(Chem. Pharm. Bull.) 30(7)2429-2432(1982)

Studies on the Constituents of Asclepiadaceae Plants. XLIX.¹⁾ Confirmation of the Structures of Antitumor-active Glycosides in Condurango Cortex. Chemical Transformation of the Aglycone Moiety²⁾

Muneaki Takase,*,a Sumio Terada,a Hajime Yamamoto,a Toshiharu Narita,a Masahiko Kimura,b Koji Hayashi,b and Hiroshi Mitsuhashib

Research Laboratory of Zen-Yaku Kogyo Co., Ltd,^a Oizumi-machi, Nerima-ku, Tokyo, 177, Japan and Faculty of Pharmaceutical Sciences, Hokkaido University,^b Kita-ku, Sapporo, 060, Japan

(Received January 20, 1982)

In order to confirm the structure of condurangogenin B, which is the aglycone of antitumor-active condurango glycoside (CG) B_0 , the hypoiodite reaction of condurangogenin C 3-acetate, was carried out. A mixture of condurangogenin C 3-acetate, $Pb(OAc)_4$, I_2 , $CaCO_3$, and diethyl ether was irradiated under nitrogen using a tungsten lamp. HPLC separation of the reaction products gave three compounds, P-1, P-2, and P-3.

The structures of these compounds were determined from the spectroscopic data. The PMR and mass spectra of P-1 were essentially identical with those of condurangogenin B 3-acetate. Thus, the ester linkage positions (11-cinnamoyl, 12-acetyl) and the ketal structure of conduragogenin B were confirmed. As CGD_0 , 20-O-methyl- CGD_0 , and 20-iso-O-methyl- CGD_0 could be converted chemically to CGB_0 , these glycosides have the same positions of ester linkages as CGB_0 .

Keywords—Condurango Cortex; antitumor-active glycosides; 18-oxygenated pregnane; positions of ester linkages; hypoiodite reaction

Pregnane glycosides from *Marsdenia cundurango* Reichenbach *fil.* were found to be active against Ehrlich ascites carcinoma *in vivo*. The structures of the glycosides were tentatively proposed on the basis of spectral data³⁾ (Chart 1).

However, the structures of the aglycone moieties of these glycosides have not been confirmed, except for condurango glycosides (CG) A_0 (1) and CGC_0 (2). As the aglycone moieties of CGB_0 (3), CGD_0 (4), 20-0-methyl- CGD_0 (5), and 20-iso-0-methyl- CGD_0 (6) were interconvertible, purification of their aglycones was not easy. Separation of the aglycone mixture of 3 by high performance liquid chromatography (HPLC) gave condurangogenin B (7), which was determined to be the genuine aglycone by comparison of the ¹³C-nuclear magnetic resonance (CMR) spectra.³⁾ Nevertheless, the positions of ester linkages could not be determined from the spectral data.

Therefore, transformation to 7 from condurangogenin C (8),⁴⁾ whose structure has been established by chemical evidences, was attempted. Gainelli *et al.*⁵⁾ reported that the treatment of 3β -acetoxy- 20β -hydroxy- 5α -pregnane (9) with Pb(OAc)₄ in benzene afforded the 18,20-oxide (10) as the major product (Chart 2).

However, the reaction of condurangogenin C 3-acetate (11) without iodine yielded only a little of a 20-keto derivative (12). The presence of iodine has been shown to accelerate the oxidative ring formation between C-18 and C-20 of 9 by Ch. Mystre et al.⁶⁾

A mixture of 11, Pb(OAc)₄, I₂, and diethyl ether was irradiated under nitrogen using a tungsten lamp. In contrast with the oxidation of the 18-methyl group of C/D-trans steroids,⁶) hypoiodite reaction of 11 gave relatively simple reaction product. The mixture was subjected to HPLC and three compounds, P-1, P-2, and P-3, were obtained in the ratio of 27: 32: 10 (Chart 3).

P-2 (12) was identified as condurangogenin A 3-acetate⁷⁾ by comparison with an authentic specimen.

2430 Vol. 30 (1982)

Chart 2

The ¹H-nuclear magnetic resonance (PMR) spectrum of P-3 (13) showed the disappearance of one angular methyl group and the appearance of oxygenated methylene signals at δ 4.04 and 4.16 as an AB type quartet (J=9 Hz). Irradiation of the methine signal at δ 3.87 collapsed the doublet signal at δ 1.07 to a singlet. These results suggest that P-3 is an 18, 20-oxide. The CMR spectrum also exhibited signals indicative of ether structure at δ 66.8 (C-18) and 82.6 (C-20).

In the PMR spectrum of P-1 (14), C-18 methylene signals appeared at δ 3.97 and 4.17, and the C-20 methine signal was absent. The mass spectrum of 14 showed the characteristic fragment peak indicating the presence of a ketal moiety (Chart 4).

