-1-1, Okayama 700, Japan

(Received July 30, 1981)

As a part of our study on the reactions of 1-ethoxyisochroman (1) with nucleophilic reagents, the reactions of 1 with amines, amides, thioamides, sulfonamides, urea, thiourea, and heterocyclic compounds were examined.

Keywords——1-ethoxyisochroman; 1-substituted isochroman; 1,2,3,4-tetrahydro-isoquinolines; amines; ureas; heterocyclic compounds; reactivity

We have reported that the reaction of 1-ethoxyisochroman (1) with benzylamines gave 4-benzylisoquinolines.¹⁾ Subsequently, experiments on the reactivities of 1 with various nucleophilic reagents were continued, since 1 can be regarded as an intramolecular acetal of benzaldehyde.

In our previous experiment, it was found that the yield of 4-benzylisoquinoline (2) increased significantly on addition of Schiff base (benzylidenebenzylamine) to the reaction mixture of 1 and benzylamine, and that the Schiff base was changed into the corresponding amine (dibenzylamine).¹⁾ This finding suggested that the Schiff base acts as a dehydrogenating agent to change 4-benzyl-3,4-dihydroisoquinoline initially formed as an intermediate into 2. In fact, this view was supported by the result that 4-benzyl-1,2,3,4-tetrahydroisoquinoline (3)²⁾ was obtained in 10% yield accompanying 2. The reaction of 1 with phenethylamine

$$\begin{array}{c|c} & \bigcirc CH_2-NH_2 & \bigcirc CH_2 \bigcirc \\ \hline & \bigcirc CH_2-NH_2 & \bigcirc \\ \hline & \bigcirc NH & \\ \hline & 2 & 3 & \\ \hline & \bigcirc (CH_2)_2-NH_2 & \bigcirc \\ \hline & \bigcirc (CH_2)_2-OH & \\ \hline & \bigcirc (CH_2-NH-(CH_2)_2-\bigcirc \\ \hline & 4 & \boxed \\ & 5 & \bigcirc \\ \hline & N-(CH_2)_2-\bigcirc \\ \hline \end{array}$$

was undertaken in order to find whether or not a similar reaction of 1 with benzylamine takes place. 1-Phenethylaminoisochroman (4) was obtained in 63% yield. However, 4 was not changed into 4-phenethylisoquinoline or 4-phenethyl-1,2,3,4-tetrahydroisoquinoline under the conditions used for 1-benzylaminoisochroman¹⁾ to give 2 and 3. However, 4 was converted into 2-phenethyl-1,2,3,4-tetrahydroisoquinoline (6) as follows. Sodium borohydride reduction of 4 gave 2-(2-hydroxyethyl)-N-phenethylbenzylamine (5) in 67% yield, and this product was cyclized to 6 in 42% yield by heating with dicyclohexylcarbodiimide (DCC) in the presence of cuprous chloride (Chart 1).

The reaction of 1 with aniline gave three types of products, N-(1-isochromanyl)aniline (7a), 4-(1-isochromanyl)aniline (8a), and 4,N-di(1-isochromanyl)aniline (9a) in 34, 23, and 2.4% yields, respectively. Therefore, the effect of substituents on the benzene ring of aniline upon the reaction with 1 were examined, and the results are listed in Table I. Electron-attracting groups on the benzene ring act to decrease the reactivity at the C_4 -position of anilines, so that the reactions gave N-(1-isochromanyl)anilines (7) selectively. On the other hand, the reaction of anilines having electron-releasing groups afforded 4-(1-isochromanyl)anilines (8). For example, the reaction of 1 with N,N-diethylaniline gave N,N-diethyl-4-(1-isochromanyl)aniline (8d) in 62% yield and N,N-diethyl-2-(1-isochromanyl)aniline (7d) was not formed.

