(Chem. Pharm. Bull.) 30(8)2723-2731(1982)

Reactions of Pyrazolo[1,5-\alpha]pyrimidine Derivatives with Nucleophiles. III.\(^1\)

Nucleophilic Addition to 6,7-Bis(ethoxycarbonyl)pyrazolo[1,5-\alpha]pyrimidine3-carbonitrile in the Presence of Triethyloxonium Fluoroborate\(^2\)

Takushi Kurihara* and Keiko Nasu

Osaka College of Pharmacy, 2-10-65, Kawai, Matsubara, Osaka 580, Japan (Received January 25, 1982)

Nucleophilic additions of phenol and aniline analogs to 6,7-bis(ethoxycarbonyl)pyrazolo[1,5-a]pyrimidine-3-carbonitrile (1) in the presence of triethyloxonium fluoroborate are described. For example, though phenol or o-cresol (having no substituent at the para-position) reacted with 1 to give the cyclohexadienylidene derivatives (3, 4), p- or m-cresols, p-methoxyphenol, and α - or β -naphthol gave the corresponding spiro lactones (6, 7, 8, 10 and 12). When 1 was treated with several kinds of aniline analogs, three types of products were obtained. Namely, while aniline or o-toluidine gave the 7-(4-aminophenyl) adducts (13, 15), p-anisidine, p-chloroaniline or p-nitroaniline afforded the 7-anilino derivatives (17, 20 or 21). Treatment of p-toluidine with 1 under the same reaction conditions gave a mixture of the spiro-indole-3(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin-2-one (22) and the pyrazolo[1',5': 1,2]pyrimido[5,6-c]quinoline (23).

 $\label{eq:Keywords} \textbf{Keywords} — pyrazolo[1,5-a] pyrimidine; triethyloxonium fluoroborate; toluidine; naphthol; spiro{benzo[b]furan-3(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidine}; spiro{naphtholi,2-b]furan-3(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidine}; spiro{naphtholi,2-b]furan-3(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidine}; spiro{indole-3(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidine}: pyrazolo[1',5':1,2]pyrimido[5,6-c]quinoline}$

Previously, we reported³⁾ the nucleophilic additions of phenol analogs, indoles, and enamines of cyclohexanone to 6,7-bis(ethoxycarbonyl)pyrazolo[1,5-a]pyrimidine-3-carbonitrile (1) in the presence of boron trifluoride (BF₃)-etherate. For example, when a mixture of 1 and three equivalents of phenol or a phenol analog such as p-cresol or β -naphthol was re fluxed with a limited amount of BF₃-etherate in dichloromethane, diethyl 2-(4-oxo-2,5-cyclohexadienylidene)-3-[4-cyano-5(1H)-pyrazolylamino]methylenesuccinate, 3'-cyano-6'-ethoxycarbonyl-5-methylspiro{benzo[b]furan-3(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin}-2-one, respectively, was obtained. Although it was found²⁾ that aluminum chloride (AlCl₃) promotes these reactions under mild conditions to give the addition products in better yields, these catalysts were not useful for the reaction of 1 with aniline analogs, because of the formation of BF₃ or AlCl₃ complexes of anilines.

In the proceding paper,¹⁾ we reported a synthesis and X-ray crystal structure determination of novel 1,4-dihydrocyclopent[b]indole derivatives, which were prepared by reaction of 1 with indoles in the presence of triethyloxonium fluoroborate (Et₃OBF₄). In the present paper, we wish to report the reaction of 1 with phenol analogs as well as aniline analogs in the presence of Et₃OBF₄, which is known to convert pyrimidines to their diquaternary salts.⁴⁾

Reactions with Phenol Analogs

First, nucleophilic addition of 1 with phenol itself was investigated. When a mixture of 1 with three equivalents of Et₃OBF₄ in dichloromethane was allowed to stand at room temperature, 1 could no longer be detected on thin layer chromatographic analysis after ca. 24 h. The reaction mixture was then treated with cold water to give 6,7-bis(ethoxy-carbonyl)-4,7-dihydro-4-ethyl-7-hydroxypyrazolo[1,5-a]pyrimidine-3-carbonitrile (2) in 55.0% yield.³⁾ Thus, three equivalents of phenol was added to a mixture of 1 and Et₃OBF₄ prior to water treatment, and the whole mixture was allowed to react with stirring at room temper-

Vol. 30 (2982)

