Communications to the Editor

Chem. Pharm. Bull. 30(5)1903—1906(1982)

NOVEL CAGE COMPOUNDS FROM THE REACTIONS OF THIAZOLIUM N-METHYLIDES
WITH METHYLENECYCLOPROPENES

Otohiko Tsuge* and Hiroshi Shimoharada

Research Institute of Industrial Science, Kyushu University 86,

Kasuga, Kasuga-shi, Fukuoka 816, Japan

Thiazolium N-dicyanomethylide and N-phenacylide reacted with methylenecyclopropenes bearing a carbonyl functional group at the 4-position in THF to give novel cage compounds arising from an intramolecular cyclization of the initially formed endo-[3 + 2] cycloadducts. Although the reaction of the N-dicyanomethylide with a methylenecyclopropene having two cyano groups at the 4-position in THF gave no adduct, the same reaction in an alcohol afforded a cage compound incorporated with the alcohol.

KEYWORDS — thiazolium N-dicyanomethylide; N-phenacylide; methyl-enecyclopropenes; cycloaddition reaction; 4,6,8-oxathiazapentacyclo-[6.3.1.0^{1,10}.0^{5,11}.0^{7,11}]dodecenes; 4,6-thiazatetracyclo[6.1.0.0^{2,6}.0^{5,9}]-nonanes

It is known that methylenecyclopropenes are versatile reagents in organic syntheses. 1) Methylenecyclopropenes undergo cycloaddition reactions with a variety of 1,3-dipoles; 1-3) the modes of these reactions depend not only on the nature of 1,3-dipoles, but also on the subsituents at the 4-position of methylenecyclopropenes. 4) Recently, we have reported unique reactions of benzothiazolium N-phenacylide^{5,6)} and thiazolium N-methylides⁷⁾ with methylenecyclopropenes. It is particularly noteworthy that the reaction of thiazolium N-methylides with a methylenecyclopropene bearing an aryl group at the 4-position gives novel cage compounds arising from an intramolecular Diels-Alder reaction of the initially formed endo-[3 + 2] cycloadducts, followed by a hydrogen shift. 7) To extend this new route for the formation of cage compounds, we planned to investigate the reaction of thiazolium N-methylides with methylenecyclopropenes having substituents at the 4-position other than an aryl group. In the present communication we report the formation of novel cage compounds from the reaction of thiazolium N-dicyanomethylide 1 and N-phenacylide $\underline{2}$ with methylenecyclopropenes bearing a carbonyl functional group and two cyano groups at the 4-position.

A solution of the methylide $\underline{1}^{8}$ (1.0 mmol) and 3-(2,3-diphenyl-2-cyclopropenylidene)-2,4-pentanedione $\underline{3a}^{9}$) (1.0 mmol) in dry THF (15 ml) was stirred at room temperature for 4 days until the $\underline{3a}$ was completely consumed. The reaction mixture was then evaporated in vacuo to leave a residue, which was purified by chromatography on silica gel, using benzene as an eluent, to give the 1:1 adduct $\underline{4a}$, mp 188-189°C (dec.), in 94% yield. Similarly, the methylide $\underline{1}$ reacted with 2-cyano-(2,3-

diphenyl-2-cyclopropenylidene) acetophenone $3b^{10}$ for 6 days and with 2-cyano-(2,3-diphenyl-2-cyclopropenylidene) acetate $3c^{10}$ for 6 days to afford the corresponding 1:1 adducts 4b, mp 278-279°C (dec.), and 4c, mp 162-164°C (dec.), in 100 and 96% yields, respectively.

In the reaction of the methylide $\underline{2}$ with $\underline{3a}$ a 1:1 adduct was also obtained. To a solution of 3-phenacylthiazolium bromide (1.0 mmol) and $\underline{3a}$ (1.0 mmol) in dry THF (50 ml) NEt₃ (1.0 mmol) was added at room temperature with stirring under nitrogen. After the mixture was stirred for 2 h under the same conditions, the precipitated

a: R^1 =COMe, R^2 =Me; b: R^1 =CN, R^2 =Ph; c: R^1 =CN, R^2 =OEt

Chart 1

triethylammonium bromide (quantitative) was removed by filtration. The filtrate was refluxed for 2 h, and then evaporated in vacuo to leave a residue, which was chromatographed on silica gel using benzene as an eluent to give the 1:1 adduct $\underline{5}$, mp $203-204^{\circ}C$ (dec.), in 93% yield.