TABLE I. Reaction of 1 with Anilines

	Aniline	S	Temp.	Time	Yield (%)			
	R^1	R^2	(°C)	(h)	7	8	9	
a	H	H	120	3	35	23	2 ^a)	
b	o-COOMe	Н	140150	2	525)			
c	p-COOEt	H	140150	2	70^{a}			
d	H	Et	140—150	1		62°)		
e	o-OMe	H	140150	1.5	61	22	3a)	
f	p-OMe	H	140150	1	78a)			

a) Chromatographed on a column of alumina with petr. ether-AcOEt.

Some amides, acetamide, benzenesulfonamide, p-aminobenzenesulfonamide, thioamide, urea, and thiourea, were also reacted with 1 to give the corresponding 1-isochromanyl derivatives. The results are listed in Table II.

In the reaction of 1 with carboxamides such as acetamide, the 1-isochromanyl group was introduced at the N-atom of the carboxamides to give 1-(acylamino)isochromanes, *i.e.* 1-acetaminoisochroman (10a). This observation was in contrast to the result of the reaction of 1 with thioacetamide giving 1-iminoethyl-1-isochromanyl sulfide (11e). A difference similar to that between carboxamide and thioamide was observed in the reaction of 1 with urea or thiourea. Namely, N-(1-isochromanyl)urea (10f) was obtained from urea and S-(1-isochromanyl)isothiourea (11g) was obtained from thiourea. These results suggested a degree of the softness of the C_1 -position of 1 in terms of the hard and soft acid and base theory.⁴⁾

In the case of the reaction of 1 with 4-aminobenzenesulfonamide, two types of products were obtained by changing the molar ratio of 1 and 4-aminobenzenesulfonamide. Namely,

b) Recrystallized from cyclohexane.

c) Chromatographed on a column of alumina with cyclohexane.

heating of a mixture of 1 and excess 4-aminobenzenesulfonamide gave 4-amino- N^1 , N^4 -di(1-isochromanyl)benzenesulfonamide (12) in 47% yield together with a small amount of 4-amino- N^4 -(1-isochromanyl)benzenesulfonamide (13), while heating of 1 with an equimolar amount of 4-aminobenzenesulfonamide selectively gave 13d in 49% yield. On hydrolysis of 12d with 10% hydrochloric acid, 4-amino- N^1 -(1-isochromanyl)benzenesulfonamide (10d) was obtained in 82% yield.

TABLE II. Reaction of 1 with Amides

	Amides	Amides			Time	Yield (%)			
	R	X	Solvent	Temp. (°C)	(h)	10	11	12	13
а		со		130	0.5	62			
b	NHAc	со	Xylene	Reflux	1.5	34			
c	Me-	SO_2	Xylene	Reflux	8	59			
d	$H_2N-\bigcirc$	SO_2^{a}	Dioxane	Reflux	8		<u>. </u>	47	8c)
ď	$H_2N-\langle \bigcirc \rangle$	SO_2^{b}	Dioxane	50—60	3			1	49°)
e f g	$ m NH_2$	CS CO CS	Xylene	120 Reflux 100	1 2 1.5		75 — 51		

- a) Molar ratio of 1 to p-aminobenzenesulfonamide was 2:1.
- b) Molar ratio of 1 to p-aminobenzenesulfonamide was 1:1.
 c) Chromatographed on a column of alumina with THF-AcOEt.

The reactions of 1 with heterocyclic compounds were examined and the results are listed in Table III. Heating of 1 with pyrrole gave 2-[di(2-pyrrolyl)methyl]phenethyl alcohol (15a) in 40% yield, though in the case of the heating of 1 with N-methylpyrrole at 120—130°C, 2-(1-isochromanyl)-N-methylpyrrole (14b) was obtained in 40% yield. When a catalytic amount of zinc chloride was added to the same reaction mixture, the reaction took place at room temperature and gave 2-[bis(N-methyl-2-pyrrloyl)methyl]phenethyl alcohol (15b) and 14b in 15 and 9% yields, respectively. Similarly, the reaction of 1 with imidazole gave 1-(1-isochromanyl)imidazole (14c) in 22% yield. In the case of the reaction of 1 with furan without a catalyst, the reaction did not take place, but heating of the same mixture in the presence of a catalytic amount of boron trifluoride etherate (BF₃·Et₂O) at 40°C gave 1-(2-furyl)isochroman (14d) and [2-di(2-furyl)methyl]phenethyl alcohol (15d) in 10 and 15% yields, respectively. The reaction of 1 with uracil gave 5-(1-isochromanyl)uracil (14e) in 61% yield.