TABLE I. Analytical and IR Spectral Data for Spiro Lactones

Compd. No.	mp (°C)	Yield (%)	Formula	F	IR $\nu_{\rm max}^{\rm KBr}$ cm ⁻¹			
				ć	Ĥ	N	(CN)	(CO)
6	212-214a)	32.7	$C_{20}H_{18}N_4O_4$	63.48 (63.35)	4.80 (4.76)	14.81 (14.81)	2220	1820 1710
7	196 ^a)	6.6	$\rm C_{20} \rm H_{18} \rm N_4 \rm O_4$	63.48 (63.68)	4.80 (4.95)	14.81 (14.90)	2220	1820 1710
8	184—186 ^a)	15.2	$C_{20}H_{20}N_4O_5$	60.91 (60.82)	4.60 (4.36)	14.21 (14.47)	2220	1820 1690
9	183—184ª)	62.8	$\mathrm{C_{21}H_{20}N_4O_4}$	64.27 (64.07)	5.14 (5.06)	14.28 (14.24)	2220	1820 1710
10	2452466)	59.3	$C_{23}H_{18}N_4O_4$	66.66 (66.74)	4.38 (4.16)	13.52 (13.59)	2220	1820 1710
12	275—2776)	61.8	$C_{23}H_{18}N_4O_4$	66.66 (66.55)	4.38 (4.52)	13.52 (13.38)	2220	1820 1710

a) Recrystallized from EtOH.

ature for 24 h to give diethyl 2-(4-oxo-2,5-cyclohexadienylidene)-3-(4-cyano-5(1H)-pyrazolylethylamino)methylenesuccinate (3)⁵⁾ in 59.0% yield. On treatment with acetic anhydride in the presence of a catalytic amount of sulfuric acid, 3 was transformed into 7-(p-acetoxyphenyl)-6,7-bis(ethoxycarbonyl)-4,7-dihydro-4-ethylpyrazolo[1,5-a] pyrimidine-3-carbonitrile (5), which proved 3 to have the cyclohexadienylidene structure.³⁾ Therefore, subsequent reactions with other nucleophiles in this work were carried out after the completion of the reaction of 1 with Et₃OBF₄. Similarly, reaction of 1 with o-cresol afforded 4 in 43.0% yield. However, when treated with p- and m-cresols, p-methoxyphenol or 3,5-xylenol, 1 afforded the corresponding 4'-ethylspiro{benzo[b]furan-3(2H), 7'(4'H)-pyrazolo[1,5-a]pyrimidin}-2-ones (6, 7, 8 and 9). The analytical and infrared (IR) spectral data are summarized in Table I. Under the same experimental conditions as above, α -naphthol was treated with 1 to give a

b) Recrystallized from CH₃CN.

No. 8 2725

corresponding spiro lactone (10) (Table I) in 59.3% yield together with ethyl α -(1,2-dihydro-1-oxo-2-naphthylidenemethyl)-2-oxo- $\Delta^{3(2H),\alpha}$ -naphtho[1,2-b] furaneacetate (11), $C_{27}H_{18}O_5$, mp 231—232 °C, in 2.6% yield. Evidence for this structure was provided by the IR spectrum (in which three strong absorption bands at 1810, 1710 and 1660 cm⁻¹ due to carbonyl groups appeared) and the proton magnetic resonance (PMR) spectrum [in which a pair of doublets (J=9 Hz) at 6.75 and 7.30 ppm due to -CH=CH- (data consistent with the data for o-naphtho-quinone)⁶ as well as a singlet at 8.48 ppm due to -CH appeared].

The formation of the lactone (11) can be rationalized as shown in Chart 2; namely, nucleophilic attack of the second α -naphthol at the C(5')-position of the initially formed spiro lactone (10) may form the intermediate A. Subsequenctly, elimination of the aminopyrazole moiety (taking the o-naphthoquinone structure) would ultimately yield 11. Under the same conditions, β -naphthol reacted with 1 to give only a spiro lactone (12) in 61.8% yield.

 $E = CO_2Et$

Chart 2

Reaction with Aniline Analogs

When 1 was treated with several kinds of aniline analogs under the same experimental conditions as above, three types of products were obtained. Namely, aniline, N,N-dimethylaniline or o-toluidine gave the 7-aminophenyl adducts (13,7) 14 and 15) upon reaction with

Chart 3

2726 Vol. 30 (1982)

1 in yields of 57.2, 19.5 and 32.8%, respectively. On the other hand, the 7-anilino derivatives (17, 18, 20 and 21) were obtained by reaction of 1 with p-anisidine, 3,5-xylidine, pchloroaniline and p-nitroaniline in yields of 72.3, 47.2, 65.1 and 61.3%, respectively. In the case of 2,5-xylidine, a mixture of the 7-(4-aminophenyl) adduct (16)7 and the 7-anilino derivative (19) was obtained (14.6 and 7.1% yields, respectively). However, we could not find a clear substituent effect on these reactions. The analytical and IR spectral data for these products (13—21) are summarized in Table II.

