Communications to the Editor

Chem. Pharm. Bull. 30(5)1917—1920(1982)

CONVERSION OF AILANTHONE INTO SHINJUDILACTONE, A BACKBONE-REARRANGED PICRASANE

Masami Ishibashi, Takahiko Tsuyuki, Tatsushi Murae, and Takeyoshi Takahashi*

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

On heating with sodium hydrogencarbonate in aqueous methanol, ailanthone (2) afforded $13(12 \rightarrow 11\alpha) \, abeo$ -picrasanes [or $9(11 \rightarrow 12\alpha) \, abeo$ -picrasanes], shinjudilactone (1) and its 13-epimer (3), in a ratio of 1:1 in good yields. The reaction is likely to proceed through isomerization of 2 into an α -diketone (6), followed by benzilic acid rearrangement. Under the same conditions, norquassin (4) gave the rearrangement product, norquassinic acid (5).

KEYWORDS —— benzilic acid rearrangement; quassinoids; shinjudilactone; ailanthone; norquassin; norquassinic acid; Simaroubaceae

Recently we have isolated three new quassinoids with modified picrasan skeletons: shinjudilactone $(\underline{1})^{1}$ and shinjulactones B^{2} and C^{3} from Ailanthus altissima SWINGLE (= A. glandulosa DESF., Japanes name: Shinju or Niwaurushi, Simaroubaceae), together with several known quassinoids, and determined the structures of these new quassinoids by single crystal X-ray diffraction analysis. The structure elucidation has revealed that shinjudilactone $(\underline{1})$ has a new migrated picrasane skeleton, $13(12 \rightarrow 11\alpha)abeo$ -picrasane [or $9(11 \rightarrow 12\alpha)abeo$ -picrasane], in which we are very interested from the biogenetical viewpoint. This communication describes a chemical conversion of ailanthone $(\underline{2})$, a main quassinoid of this plant, into shinjudilactone $(\underline{1})$ and its 13-epimer $(\underline{3})$, and a transformation of norquassin (4) into norquassinic acid (5).

 $1 \quad 13\alpha - CH_3$

3 13β−CH₃

2

Two biogenetic routes from ailanthone ($\underline{2}$) to shinjudilactone ($\underline{1}$) are conceivable: \underline{a}) protonation to $\Delta^{13}(21)$ -double bond and a hydride migration give a

Vol. 30 (1982)

cation at $C_{(12)}$, which could undergo reconstruction of a hemiacetal bridge to afford an intermediate cation carrying a positive ion at $C_{(11)}$, followed by ring contraction from one of the two cations and deprotonation; \underline{b}) isomerization into an α -diketone ($\underline{6}$) followed by benzilic acid rearrangement gives a hydroxy carboxylic acid, which is subjected to lactonization. Since the hydroxide ion is accessible to either $C_{(12)}$ or $C_{(11)}$ of the α -diketone ($\underline{6}$), it could be suggested that $13(12 \rightarrow 11\alpha) abeo$ -type skeletal rearrangement or $9(11 \rightarrow 12\alpha) abeo$ -type rearrangement to give $\underline{1}$ takes place (Chart 1).

2
$$\xrightarrow{H^+}$$
 \xrightarrow{HO} \xrightarrow

Chart 1

According to these considerations, chemical conversion of ailanthone $(\underline{2})$ into shinjudilactone $(\underline{1})$ was investigated. The reaction did not occur under acidic conditions using p-TsOH, HCl, HCl-AcOH, or FeCl $_3$ -HCl, while a very complex mixture was obtained in the reaction of $\underline{2}$ with BF $_3$ ·Et $_2$ O; shinjudilactone $(\underline{1})$ was not detectable in the reaction mixture by TLC examination.

Alkaline conditions under reflux, such as NaOH/H₂O, KOH/MeOH, and Ba(OH) $_2$ / C₅H₅N, gave extremely polar products. However ailanthone ($_2$; 21 mg) in a mixture of methanol (2 ml) and water (2 ml) was heated with sodium hydrogencarbonate⁷⁾ (5 mg) under reflux for 30 min, and the reaction mixture was acidified with hydrochloric acid to give a mixture (20 mg); separation of this mixture by preparative TLC (SiO₂) developed with chloroform-methanol (19:1) afforded shinjudilactone ($_1$; 10 mg) and 13-epishinjudilactone ($_2$; 10 mg). Shinjudilactone ($_1$) was completely identical with a natural specimen. 13-Epishinjudilactone ($_3$), mp 263-266 °C (from methanol-ethyl acetate), [$_1$] $_2$ +48° ($_3$ 0 0.57, pyridine), showed a lower Rf value than that of $_1$ 0 on a TLC plate and the following spectral data: IR (KBr) $_3$ 0 3300, 1745, 1675, 1620, 1250, and 1180 cm⁻¹; Uy (ethanol) $_3$ 1 mm ($_3$ 1 10 10 1180 cm⁻¹; Uy (ethanol) $_3$ 1 mm ($_3$ 2 10 119 119 (3H, d, J=6 Hz; C₁3 -CH₃), 1.20 (3H, s; C₁0 -CH₃), 1.77 (3H, br s; C₄0 -CH₃), 4.22 (1H, s; C₁0 -H), 4.25 and 4.66 (each 1H, A and B parts of an AB-type quartet, J=12 Hz; C₂0 -H₂), 4.65 (1H, t; J=2 Hz; C₁0 -H), and 6.06 (1H, m; C₃0 -H); $_3$ 1 NMR (pyridine- $_3$ 1 89.8, 11.4, 22.2, 27.0, 29.3, 41.9, 42.5, 42.8, 44.5, 48.3, 51.0, 74.3, 76.0, 76.6, 83.5,

126.3, 161.8, 170.9, 175.7, and 196.7; MS m/e (%) 376 (M^+ ; 8), 358 (6), 347 (8), 340 (10), 312 (45), 294 (40), 268 (100), and 253 (60); Found: m/e 376.1532. Calcd. for $C_{20}H_{24}O_7$: M 376.1520.