These findings on the reaction of 1 with a variety of nucleophilic reagents seemed interesting, and could be useful for the syntheses of bioactive derivatives. Work along this line will be reported in the near future.

Hetero- cycl.	Compd.	N# - 41 3	C-4-14	Calmant	Temp.	Time	Yield (%)	
	X	Method	Catalyst	Solvent	(°C)	(h)	14	15
a	NH	A		Benezene	r.t.a)	10		40
b	NMe	A 1	-	Xylene	Reflux	5	40	
b	NMe	В	$ZnCl_2$	Benezene	r.t.a)	24	9	15
c Imi	dazole	Α			120—130	6	598)	 .
d	0	Α		anguary.	120—130	6		
d	. 0	С	$\mathrm{BF_3-Et_2O}$		40	10	11	15
e Ura	cil	Α		Xylene	Reflux	6.5	61°)	

- a) r.t.=room temperature.
- b) Yield of 1-(1-isochromanyl)imidazole (14c).
- c) Yield of 5-(1-isochromanyl)uracil (14e).

Experimental

All melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. Proton magnetic resonance (PMR) spectra were obtained on a Hitachi R-24 spectrometer at 60 MHz, and carbon-13 magnetic resonance (¹³C-NMR) spectra were obtained on a Hitachi R-22 FTS spectrometer at 22.6 MHz, with tetramethylsilane as an internal standard. Mass spectra (MS) were recorded on a Shimadzu LKB-9000 spectrometer.

Reaction of 1 with Benzylamine—A mixture of 1 (5 g) and benzylamine (4.5 g) was heated for 4 h at 200—220°C under an Ar atmosphere. The resulting mixture was chromatographed on a column of alumina with petr. ether-AcOEt (16:1). The first eluate gave 0.4 g (9.9%) of 4-benzyl-1,2,3,4-tetrahydroisoquinoline (3) as a colorless oil, bp 145°C (0.05 mmHg). Anal. Calcd for $C_{16}H_{17}N$: C, 86.05; H, 7.67; N, 6.27. Found: C, 86.12; H, 7.91; N, 6.35. PMR (CCl₄) δ : 2.72—3.01 (4H, m, C_3H_2 , C_4H , and NH), 3.57 (2H, d, J=2 Hz, CH₂Ph), 3.65 (2H, s, C_1H_2), 7.02—7.35 (9H, m, Ar-H). MS m/e: 223 (M+), 222 (M+-H, base peak). The second eluate gave 1.5 g (25%) of 2, mp 119—120°C (cyclohexane), which was identical with an authentic sample of 2 (comparison of PMR and mass spectra).

Reaction of 1 with Phenethylamine—Phenethylamine (5 g) was added to a solution of 1 (5 g) in dry xylene (80 ml) and the mixture was refluxed for 11 h. The xylene was evaporated off, and the residue was chromatographed on a column of alumina with CH_2Cl_2 to give 4.5 g (63%) of 1-phenethylaminoisochroman (4) as a colorless oil, bp 150°C (0.001 mmHg). Anal. Calcd for $C_{17}H_{19}NO: C$, 80.57; H, 7.56; N, 5.53. Found: C, 80.28; H, 7.56; N, 5.48. PMR (CDCl₃) $\delta: 2.22$ (1H, s, NH), 2.62—3.25 (6H, m, C_4H_2 and NCH₂CH₂), 3.60—3.99 (2H, m, C_3H_2), 5.29 (1H, s, C_1H). MS m/e: 253 (M⁺), 133 (C_9H_9O), base peak).