Finally, treatment of p-toluidine with 1 under the same reaction conditions as above gave a 19.9% yield of 3'-cyano-6'-ethoxycarbonyl-4'-ethyl-5-methylspiro{indole-3(2H),7'(4'H)pyrazolo[1,5-a]pyrimidin}-2-one (22) together with an 8.0% yield of 3-cyano-11b-ethoxycarcarbonyl-4-ethyl-10-methyl-4, 6, 7, 11b-tetrahydropyrazolo[1',5': 1,2] pyrimido[5,6-c] quinolin-

Table II. Analytical and IR Spectral Data for 7-Substituted 4,7-Diydropyrazolo [1,5-a]pyrimidines Compd.

$$\begin{array}{c|c} EtO_2C & R \\ EtO_2C - \parallel & \parallel \\ & N - N \\ Et & CN \end{array}$$

Compd. No.	R	mp (°C)	Formula	Analyses (%) Calcd (Found)			$IR \nu_{\max}^{KBr} cm^{-1}$		
				С	Н	N	(NH)	(CN)	(CO)
13	$ \left\langle \begin{array}{c} - \\ \end{array} \right\rangle$ - $N \left\langle \begin{array}{c} \mathrm{Et} \\ \mathrm{H} \end{array} \right\rangle$	124—127°)	$C_{23}H_{27}N_5O_4$	63.14 (62.85)	6.22 (6.38)	16.01 (15.97)	3400	2220	1760 1690
14	- $N < Me$ Me Me	105—106 ^{b)}	$C_{23}H_{27}N_5O_4$	63.14 (62.95)	6.22 (6.22)	16.01 (15.88)		2220	1760 1690
15	$ NH_2$ Me	161—162 ^a)	$\mathrm{C_{22}H_{25}N_5O_4}$	62.40 (62.68)	5.95 (6.19)	16.54 (16.40)	3440 3380	2220	1740 1690
16	-VEt Me	155—156°)	$\mathrm{C_{25}H_{31}N_5O_4}$	64.49 (64.16)	6.71 (6.64)	15.04 (15.22)	3400	2220	1740 1690
17	H -N- -OMe Me	139 ^a)	$\mathrm{C_{22}H_{25}N_5O_5}$	60.12 (59.94)	5.73 (5.52)	15.94 (15.72)	3320	2220	1760 1700
18	H -N- Me	147ª)	$C_{23}H_{27}N_5O_4$	63.14 (62.98)	6.22 (5.95)	16.01 (16.24)	3400	2220	1760 1700
19	Me H -N- Me	129—130 ^{b)}	$\begin{array}{c} {\rm C_{23}H_{27}N_5O_4} \\ \cdot 1/2{\rm C_6H_6} \end{array}$	65.53 (65.72)	6.35 (6.53)	14.70 (14.97)	3480	2220	1760 1710
20	H-N-C1	170—171 ^{e)}	${\rm C_{21}H_{22}ClN_5O_4}\atop{-^1/_2{\rm C_6H_6}}$	56.82 (57.02)	5.00 (5.13)	15.78 (15.61)	3320	2220	1760 1690
21	H -N-(204—205e)	$\mathrm{C_{21}H_{22}N_6O_6}$	55.50 (55.53)	4.88 (4.88)	18.50 (18.22)	3330	2220	1760 1690

a) Recrystallized from EtOH.

b) Recrystallized from CH₃CN.

c) Recrystallized from AcOEt-n-hexane.

d) Recrystallized from benzene-ligroin.

e) Recrystallized from MeOH.

6-one (23). As depicted in Chart 3, the PMR spectrum, in which the signal due to the C(5)-proton of 23 appeared down-field (by 0.37 ppm) from that of 22, strongly supports the structure of 23 as a δ -lactam, because the C(5)-proton of 23 is located in the deshielding zone of the δ -lactam carbonyl group from an inspection of a Dreiding model. Moreover, evidence for the spiro lactam structure of 22 was provided by its ultraviolet (UV) spectrum [$\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 324 (3.08)], in which the absorption maximum is very similar to that of the corresponding spiro lactane (6). Similarly, m-toluidine gave only the spiro lactam (24) in 39.4% yield.