On hypoiodite reaction, P-3 (13) was converted into P-1 (14) quantitatively. Therefore, the configuration at C-20 of P-3 was determined as \mathbf{R} and the ketal structure of P-1 was also confirmed.

Condurangogenin B (7) was acetylated in the usual manner and the PMR spectrum of the product was compared with that of P-1 (14). The PMR spectra of the two compounds were identical and the structure of 7 was confirmed, including the 11-cinnamoyloxy and 12-acetyloxy groups.

Chart 4

As CGD_0 (4), 20-O-methyl- CGD_0 (5), and 20-iso-O-methyl- CGD_0 (6) have been converted into CGB_0 (3) by treatments with $ZnCl_2$ in benzene,³⁾ these glycosides also have the same positions of ester linkages as CGB_0 .

Thus, the structures of the four antitumor-active glycosides from condurango cortex were established.

Experimental

Optical rotations were measured in CHCl₃ solutions on a Perkin–Elmer 241 digital polarimeter. PMR spectra were determined at 200 MHz with a Varian XL 200 spectrometer, using tetramethylsilane (TMS). as an internal standard (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet). CMR spectra were recorded at 22.5 and 25.0 MHz using JNM FX 90Q and FX 100 spectrometers, respectively. Mass spectra were determined on a Hitachi M-60 machine. Ultra violet (UV) spectra were measured on a Hitachi 356 dual-wavelength double-beam spectrophotometer.

Acetylation of Condurangogenin C (8)——Acetic anhydride (0.16 ml) was added to a solution of 8 (670 mg) in 3 ml of dry pyridine. The solution was kept at room temperature for 24 h. The solution was concentrated in vacuo and the residue was subjected to HPLC (mobile phase, MeOH-CHCl₃-hexane=1: 4: 6; Wakogel LC-5H, 8 mm $\phi \times 250$ mm) to yield 495 mg of condurangogenin C 3-acetate (11), $[\alpha]_D + 48.9^\circ$ (c=0.67, CHCl₃). PMR δ (CDCl₃): 0.99 (3H, s, 19-CH₃), 1.20 (3H, d, J=6 Hz, 21-CH₃), 1.34 (3H, s, 18-CH₃), 1.85 (3H, s, Ac), 2.01 (3H, s, Ac), 3.83 (1H, m, 20-H), 4.69 (1H, m, 3 α -H), 4.85 (1H, d, J=11 Hz, 12 α -H), 5.33 (1H, t, J=11 Hz, 11 β -H), 6.43+7.71 (2H, ABq, J=16 Hz).

Oxidation of Condurangogenin C 3-Acetate (11)—A mixture of 11 (400 mg), freshly prepared Pb(OAc)₄ (2.0 g), CaCO₃ (440 mg), I₂ (600 mg) and dry diethyl ether (16 ml) was irradiated under nitrogen using a tungsten lamp at 4—15°C for 4 h. The reaction mixture was passed through a short column of celite. The eluate was treated with 5% sodium thiosulfate solution and water successively and dried over MgSO₄. Evaporation of the solvent yielded 400 mg of product, which was separated by HPLC under the same conditions as 11 to provide P-1 (108 mg), P-2 (127 mg), and P-3 (41 mg).

P-1 (14)——Amorphous, $[\alpha]_D$ +28.6° (c=0.67, CHCl₃). PMR δ (CDCl₃): 1.04 (3H, s, 19-CH₃), 1.41

 $\begin{array}{l} (3\mathrm{H},\mathrm{s},21\text{-}\mathrm{CH_3}), 1.91 \ (3\mathrm{H},\mathrm{s},\mathrm{Ac}), 2.04 \ (3\mathrm{H},\mathrm{s},\mathrm{Ac}), 3.97+4.17 \ (2\mathrm{H},\mathrm{ABq},J=9\ \mathrm{Hz},18\text{-}\mathrm{CH}_2), 4.69 \ (1\mathrm{H},\mathrm{m},3\alpha\text{-}\mathrm{H}), \\ 5.13 \ (1\mathrm{H},\mathrm{d},J=10\ \mathrm{Hz},12\alpha\text{-}\mathrm{H}), 5.25 \ (1\mathrm{H},\mathrm{t},J=10\ \mathrm{Hz},11\beta\text{-}\mathrm{H}), 6.41 \ (1\mathrm{H},\mathrm{d},J=16\ \mathrm{Hz}), 7.73 \ (1\mathrm{H},\mathrm{d},J=16\ \mathrm{Hz}), \\ 1.20 \ \mathrm{Hz}, 1.2$

P-2 (12)—Amorphous, MS m/z: 580 (M+), 432 (M+-cinnamic acid-acetic acid-H₂O), 131 (cinnamoyl cation, base peak), 43 (acetyl cation). PMR δ (CDCl₃): 0.98 (3H, s, 19-CH₃), 1.10 (3H, s, 18-CH₃), 1.85 (3H, s, Ac), 2.01 (3H, s, Ac), 2.15 (3H, s, 21-CH₃), 4.64 (1H, m, 3α-H), 4.84 (1H, d, J=10 Hz, 12α-H), 5.34 (1H, t, J=10 Hz, 11β-H), 6.44 (1H, d, J=16 Hz), 7.75 (1H, d, J=16 Hz).