2-(2-Hydroxyethyl) benzylphenethylamine (5)—NaBH₄ (9.6 g) was added to a solution of 4 (10.7 g) in abs. EtOH (200 ml) and the mixture was stirred for 24 h at 40—45°C. Excess NaBH₄ was decomposed with dil. HCl and the EtOH was evaporated off *in vacuo*. The residue was washed with Et₂O, made basic with 10% NaOH, and extracted with Et₂O. The Et₂O layer was concentrated to give 7.2 g (67%) of 5 as a colorless oil. PMR (CDCl₃) δ : 2.51—3.61 (4H, m, 2×CH₂), 3.42—4.04 (6H, m, 3×CH₂), 6.92—7.52 (9H, m, Ar-H). MS m/e: 255 (M⁺), 164 (M⁺-C₇H₇, base peak).

The hydrochloride of 5 was formed by treatment with dry HCl in Et₂O, mp 158—159°C. Anal. Calcd

for C₁₇H₂₂ClNO: C, 70.21; H, 7.28; N, 4.82. Found: C, 70.15; H, 7.30; N, 4.71.

2-Phenethyl-1,2,3,4-tetrahydroisoquinoline (6)——Compound 5 (2.8 g) was added to a mixture of Cu_2Cl_2 (0.05 g) and DCC (2.2 g) in dry xylene (20 ml) and the mixture was refluxed for 24 h. After the mixture had been cooled to 0°C, the dicyclohexylurea was removed by filtration and the xylene was evaporated off under reduced pressure. The residue was chromatographed on a column of alumina with petr. ether-AcOEt (6: 1) to give 1.1 g (42%) of 6, as a colorless oil, bp 125°C (0.01 mmHg). Anal. Calcd for $C_{17}H_{19}N$: C, 86.03; H, 8.07; N, 5.90. Found: C, 86.15; H, 8.25; N, 5.62. PMR (CDCl₃) δ : 2.50—3.17 (8H, m, C_3H_2 , C_4H_2 , and $2 \times CH_2$), 2.76 (2H, s, C_1H_2), 7.18 (4H, s with shoulder, Ar-H), 7.35 (5H, s with shoulder, Ar-H). MS m/e: 237 (M⁺).

TABLE IV. Physicochemical Properties and Spectral Data of 7, 8, and 9

Compd. mp (°C) No. (Recryst. solvent)		Formula	Analysis (%) Calcd (Found)			MS m/e M+		
			С	Н	N	***		
7a	109—111 (Petr. ether-AcOEt)	$C_{15}H_{15}NO$	79.97 (79.90	6.71 6.72	6.22 6.25)	225	4.33—4.60 (1H, br, NH), 5.99 (1H, d, $J=8$ Hz, $C_1'H)^{a}$)	
8 a	94—95 (Cyclohexane-benzene)	$C_{15}H_{15}NO$	79.97 (79.78	6.71 6.63	6.22 6.18)	225	3.47 (2H, s, NH_2), 5.64 (1H, s, $C_1'H)^{a}$)	
9a	Oil					357	4.51 (1H, d, $J=7$ Hz, NH), 5.53 (1H, s, C_1'' H), 5.92 (1H, d, $J=7$ Hz, C_1' H) ^b)	
7b	124—125 (Cyclohexane)	$C_{17}H_{17}NO_3$	72.06 (72.05	6.05 6.01	4.94 4.89)	283	3.78 (3H, s, OCH ₃) 6.08 (1H, d, $J=6$ Hz, $C_1'H$), 8.35 (1H, br, NH) ^a	
7c	116—118 (MeOH)	$\mathrm{C_{18}H_{19}NO_3}$	72.70 (72.65	6.44 6.45	4.71 4.58)	297	6.08 (1H, d, $J=8$ Hz, $C_1'H$), 5.50 (1H, d, $J=8$ Hz, NH) ^{a)}	
8d	Oil, bp 173 (1 mmHg)	$C_{19}H_{23}NO$	81.10 (80.91			281	5.64 (1H, s, C_1 'H), 6.56 (2H, d, J =8 Hz, Ar-H), 7.09 (2H, d, J =8 Hz, Ar-H) ^a	
7e	75—76 (MeOH)	$\mathrm{C_{16}H_{17}NO_2}$	75.27 (75.01	6.71 6.03	5.49 5.28)	255	3.73 (3H, s, OCH ₃), 5.61 (1H, d, $J=8$ Hz, NH), 6.06 (1H, d, $J=8$ Hz, $C_1'H)^{a}$	
8e	Oil					255	3.72 (3H, s, OCH ₃), 4.32 (2H, br, NH ₂), 5.88 (1H, s, C_1 'H) ^a)	
9e	Oil					387	3.77 (3H, s, OCH ₃), 5.18 (1H, d, $J=8$ Hz, NH), 5.74 (1H, s, C_1 'H) 6.12 (1H, d, $J=8$ Hz, C_1 "H) ^a	
7 f	70—71 (MeOH)	$C_{16}H_{17}NO_2$	75.27 (75.38	6.71 6.78	5.49 5.25)	255	3.68 (3H, s, OCH ₃), 4.32 (1H, d, $J=8$ Hz, NH), 5.86 (1H, d, $J=8$ Hz, $C_1'H)^{a_3}$	