Reactions with Miscellaneous Nucleophiles

When 8-hydroxyquinoline was allowed to react with 1 under the same experimental conditions, 6,7-bis (ethoxycarboxyl)-4,7-dihydro-4-ethyl-7-(8-hydroxy-5-quinolyl)pyrazolo[1,5a]pyrimidine-3-carbonitrile(25), which gave a positive ferric cholride test, was isolated in 18.4% yield as an unexpected product. In contrast to the reaction with indoles described in the preceding paper, 1 1 reacted with benzo[b]furan to give 7-(2-benzo [b] furanyl) -6,7-bis (ethoxycarbonyl)-4, 7 - dihydro - 4 - ethylpyrazolo [1, 5 - a]pyrimidine-3-carbonitrile (26) in 47.4% yield, and the PMR spectrum of this product showed a singlet at

$$E = CO_{2}Et$$

$$E = CO_{2}Et$$

$$OH$$

$$AcMe$$

$$AcMe$$

$$E = CH_{2}Ac$$

7.10 ppm due to the β -proton of benzofuran.⁸⁾ Finally, as described in the experimental section, potassium carbonate remarkably promoted the reaction of 1 with acetone to give 7-acetonyl-6,7-bis(ethoxycarbonyl)-4,7-dihydro-4-ethylpyrazolo[1,5-a]pyrimidine-3-carbonitrile (27) in 43.1% yield. The structural assignment of 27 was based on the analytical and spectral data detailed in the experimental section.

On the basis of these investigations, it can be concluded that triethyloxonium fluoroborate is a more effective catalyst than BF_3 -etherate for the reaction of 1 with nucleophiles.

Experimental

All melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. The IR spectra were recorded on a JASCO model IRA-1 spectrophotometer and the UV spectra on a JASCO UVIDEC-505 spectrophotometer. The PMR spectra were taken at 90 MHz with a Hitachi R-24A spectrometer and chemical shifts are expressed in ppm downfield from TMS as an internal standard. The following abbreviations are used: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, and br=broad. The MS were recorded with a Hitachi RMU-7L spectrometer.

6,7-Bis(ethoxycarbonyl)-4,7-dihydro-4-ethyl-7-hydroxypyrazolo[1,5-a] pyrimidine -3-carbonitrile (2)—Three mmol of Et₃OBF₄ was added to a solution of 1 mmol of 1 in 5 ml of CH₂Cl₂, and the mixture was allowed to stand at room temperature for 24 h. The CH₂Cl₂ solution was washed with cold water (10 ml × 5), dried over Na₂SO₄ and concentrated. The residue was recrystallized from benzene-ligroin mixture to give 184 mg (55.0%) of 2 as colorless needles of mp 130—131°C. IR ν_{\max}^{RBT} cm⁻¹: 3440 (OH), 2220 (CN), 1750, 1700 (CO). PMR (CDCl₃) δ : 1.20—1.76 (9H, m, 2×CO₂CH₂CH₃ and NCH₂CH₃), 4.00—4.50 (6H, m, 2×CO₂CH₂CH₃ and NCH₂CH₃), 5.74 (1H, s, OH), 7.60 and 7.77 [each 1H, each s, C(2)—H and/or C(5)—H]. Anal. Calcd for C₁₅H₁₈-N₄O₅: C, 53.88; H, 5.43; N, 16.76. Found: C, 53.97; H, 5.56; N, 16.53.

Reaction of 1 with Phenol or o-Cresol in the Presence of Et₃OBF₄——A solution of 1 mmol of 1 and 3 mmol of Et₃OBF₄ in 5 ml of CH₂Cl₂ was allowed to stand for 24 h, then a solution of 3 mmol of phenol or

o-cresol dissolved in 20 ml of CH₂Cl₂ was added and the mixture was stirred at room temperature for a further 24 h. The CH₂Cl₂ solution was washed with water (20 ml × 5), dried over Na₂SO₄, and concentrated. The residue was purified by recrystallization.

Diethyl 2-(4-0xo-2,5-cyclohexadienylidene)-3-(4-cyano-5(1H)-pyrazolylethylamino) methylenesuccinate(3) 59.0% yield. mp 172 – 173°C (benzene). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3400 (NH), 2220 (CN), 1750, 1730, 1700 (CO). PMR (DMSO- d_6) δ : 1.00—1.43 (9H, m, 2×CO₂CH₂CH₃ and NCH₂CH₃), 3.80—4.30 (6H, m, 2×CO₂CH₂CH₃)

and NCH₂CH₃), 6.63 and 6.80 (each 2H, each d,
$$J=9$$
 Hz, = $U=0$), 7.75 (1H, s, =CH), 8.02 (1H, s, H) H Pure Proposition (C, 61.63; H, 5.20; N, 13.65). Found: C, 61.63; H, 5.20; N, 13.77

61.63; H, 5.22; N, 13.77.