P-3 (13)——Amorphous, [α]_D +13.1° (c=0.67, CHCl₃), PMR δ (CDCl₃): 0.92 (3H, s, 19-CH₃), 1.07 (3H, d, J=6 Hz, 21-CH₃), 1.87 (3H, s, Ac), 2.01 (3H, s, Ac), 3.87 (1H, m, 20-H), 4.04+4.16 (2H, ABq, J=9 Hz, 18-CH₂), 4.68 (1H, m, 3α-H), 4.97 (1H, t, J=10 Hz, 11β-H), 5.13 (1H, d, J=10 Hz, 12α-H), 6.47 (1H, d, J=16 Hz), 7.76 (1H, d, J=16 Hz). MS m/z: 562 (M⁺-H₂O), 502 (M⁺-H₂O-AcOH), 414 (M⁺-2H₂O-2AcOH), 131 (cinnamoyl cation, base peak). UV $\lambda_{\max}^{\text{BIOH}}$ nm (log ε): 218 (4.36), 222 (4.27), 280 (4.60). CMR δ (pyridine- d_5): 12.2 (q, C-19), 20.3 (q, C-21), 21.3 (q, Ac), 21.6 (q, Ac), 24.6 (t, C-15), 28.3 (t, C-2), 29.3 (t, C-6+C-7), 35.0 (t, C-4), 37.2 (t, C-1), 37.9 (s, C-10), 38.3 (t, C-16), 43.1 (d, C-8), 45.0 (d, C-5), 50.0 (d, C-9), 57.2 (d, C-17), 66.0 (s, C-13), 66.8 (t, C-18), 73.2 (d, C-3), 74.0 (d, C-11), 76.7 (d, C-12), 82.6 (s+d, C-14+C-20), 118.5 (d, Cin-2), 128.8 (d, Cin-6), 129.4 (d, Cin-5), 130.9 (s, Cin-4), 135.0 (d, Cin-7), 146.3 (d, Cin-3), 167.0 (s, Cin-1), 170.3 (s+s, ester carbonyl). Anal. Calcd for C₃₄H₄₄O₈: C, 70.32; H, 7.64. Found: C, 70.41; H, 7.58.

Conversion of P-3 (13) to P-1 (14)——A mixture of 13 (20 mg), Pb(OAc)₄ (100 mg), CaCO₃ (22 mg), iodine (30 mg), and diethyl ether (3 ml) was irradiated under nitrogen using a tungsten lamp at 4—15°C for 4 h. The reaction mixture was treated by the same method as in the case of 11. The spectral data for the product were identical with those of P-1 (14).

Acetylation of Condurangogenin B (7)——Condurangogenin B (10 mg) was acetylated with acetic anhydride (0.2 ml) in 2 ml of dry pyridine. After 2 h, the solution was concentrated *in vacuo*, and the residue was purified by HPLC. The PMR spectrum of condurangogenin B 3-acetate was identical with that of 14.

References and Notes

- 1) Part XLVIII: H. Bando, T. Amiya, E. Sato, and H. Mitsuhashi, *Chem. Pharm. Bull.*, 28, 2258 (1980); this article was taken in part from the Ph. D. Thesis of M. Takase, Hokkaido University, Japan, September, 1981.
- 2) A part of this work was presented at the 24 th symposium on the chemistry of natural products, Osaka, Japan, October, 15, 1981.
- 3) a) K. Hayashi, K. Wada, H. Mitsuhashi, H. Bando, M. Takase, S. Terada, Y. Koide, T. Aiba, T. Narita, and D. Mizuno, Chem. Pharm. Bull., 28, 1954 (1980); b) Idem, ibid., 29, 2725 (1981).
- 4) R. Tschesche, P. Welzel, an H.W. Felhaber, Tetrahedron, 21, 1797 (1965).
- 5) G. Gainelli, M. Lj. Mihailovic, D. Arigoni, and O. Jeger, Helv. Chim. Acta, 42, 1124 (1959).
- 6) a) K. Heusler, P. Wieland, and Ch. Mystre, Org. Synth., 45, 57 (1965); b) Ch. Mystre, K. Heusler, J. Kalvoda, P. Wieland, G. Anner, and A. Wettstein, Helv. Chim. Acta, 45, 1317 (1962); c) K. Heusler and J. Kalvoda, Angew. Chem., Internat., Edn., 3, 525 (1964).
- 7) R. Tschesche, P. Welzel, and G. Snatzke, Tetrahedron, 21, 1777 (1965).