a) In CDCl₃ solution. b) In CCl₄ solution.

TABLE V. Physicochemical Properties and Spectral Data of 10, 11, 12, and 13

Compd. No.	mp (°C) (Recryst. solvent)	Formula		alysis (Calcd Found H		IR v Nujoi max cm ⁻¹	MS m/e M+	PMR (δ)
10a	166—168 (Benzene)	C ₁₁ H ₁₃ NO	69.09 (69.14	6.85 6.73	7.33 7.22)	3290 1655	191	1.94 (3H, s, COCH ₃), 6.34 (1H, d, $J=9$ Hz, C ₁ H), 6.85—7.45 (5H, m, Ar-H and NH) ^a)
10b	231—232 (THF)	$\mathrm{C_{18}H_{18}N_2O_3}$	69.66 (69.57	5.85 5.71	9.03 8.92)	3310 3270 1670 1650	310	2.13 (3H, s, COCH ₃), 6.53 (1H, d, $J=9.5$ Hz, C_1 H), 9.67 (1H, d, $J=9.5$ Hz, NH), 11.20 (1H, br, NH) ⁵⁾
10c	182—184 (EtOH)	C ₁₆ H ₁₇ NO ₃ S	63.36 (63.15	5.65 5.57	4.62 4.51)		303	2.45 (3H, s, CH ₃), 5.98 (1H, d, $J = 8$ Hz, C ₁ H), 9.13 (1H, d, $J = 8$ Hz, NH) ^{b)}
10f	288—290 (MeOH)	$\mathrm{C_{10}H_{12}N_2O_2}$	62.48 (62.39		14.58 14.38)	3440 3300 3210 1650	192	5.66 (2H, br, NH ₂), 6.10 (1H, d, $J = 10 \text{ Hz}$, $C_1H)^{bj}$
11e	126—128 (Benzene)	C ₁₁ H ₁₃ NOS	63.75 (63.62	6.32 6.19	6.76 6.71)	3260 3170	207	2.59 (3H, s, CH ₃), 6.82—7.62 (5H, m, C ₁ 'H and Ar-H), 7.80—8.60 (1H, br, NH) ^a)
11g	117—119 (CHCl ₃)	$C_{10}H_{12}N_2OS$	57.68 (57.49		13.46 13.51)	3482 3350 3295	208	6.52—7.05 (2H, br, NH ₂) 7.00— 7.66 (5H, m, C ₁ 'H and Ar-H), 7.95—8.79 (1H, br, C=NH) ⁵)
12	192—194 (AcOEt)	$C_{22}H_{24}N_2O_4S$	66.04 (59.87		6.42 6.37)	3340 3270	436	3.25 (1H, br, NH), 5.82 (1H, d, $J = 10$ Hz, C_1H), 6.02 (1H, d, $J = 8$ Hz, $C_1'H$), 8.12 (1H, d, $J = 10$ Hz, SO_2NH) ⁵
13	191—193 (AcOEt)	$\mathrm{C_{15}H_{16}N_2O_3S}$	59.20 (58.92	5.30 5.15	9.21 9.06)	3395 3355 3250	364	5.99 (1H, d, $J=8$ Hz, $C_1'H$), 6.84 (3H, s with shoulder, NH and SO_2NH_2) ^{b)}