Diethyl 2-(3-Methyl-4-oxo-2,5-cyclohexadienylidene)-3-(4-cyano-5(1H)-pyrazolylethylamino)methylenesuccinate (4)——43% yield. mp 166—167°C (EtOH- H_2O). IR ν_{max}^{KBT} cm⁻¹: 3360 (NH), 2220 (CN), 1760, 1700 (CO). PMR (DMSO- d_6) δ : 1.03—1.43 (9H, m, $2 \times \text{CO}_2\text{CH}_2\text{CH}_3$ and NCH_2CH_3), 2.07 (3H, s, CH₃), 3.90—

4.33 (6H, m,
$$2 \times \text{CO}_2\text{C}_{\frac{1}{2}}\text{CH}_3$$
 and $\text{NC}_{\frac{1}{2}}\text{CH}_3$), 6.58—7.05 (3H, m, = =0), 7.80 (1H, s, =CH), 8.06 (1H, H) CH₃ s, pyrazole ring-H), 9.42 (1H, s, NH). Anal. Calcd for $\text{C}_{22}\text{H}_{24}\text{N}_4\text{O}_5$: C, 62.25; H, 5.70; N, 13.20. Found:

C, 62.10; H, 5.91; N, 13.19.

7-(p-Acetoxyphenyl)-6,7-bis(ethoxycarbonyl)-4,7-dihydro-4-ethylpyrazolo[1,5-a]pyrimidine-3-carbonitrile (5)—One drop of conc. H₂SO₄ was added to a suspension of 1 mmol of 3 in 10 ml of acetic anhydride, and the mixture was stirred for 10 h at 40°C. The solution was poured into ice-water, made alkaline with NaHCO₃ and extracted with CHCl3. The CHCl3 layer was washed with water and dried over Na2SO4. After removal of the solvent by evaporation, the residue was recrystallized from n-hexane to give 450 mg (100%) of 5 as colorless needles of mp 72—74°C. IR $\nu_{\max}^{\text{Ems.}}$ cm⁻¹: 2220 (CN), 1760, 1690 (CO). PMR (DMSO- d_{e}) δ : 1.05—1.45 $(9H, m, 2 \times CO_2CH_2CH_3)$ and NCH_2CH_3 , 2.24 $(3H, s, OCOCH_3)$, 3.85—4.32 $(6H, m, 2 \times CO_2CH_2CH_3)$ and NCH_2CH_3), 7.02 and 7.22 (each 2H, each d, J=9 Hz, Ar-H), 7.80 [1H, s, C(5)-H], 8.06 [1H, s, C(2)-H]. MS m/z: 452 (M⁺). Anal. Calcd for $C_{23}H_{24}N_4O_6\cdot 1/2C_6H_{14}$: C, 63.01; H, 6.31; N, 11.31. Found: C, 63.13; H, 6.30; N, 11.22.

3'-Cyano-6'-ethoxycarbonyl-4'-ethyl-5-methylspiro $\{benzo[b]$ furan-3(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin $\}$ -2-one (6)——From 1 mmol of 1 and 3 mmol of p-cresol, 124 mg of 6 (Table 1) was obtained by the method described for the preparation of 3. PMR (DMSO- d_6) δ : 1.08 (3H, t, J=7 Hz, $CO_2CH_2CH_3$), 1.42 (3H, t, $J = 7 \text{ Hz}, \text{ NCH}_2\text{C}_{\underline{\textbf{H}}_3}), 2.24 \text{ (3H, s, CH}_3), 3.87 - 4.25 \text{ (4H, m, CO}_2\text{C}_{\underline{\textbf{H}}_2\text{CH}_3} \text{ and NC}_{\underline{\textbf{H}}_2\text{CH}_3}), 7.05 - 7.30 \text{ (3H, m, CO}_2\text{C}_{\underline{\textbf{H}}_2\text{CH}_3})$ Ar-H), 8.01 and 8.05 [each 1H, each s, C(2')-H and/or C(5')-H]. UV λ_{max}^{EtoH} nm (log ε): 323 (3.19).

3'-Cyano-6'-ethoxycarbonyl-4'-ethyl-6-methylspiro $\{benzo[b]$ furan -3(2H), 7'(4'H)-pyrazolo[1,5-a] pyrimidin}-2-one (7)——A solution of 1 and 3 mmol of m-cresol dissolved in 20 ml of CH₂Cl₂ was added to a prereacted solution of 1 mmol of 1 and 3 mmol of Et₃OBF₄ in 5 ml of CH₂Cl₂, and the mixture was refluxed for 3 d. The CH₂Cl₂ solution was washed with water (20 ml × 5), dried over Na₂SO₄ and concentrated. A small amount of EtOH was added to the residue and the resulting crystalline solid was collected by filtration and purified by recrystallization to give 25 mg of 7 (Table I). PMR (DMSO- d_6) δ : 1.08 (3H, t, J=7 Hz, CO₂- CH_2CH_3), 1.40 (3H, t, J = 7 Hz, NCH_2CH_3), 2.36 (3H, s, CH_3), 3.85—4.25 (4H, m, $CO_2CH_2CH_3$ and NCH_2CH_3), 6.90-7.25 (3H, m, Ar-H), 8.01 and 8.05 [each 1H, each s, C(2')-H and/or C(5')-H].