On the basis of spectral data, ¹¹⁾ the adducts $\frac{4}{2}$ and $\frac{5}{2}$ were identified as the cage compounds, 4,6,8-oxathiazapentacyclo[6.3.1.0^{1,10}.0^{5,12}.0^{7,11}]dodecenes. It is evident that the reaction proceeds via an intramolecular cyclization of initially formed endo-[3 + 2] cycloadducts like \underline{A} (Chart 1).

As reported previously, $^{5)}$ 2-(2,3-diphenyl-2-cyclopropenylidene)malononitrile $\underline{6}^{10)}$ exhibited a behavior toward benzothiazolium N-phenacylide different from other methylenecyclopropenes. Thus we have investigated the reaction of the methylide $\underline{1}$ with $\underline{6}$. Although the reaction in THF gave no adduct, $^{12)}$ it has been found that $\underline{1}$ in reaction with $\underline{6}$ in an alcohol gives a type of cage compound different from $\underline{4}$ or $\underline{5}$. The reaction in refluxing ethanol or methanol for 24 h afforded a product $\underline{7}$, mp $112-113^{\circ}$ C (dec.), or 8, mp $194-196^{\circ}$ C (dec.), in 85 or 72% yield respectively.

Structural elucidation of the products $\underline{7}$ and $\underline{8}$, 4,6-thiazatetracyclo[6.1.0.-0^{2,6}.0^{5,9}]nonanes, was accomplished on the basis of spectral data. ¹³⁾ The protons at the 2- and 3-positions in both $\underline{7}$ and $\underline{8}$ each appeared as singlets in the 1 H NMR

spectra, indicating that 2- $\underline{ ext{H}}$ and 3- $\underline{ ext{H}}$ are trans. $^{14)}$

Chart 2

The pathway for the formation of $\underline{7}$ or $\underline{8}$ is illustrated in Chart 2. In a manner similar to $\underline{3}$, $\underline{1}$ adds to $\underline{6}$ to yield the endo-[3 + 2] cycloadduct \underline{B} . Subsequent ring closure of \underline{B} generates a betaine \underline{C} . Although the processes leading to \underline{B} and \underline{C} are reversible, since $\underline{1}$ and $\underline{6}$ were recovered quantitatively from the reaction in THF, $\underline{12}$) \underline{C} reacts with ethanol or methanol to give stable cage compounds $\underline{7}$ or $\underline{8}$. It seems to give analogous cage compounds from the reaction of $\underline{1}$ with $\underline{6}$ in the presence of nucleophiles other than alcohol; work along this line is in progress.

REFERENCES AND NOTES

- 1) Th. Eicher and J. L. Weber, Topics in Current Chem., 57, 1 (1975).
- 2) L. Toupet and R. Carrié, J. Chem. Soc., Chem. Commun., 1975, 384.
- 3) Th. Eicher and V. Schäfer, Tetrahedron Lett., 1975, 3919.
- 4) The numbering of methylenecyclopropene system is as follows. 1)

- 5) O. Tsuge, H. Shimoharada, and M. Noguchi, Chem. Lett., 1981, 1199.
- 6) O. Tsuge, H. Shimoharada, and M. Noguchi, ibid., 1981, 1493.
- 7) O. Tsuge, H. Shimoharada, M. Noguchi, and S. Kanemasa, ibid., 1982, No.5 in press.
- 8) V. Boekelheide and N. A. Fedoruk, J. Am. Chem. Soc., 90, 3830 (1968).
- 9) Th. Eicher and A. Löshner, Z. Naturforsch., 21B, 899 (1966).
- 10) Th. Eicher, T. Pfister, and N. Krüger, Org. Prep. Proced. Int., 6, 63 (1974).
- 11) All new compounds in this paper gave satisfactory elemental analyses.