 $[\]alpha$) In CDCl₃ solution. b) In DMSO- d_6 solution.

General Procedure for the Reaction of 1 with Anilines—Typical Example: A mixture of 1 (5 g) and aniline (5.2 g) was heated for 3 h at 120° C. Unreacted aniline was distilled off in vacuo and the residue was chromatographed on a column of alumina with petr. ether-AcOEt (9:1). The first eluate gave 2.2 g (35%) of N-(1-isochromanyl)aniline (7a). The second and final eluates gave 0.24 g (2%) of N,4-di(1-isochromanyl)aniline (9a) and 1.4 g (23%) of 4-(1-isochromanyl)aniline (8a), respectively.

Physicochemical properties and spectral data of 7, 8, and 9 are shown in Table IV.

General Procedure for the Reaction of 1 with Amides—Typical Example: A mixture of 1 (5 g) and acetamide (1.6 g) was heated for 0.5 h at 130°C under an Ar atmosphere. After cooling, the mixture was recrystallized from benzene to give 3.4 g (63%) of 1-acetaminoisochroman (10a).

Physicochemical properties and spectral data of 10, 11, 12, and 13 are shown in Table V.

Hydrolysis of 12—A mixture of 12 (0.34 g), 10% HCl (1 ml), tetrahydrofuran (THF) (70 ml), and H₂O (16 ml) was stirred for 2 h at room temperature, then the THF was evaporated off and the residue was extracted with AcOEt. The AcOEt layer was washed with H₂O, dried over MgSO₄, and concentrated in vacuo. The residue was chromatographed on a column of silica gel with petr. ether—AcOEt (1: 1) to give 0.2 g (82%) of 4-amino-N¹-(1-isochromanyl)benzenesulfonamide (10d), mp 190—192.5°C (from AcOEt). Anal. Calcd for $C_{15}H_{16}N_2O_3S$: C_{15} : $C_{$

General Procedure for the Reaction of 1 with Heterocyclic Compounds—Method A: Pyrrole (9.4 g) was added to a solution of 1 (5 g) in dry benzene (50 ml) and the mixture was stirred for 10 h at room temperature. The benzene was then evaporated off, and the residue was chromatographed on a column of silica gel with CH_2Cl_2 to give 3 g (40%) of 2-[di(2-pyrrolyl)methyl]phenethyl alcohol (15a).

Method B: A solution of 1 (5 g), N-methylpyrrole (2.7 g), and $ZnCl_2$ (0.8 g) in benzene (50 ml) was stirred overnight at room temperature. The benzene layer was washed with 5% KHCO₃ and H₂O, dried over MgSO₄, and concentrated. The residue was chromatographed on a column of silica gel with benzene-CH₂Cl₂. The first eluate gave 0.54 g (9%) of 2-(1-isochromanyl)-N-methylpyrrole (14b). The second eluate