3'-Cyano-6'-ethoxycarbonyl-4'-ethyl-5-methoxyspiro $\{$ benzo[b]furan-3(2H), 7'(4'H)-pyrazolo[1, 5-a]pyrimidin}-2-one (8)——From 1 mmol of 1 and 3 mmol of p-methoxyphenol, 60 mg of 8 (Table I) was obtained by the method described for the preparation of 7. PMR (DMSO- d_6) δ : 1.08 (3H, t, J = 7 Hz, CO₂CH₂CH₃), 1.40 (3H, t, J = 7 Hz, NCH₂CH₃), 3.68 (3H, s, OCH₃), 3.85—4.26 (4H, m, CO₂CH₂CH₃ and NCH₂CH₃), 6.88— 7.32 (3H, m, Ar-H), 8.02 and 8.03 [each 1H, each s, C(2')-H and/or C(5')-H].

3'-Cyano-4,6-dimethyl-6'-ethoxycarbonyl-4'-ethylspiro $\{\text{benzo}[b] \text{furan-} 3(2H), 7'(4'H) \text{-pyrazolo}[1,5-a] \text{pyrimi-} 1,5-a \}$ din}-2-one (9)——From 1 mmol of 1 and 3 mmol of 3,5-xylenol, 246 mg of 9 (Table I) was obtained by the method described for the preparation of 3. PMR (DMSO- d_6) δ : 1.11 (3H, t, J=7 Hz, CO₂CH₂CH₃), 1.40 $(3H, t, J=7 Hz, NCH_2CH_3)$, 1.86 and 2.32 (each 3H, each s, $2 \times CH_3$), 3.90—4.30 (4H, m, $CO_2CH_2CH_3$ and NCH₂CH₃), 6.76 and 6.96 (each 1H, each s, Ar-H), 8.04 and 8.07 [each 1H, each s, C(2')-H and/or C(5')-H].

Reaction of 1 with α-Naphthol in the Presence of Et₃OBF₄——A solution of 9 mmol of α-naphthol dissolved in 50 ml of CH₂Cl₂ was added to a prereacted solution of 3 mmol of 1 and 9 mmol of Et₃OBF₄ in 10 ml of CH₂Cl₂, and the mixture was stirred at room temperature for 24 h. The CH₂Cl₂ solution was washed with water (30 ml × 5), dried over Na₂SO₄ and concentrated. EtOH was added to the residue and the resulting precipitate was collected by filtration. Recrystallization gave 738 mg of pure 3'-cyano-6'-ethoxycarbonyl-4'ethylspiro{naphtho[1,2-b]furan-3(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin}-2-one (10) (Table I). PMR (DMSO d_6) δ : 1.00 (3H, t, J = 7 Hz, CO₂CH₂CH₃), 1.45 (3H, t, J = 7 Hz, NCH₂CH₃), 3.95 (2H, q, J = 7 Hz, CO₂CH₂- CH_3), 4.14 (2H, q, J = 7 Hz, NCH_2CH_3), 7.33—8.10 (6H, m, Ar-H), 8.02 and 8.12 [each 1H, each s, C(2')-H and/or C(5')-H]. The filtrate was concentrated in vacuo, and the residue was subjected to silica gel column chromatography. The first fraction eluted with CHCl₃ gave 33 mg (2.6%) of ethyl α-(1,2-dihydro-1-oxo-2naphthylidenemethyl)-2-oxo- $\varLambda^{3(2H),\alpha}$ -naphtho[1,2-b]furanacetate (11) as colorless needles of mp 231—232°C (EtOH). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1810, 1710, 1660 (CO). PMR (DMSO- d_6) δ : 1.01 (3H, t, J=7 Hz, $CO_2CH_2CH_3$), 3.97 (2H, q, J = 7 Hz, $CO_2CH_2CH_3$), 6.75 and 7.30 (each 1H, each d, J = 9 Hz, CH = CH), 7.55—8.35 (10H, m, Ar-H), 8.48 (1H, s, CH). MS m/z: 422 (M+). Anal. Calcd for $C_{27}H_{18}O_5$: C, 76.77; H, 4.30. Found: C, 76.63;