Shinjudilactone (1) was thus obtained from ailanthone (2). The conversion reaction proceeds through benzilic acid rearrangement (path \underline{b}) rather than through proton-induced rearrangement (path \underline{a}). It seems likely that shinjudilactone ($\underline{1}$) would be derived biogenetically from ailanthone ($\underline{2}$) or its equivalent through a pathway similar to benzilic acid rearrangement.

Benzilic acid rearrangement, however, requires generally strongly basic conditions. Since the rearrangement of a 1,2-diketone catalyzed by sodium hydrogencarbonate has not been described in the literature. a rearrangement of norquassin $(\underline{4})$ was examined under these conditions. Norquassin $(\underline{4})$ undergoes benzilic acid rearrangement on treatment with boiling 10% aqueous sodium hydroxide solution to give norquassinic acid $(\underline{5})$ as a hydrate. Norquassin $(\underline{4}; 97 \text{ mg})$,

4 R = H

 $7 R = CH_3$

R = H

 $8 \quad R = CH_3$

prepared from quassin (7), $^{5)}$ was heated with sodium hydrogencarbonate (ca. 10 mg) in 50% aqueous methanol (6 ml) under reflux for 5 h. The usual work-up afforded a crude acid (5), which was treated with diazomethane to give methyl norquassinate (8; 58 mg). The melting point and spectral data of the methyl ester $(8)^{12}$ were identical with those of a specimen prepared by sodium hydroxide-catalyzed rearrangement and also with those of an authentic sample. $^{5)}$

These conversions are the first examples of benzilic acid rearrangement catalyzed by a weak-base sodium hydrogencarbonate. Further investigation of the structural demand for the rearrangement is now in progress.

REFERENCES AND NOTES

- 1) M. Ishibashi, T. Murae, H. Hirota, H. Naora, T. Tsuyuki, T. Takahashi, A. Itai, and Y. Iitaka, Chem. Lett., 1981, 1597.
- 2) T. Furuno, H. Naora, T. Murae, H. Hirota, T. Tsuyuki, T. Takahashi, A. Itai, Y. Iitaka, and K. Matsushita, Chem. Lett., 1981, 1797.
- 3) M. Ishibashi, T. Murae, H. Hirota, T. Tsuyuki, T. Takahashi, A. Itai, and Y. Iitaka, Tetrahedron Lett., 23, 1205 (1982).
- 4) H. Naora, T. Furuno, M. Ishibashi, T. Tsuyuki, T. Takahashi, A. Itai, Y. Iitaka, and J. Polonsky, Chem. Lett., 1982, 661.
- 5) K. R. Hanson, D. B. Jaquiss, J. A. Lamberton, A. Robertson, and W. E. Savige, J. Chem. Soc., 1954, 4238.

- 6) Numbering of picrasane refers to the nomenclature described in the Chemical Abstracts.
- 7) Reaction catalyzed by sodium carbonate also gave the same mixture, but was accompanied by a formation of a small amount of by-products.
- 8) Whether formation of $\underline{1}$ is through $13(12 \rightarrow 11\alpha)$ absorption of $9(11 \rightarrow 12\alpha)$ absorption remains undetermined.
- 9) e.g., S. Selman and J. F. Eastham, Quart. Rev., 14, 221 (1960); C. J. Collins and J. F. Eastham, "Rearrangements involving the carbonyl group," in "The Chemistry of the Carbonyl Group," ed by S. Patai, Interscience Publishers, London, 1966, p. 783.
- 10) When benzil was treated with NaHCO₃/H₂O-MeOH-THF (5:5:1) under reflux for 5.5 h, the starting material was recovered quantitatively.
- 11) Benzilic acid rearrangement of ethyl α , β -dioxobutyrate catalyzed by a saturated KHCO $_3$ /K $_2$ CO $_3$ solution has been described: H. Rodé-Gowal and H. Dahn, Helv. Chim. Acta, 56, 2070 (1973).
- 12) IR (KBr) 3420, 1735, 1665, 1285, 1265, and 1040 cm⁻¹; 1 H NMR (chloroform- 2 d) 6 1.01 (3H, d, J=5.5 Hz; 2 C(4) $^{-}$ CH₃), 1.12 (3H, s; 2 C(10) $^{-}$ or 2 C(8) $^{-}$ CH₃), 1.23 (3H, s; 2 C(8) $^{-}$ or 2 C(10) $^{-}$ CH₃), 1.93 (3H, s; 2 C(13) $^{-}$ CH₃), 2.56 (1H, s; 2 C(9) $^{-}$ H), 3.63 and 3.66 (each 3H, s; $^{-}$ OCH₃), and 4.29 (1H, t, J=2.5 Hz; 2 C(7) $^{-}$ H); MS m/e (%) 406 (M⁺; 22), 391 (5), 388 (4), 347 (100), 333 (2), and 329 (9).

(Received April 16, 1982)