Table VI. Physicochemical Properties and Data of 14 and 15

Compd.	mp (°C) (Recryst. solvent)	Formula		lysis (%) Calcd Found)	MS m/e M+	$\mathrm{PMR}\ (\delta)$
14b	Oil 125—130 (0.2 mmHg)	C ₁₄ H ₁₅ NO	78.84 (78.68	7.09 6.57 7.29 6.39) 213	3.51 (3H, s, NCH ₃), 5.88 (1H, s, C ₁ 'H), 5.93—6.07 (2H, m, pyrrolyl-H) ^a)
14c	49—50 (Et ₂ O)	$C_{12}H_{12}N_2O$	71.98 (71.80	6.04 13.99 6.15 13.79		6.50 (1H, s, C ₁ 'H), 6.70—7.35 (7H, m, Ar–H and imidazolyl-H) ^{b)}
14d	Oil 115—120 (0.1 mmHg)	$C_{13}H_{12}O_2$	77.98 (77.86	6.04 6.18)	200	5.83 (1H, s, C ₁ H), 5.93—6.05 (1H, m, furyl-H), 6.14—6.29 (1H, m, furyl-H), 7.25—7.36 (1H, m, furyl-H) ^{b)}
14e	303—304 (THF)	$\mathrm{C_{13}H_{12}N_2O_3}$	63.92 (63.80	4.95 11.47 4.73 11.23	244	5.70 (1H, s, C ₁ 'H), 6.90—7.19 (5H, m, Ar-H and uracyl-H), 10.68—10.94 (1H, br, NH), 11.10—11.19 (1H, br, NH).
15a	118—119 (Benzene)	$C_{17}H_{18}N_2O$	76.66 (76.42	6.81 10.52 6.75 10.30	วทก	2.80 (2H, t, $J=5$ Hz, CH_2CH_2OH), 3.40—3.80 (1H, br, OH), 3.60 (2H, t, $J=5$ Hz, CH_2OH), 5.50—6.59 (2H, m, pyrrol-H), 5.69 (1H, s, CH), 5.79—5.93 (2H, m, pyrroly-H)) 6.50—6.59 (2H, m, pyrrolyl-H), 9.10—9.80 (2H, br, NH) ^d
15b	Oil 130—135 (0.1 mmHg)	$\mathrm{C_{19}H_{22}N_2O}$	77.52 (77.43	7.53 9.52 7.51 9.50	244	2.46 (1H, s, OH), 3.25 (6H, $2 \times NCH_3$), 5.35—5.40 (2H, m, pyrrolyl-H), 5.56 (1H, s, CH), 5.83—5.96 (2H, m, pyrrolyl-H), 6.37—6.50 (2H, m, pyrrolyl-H) a_3
15d	Oil 135 (0.01 mmHg)	$C_{17}H_{16}O_3$	76.10 (76.35	6.01 5.82)	268	2.20—2.38 (1H, br, OH), 5.79 (1H, s, CH), 5.90—6.08 (2H, m, furyl-H), 6.25—6.40 (2H, furyl-H), 7.33—7.47 (2H, m, furyl-H) ^{b)}

a) In CDCl₃ solution.

b) In CCl₄ solution.

c) In DMSO- d_6 solution.

d) In acetone- d_6 solution.

gave 1.2 g (15%) of 2-[bis(N-methyl-2-pyrrolyl)methyl]phenethyl alcohol (15b), which was purified by distillation.

Method C: A mixture of 1 (5 g), furan (5.7 g), and BF₃·Et₂O (0.5 ml) was heated for 10 h at 40°C in a sealed tube, poured into ice-water, and extracted with AcOEt. The AcOEt layer was washed with 5% KHCO₃ and H₂O and dried over MgSO₄, then the solvent was evaporated off. The residue was chromatographed on a column of silica gel with petr. ether-AcOEt (2:1). The first eluate gave 0.6 g (11%) of 1-(2-furyl)isochroman (14d) as a viscous oil, bp 115—120°C (0.1 mmHg). The second eluate gave 1.2 g (15%) of 2-[di(2-furyl)methyl]phenethyl alcohol (15d) as a viscous oil, bp 135°C (0.01 mmHg).

Physicochemical properties and spectral data of 14 and 15 are shown in Table VI.

¹³C-NMR spectral data for 7b, 8a, 8e, 9a, 9e, 14c, and 15a are as follows.