- $3'-Cyano-6'-ethoxycarbonyl-4'-ethylspiro\{naphtho[2,1-b]furan-3(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin\}-2-a(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin\}-2-a(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin\}-2-a(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin\}-2-a(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin\}-2-a(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin\}-2-a(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin\}-2-a(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin\}-2-a(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin\}-2-a(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin]-2-a(2H),7'(4'H)-a(2H)-a$ one (12)—From 1 mmol of 1 and 3 mmol of β -naphthol, 256 mg of 12 (Table I) was obtained by the method described for the preparation of 3. PMR (DMSO- d_6) δ : 1.03 (3H, t, J=7 Hz, CO₂CH₂CH₃), 1.51 (3H, t, $J = 7 \text{ Hz}, \text{ NCH}_2\text{CH}_3), 3.95 (2\text{H}, \text{q}, J = 7 \text{ Hz}, \text{CO}_2\text{CH}_2\text{CH}_3), 4.26 (2\text{H}, \text{q}, J = 7 \text{ Hz}, \text{NCH}_2\text{CH}_3), 7.15 - 8.10 (6\text{H}, \text{q}, \text{M}_2\text{CH}_3), 7.15 - 8.10 (6\text{H}, \text{M}_$ m, Ar-H), 8.00 and 8.20 [each 1H, each s, C(2')-H and/or C(5')-H].
- $6,7-Bis(ethoxycarbonyl)-4,7-dihydro-4-ethyl-7-(4-ethylaminophenyl)\ pyrazolo\ [1,5-\alpha]\ pyrimidine-3-carbonyl-4,7-dihydro-4-ethylaminophenyl)\ pyrazolo\ [1,5-\alpha]\ pyrimidine-3-carbonyl-4,7-dihydro-4-ethylaminophenyl-4$ nitrile (13)——From 1 mmol of 1 and 3 mmol of aniline, 250 mg (57.2%) of 13 (Table II) was obtained by the method described for the preparation of 3. PMR (DMSO- d_6) δ : 0.95—1.45 (12H, m, 2×CO₂CH₂CH₃ and $2 \times \text{NCH}_2\text{CH}_3$), 3.80 - 4.26 (8H, m, $2 \times \text{CO}_2\text{CH}_2\text{CH}_3$ and $2 \times \text{NCH}_2\text{CH}_3$), 6.37 and 6.88 (each 2H, each d, J = 9 Hz, Ar-H), 7.70 [1H, s, C(5)-H], 7.96 [1H, s, C(2)-H].
- 6,7-Bis(ethoxycarbonyl)-4,7-dihydro-7- $\{4$ -(N,N-dimethylamino)phenyl\}-4-ethylpyrazolo[1,5-a]pyrimidine-3-carbonitrile (14)——After usual work-up of 1 mmol of 1 and 3 mmol of N,N-dimethylaniline in the presence of Et₃OBF₄, the residual oil was subjected to silica gel column chromatography. The first fraction eluted with CHCl₃ provided 85 mg (19.5%) of 14 (Table II). PMR (DMSO- d_6) δ : 1.03—1.40 (9H, m, $2 \times \text{CO}_2\text{CH}_2\text{CH}_3$ and NCH_2CH_3), 2.84 (6H, s, $2 \times CH_3$), 3.85—4.26 (6H, m, $2 \times CO_2CH_2CH_3$ and NCH_2CH_3), 6.55 and 6.98 (each 2H, each d, J = 9 Hz, Ar-H), 7.74 [1H, s, C(5)-H], 8.00 [1H, s, C(2)-H].
- 7-(4-Amino-3-methylphenyl)-6, 7-bis (ethoxycarbonyl) -4, 7-dihydro-4-ethylpyrazolo[1,5-a]pyrimidine-3-methylphenyl) <math>-6, 7-bis (ethoxycarbonyl) -4, 7-dihydro-4-ethylpyrazolo[1,5-a]pyrimidine-3-methylphenyl) <math>-6, 7-bis (ethoxycarbonyl) -4, 7-dihydro-4-ethylpyrazolo[1,5-a]carbonitrile (15)——From 1 mmol of 1 and 3 mmol of o-toluidine, 139 mg (32.8%) of 15 (Table II) was obtained by the method described for the preparation of 14. PMR (DMSO- d_6) δ : 1.00—1.42 (9H, m, $2 \times \text{CO}_2\text{CH}_2\text{CH}_3$ and NCH_2CH_3), 1.96 (3H, s, CH_3), 3.83—4.26 (6H, m, $2 \times CO_2CH_2CH_3$ and NCH_2CH_3), 4.84 (2H, s, NH_2), 6.35—6.83 (3H, m, Ar–H), 7.70 [1H, s, C(5)–H], 7.96 [1H, s, C(2)–H].