 4a: colorless prisms; IR (KBr) 2240, 1665 cm⁻¹; ¹H NMR (CDCl₃) δ 1.51, 2.12

 (each 3H, s), 4.32 (1H, d, 12-H, J=5.0 Hz), 5.08 (1H, s, 7-H), 6.40 (1H, d, 5-H, J=5.0 Hz), 6.90-7.45 (10H, m); ¹³C NMR (CDCl₃) δ 18.5, 30.6 (each q, CH₃), 29.5, 42.0, 45.6, 63.5 (each s, quat. C), 69.7, 78.9, 83.8 (each d, tert. C); MS m/e 437 (M⁺).

 4b: colorless prisms; IR (KBr) 2250, 2200, 1600 cm⁻¹; ¹H NMR (DMSO-d₆) δ 4.92 (1H, d, 12-H, J=5.0 Hz), 6.18 (1H, s, 7-H), 6.91 (1H, d, 5-H, J=5.0 Hz), 6.98-7.65 (15H, m); ¹³C NMR (DMSO-d₆) δ 27.8, 43.1, 47.0, 66.3 (each s, quat. C), 67.6, 74.6, 85.3 (each d, tert. C); MS m/e 482 (M⁺).

 4c: colorless prisms; IR (KBr) 2240, 2200 cm⁻¹; ¹H NMR (CDCl₃) δ 1.23 (3H, t),

4.12 (2H, q), 4.38 (1H, d, $12-\underline{H}$, J=5.0 Hz), 5.47 (1H, s, $7-\underline{H}$), 6.53 (1H, d, $5-\underline{H}$, J=5.0 Hz), 6.70-7.80 (10H, m); ^{13}C NMR (CDCl₃) δ 14.6 (q, $\underline{C}H_3$), 28.5, 41.2, 47.4, 67.1 (each s, quat. \underline{C}), 66.3 (t, $O\underline{C}H_2$), 68.3, 75.3, 86.4 (each d, tert. \underline{C}); MS m/e 450 (M⁺). $\underline{5}$: colorless prisms; IR (KBr) 1680, 1665 cm⁻¹; ^{1}H NMR (CDCl₃) δ 1.28, 2.08 (each 3H, s), 3.92 (1H, d, $12-\underline{H}$, J=5.0 Hz), 4.64 (1H, s, $9-\underline{H}$), 5.44 (1H, s, $7-\underline{H}$), 6.34 (1H, d, $5-\underline{H}$, J=5.0 Hz), 6.47-8.35 (15H, m); ^{13}C NMR (CDCl₃) δ 18.0, 29.8 (each q, $\underline{C}H_3$), 30.2, 39.2, 41.8 (each s, quat. \underline{C}), 71.0, 73.0, 78.9, 84.7 (each d, tert. \underline{C}); MS m/e 491 (M⁺).

- 12) The starting materials 1 and 6 were quantitatively recovered.
- 13) 7: colorless needles; IR (KBr) 2240 cm⁻¹; ¹H NMR (CDCl₃) δ 1.32 (3H, t), 3.32-3.92 (2H, pair of double q), 4.06 (1H, s, HC(CN)₂), 4.86 (1H, s, 2-H), 5.33 (1H, s, 5-H), 5.87 (1H, s, 3-H), 6.83-7.70 (10H, m); ¹³C NMR (CDCl₃) δ 14.6 (q, CH₃), 20.0 (d, HC(CN)₂), 33.6, 42.2, 48.1, 63.3 (each s, quat. C), 65.4 (t, CH₂), 77.5, 77.9, 84.5 (each d, tert. C); MS m/e 449 (M⁺).

 8: colorless needles; IR (KBr) 2240 cm⁻¹; ¹H NMR (CDCl₃) δ 3.45 (3H, s), 4.04 (1H, s, HC(CN)₂), 4.87 (1H, s, 2-H), 5.31 (1H, s, 5-H), 5.78 (1H, s, 3-H), 6.84-7.62 (10H, m); MS m/e 435 (M⁺).
- 14) An inspection of the Dreiding models indicates that the dihedral angle between 2-H and 3-H is ca. 90° when 2-H and 3-H are trans.

(Received March 23, 1982)