7b: $^{13}\text{C-NMR}$ (CDCl₃) δ : 28.27 (C₄), 55.27 (C₇), 58.00 (C₃), 79.97 (C₁), 109.86 (C₃'), 112.05 (C₆'), 118.12 (C₄'), 121.40 (C₅'), 135.77 (C₁'), 146.87 (C₂'), 126.38, 126.93, 127.79, 128.85 (C₅, C₆, C₇, or C₈), 135.00, 135.77 (C₉ or C₁₀).

8a: $^{13}\text{C-NMR}$ (CDCl₃) δ : 28.21 (C₄), 63.29 (C₃), 79.22 (C₁), 114.70 (C₃' and C₅'), 130.02 (C₂' and C₆'), 132.00 (C₁'), 146.46 (C₄'), 125.74, 126.38, 127.02, 128.55 (C₅, C₆, C₇ or C₈), 133.89, 137.92 (C₉ or C₁₀).

8e: $^{13}\text{C-NMR}$ (CDCl₃) δ : 28.27 (C₄), 55.27 (C₇'), 58.00 (C₃), 79.97 (C₁), 109.86 (C₃'), 112.05 (C₆'), 118.12 (C₅'), 121.40 (C₄'), 135.77 (C₁'), 146.87 (C₂'), 126.38, 126.93, 127.79, 128.85 (C₅, C₆, C₇, or C₈), 135.00, 135.77 (C₉ or C₁₀).

9a: $^{^{^{^{1}3}}\text{C}}$ -NMR (CDCl₃) δ : 28.28, 28.89 (C₄ or C₄"), 58.26 (C₃"), 63.26 (C₃), 79.20 (C₁"), 80.31 (C₁), 113.79 (C₂' and C₆'), 130.14 (C₃' and C₅'), 132.78 (C₄'), 145.68 (C₁'), 125.83, 126.47, 126.47, 126.77, 127.16, 127.94, 128.64, 128.91 (C₅, C₅", C₆, C₆", C₇, C₇", C₈, or C₈"), 134.06, 134.98, 135.50, 137.87 (C₉, C₉", C₁₀, or C₁₀").

9e: $^{13}\text{C-NMR}$ (CDCl₃) δ : 28.28, 28.87 (C₄ or C₄"), 55.37 (C₇'), 58.01, 63.43 (C₃ or C₃"), 79.70, 79.87 (C₁ or C₁"), 110.31 (C₃'), 111.15 (C₆'), 111.28 (C₅'), 128.61 (C₄'), 135.64 (C₁'), 146.93 (C₂'), 122.32, 125.77, 126.47, 126.91, 127.16, 127.83, 128.36, 128.83 (C₅, C₅", C₆, C₆", C₇", C₈, or C₈"), 132.03, 133.95, 134.95, 137.84 (C₉, C₉", C₁₀", or C₁₀").

14c: $^{13}\text{C-NMR}$ (CDCl₃) δ : 27.56 (C₄), 59.93 (C₃), 81.03 (C₁), 118.85 (C₅'), 126.64, 127.06, 128.92, 129.09, 129.34 (C₄', C₅, C₆, C₇, or C₈), 130.95, 134.65 (C₉ or C₁₀), 137.46 (C₂').

15a: $^{13}\text{C-NMR}$ (acetone- d_6) δ : 37.28 (C₄), 41.29 (C₁), 64.28 (C₃), 108.25, 108.72 (C₃' or C₄'), 118.26 (C₅'), 127.49, 127.71, 130.13, 131.30 (C₅, C₆, C₇, or C₈), 134.66 (C₂'), 138.69, 143.31 (C₉ or C₁₀).

References

- 1) Part III: M. Yamato, T. Ishikawa, and T. Kobayashi, Chem. Pharm. Bull., 29, 720 (1981).
- 2) R. Grewe, W. Krüger, and E. Vangerman, Chem. Ber., 97, 119 (1964); P. Garside and A.C. Ritchie, J. Chem. Soc. (C), 1966, 2140.
- 3) R.D. Haworth, W.H. Perkin, and H.S. Pink, J. Chem. Soc., 1925, 1709.
- 4) R.G. Pearson, J. Am. Chem. Soc., 85, 3533 (1963).