Reaction of 1 with 2,5-Xylidine in the Presence of Et₃OBF₄—A solution of 3 mmol of 2,5-xylidine dissolved in 20 ml of CH₂Cl₂ was added to a prereacted solution of 1 mmol of 1 and 3 mmol of Et₃OBF₄ in 5 ml of CH₂Cl₂, and the mixture was stirred at room temperature for 24 h. After usual work-up, an oily material was obtained and subjected to silica gel column chromatography. The first fraction eluted with CHCl₃ provided 31 mg (7.1%) of 6,7-bis(ethoxycarbonyl)-4,7-dihydro-7-(2,5-dimethylanilino)-4-ethylpyrazolo-[1,5-a]pyrimidine-3-carbonitrile (19) (Table II). PMR (DMSO- d_6) δ : 1.02—1.52 (9H, $2 \times \text{CO}_2\text{CH}_2\text{CH}_3$ and NCH_2CH_3), 2.06 and 2.10 (each 3H, each s, $2 \times CH_3$), 3.95—4.30 (6H, m, $2 \times CO_2CH_2CH_3$ and NCH_2CH_3),

with CHCl₃ gave 70 mg (14.6%) of 6,7-bis(ethoxycarbonyl)-4,7-dihydro-7-(2,5-dimethyl-4-ethylaminophenyl)-4-ethylpyrazolo[1,5-a]pyrimidine-3-carbonitrile (16) (Table II). PMR (DMSO- d_6) δ : 0.92—1.42 (12H, m, $2 \times \text{CO}_2\text{CH}_2\text{CH}_3$ and $2 \times \text{NCH}_2\text{CH}_3$), 1.67 and 2.03 (each 3H, each s, $2 \times \text{CH}_3$), 3.77—4.28 (8H, m, $2 \times \text{CO}_2\text{CH}_2$ - CH_3 and $2 \times NCH_2CH_3$, 6.16 and 7.04 (each 1H, each s, Ar-H), 7.66 [1H, s, C(5)-H], 7.88 [1H, s, C(2)-H].

- 6,7-Bis (ethoxycarbonyl) -4,7-dihydro -4-ethyl -7-(p-methoxyanilino) pyrazolo [1,5-a] pyrimidine -3-carbo-—A solution of 3 mmol of p-anisidine dissolved in 20 ml of CH₂Cl₂ was added to a prereacted solution of 1 mmol of 1 and 3 mmol of Et₃OBF₄ in 5 ml of CH₂Cl₂, and the mixture was stirred at room temperature for 10 min. After usual work-up, 318 mg (72.3%) of 17 (Table II) was obtained. PMR (DMSO- d_6) δ : 1.00—1.35 (9H, m, $2 \times \text{CO}_2\text{CH}_2\text{CH}_3$ and NCH_2CH_3), 3.64 (3H, s, OCH₃), 3.80—4.35 (6H, m, $2 \times \text{CO}_2\text{CH}_2\text{CH}_3$ and NCH_2CH_3 , 5.70 (1H, s, NH), 6.34 and 6.66 (each 2H, each d, J=9 Hz, Ar-H), 7.77 [1H, s, C(5)-H], 8.06 [1H, s, C(2)-H].
- 6,7-Bis (ethoxycarbonyl) -4,7-dihydro-7-(3,5-dimethylanilino)-4-ethylpyrazolo[1,5-\alpha] pyrimidine-3-carbonitrile (18)——A solution of 3 mmol of 3,5-xylidine dissolved in 20 ml of CH₂Cl₂ was added to a prereacted solution of 1 mmol of 1 and 3 mmol of Et₃OBF₄ in 5 ml of CH₂Cl₂, and the mixture was stirred at room temperature for 2 h. After usual work-up, 206 mg (47.2%) of 18 (Table II) was obtained. PMR (DMSO $d_{6}) \ \delta: \ 1.03-1.45 \ (9H, \ m, \ 2 \times CO_{2}CH_{2}CH_{3} \ and \ NCH_{2}CH_{3}), \ 2.09 \ (6H, \ s, \ 2 \times CH_{3}), \ 3.95 \ (6H, \ m, \ 2 \times CO_{2}CH_{2}CH_{3})$

and
$$NCH_2CH_3$$
), 6.00 (3H, s, $-HN-$), 6.39 (1H, s, $-HN-$), 7.92 and 8.02 [each 1H, each s, $-HN-$) Me

C(2)-H and/or C(5)-H].

7-(p-Chloroanilino) -6, 7- bis (ethoxycarbonyl) -4,7-dihydro-4-ethylpyrazolo[1,5-a]pyrimidine-3-carbonitrile (20)—From 1 mmol of 1 and 3 mmol of p-chloroaniline, 289 mg (65.1%) of 20 (Table II) was obtained

by the method described for the preparation of 17. PMR (DMSO- d_6) δ : 1.02—1.43 (9H, m, 2×CO₂CH₂CH₃ and NCH₂CH₃), 3.96—4.27 (6H, m, 2×CO₂CH₂CH₃ and NCH₂CH₃), 6.43 and 7.06 (each 2H, each d, J=9 Hz, Ar-H), 7.48 (1H, s, NH), 7.92 and 8.03 [each 1H, each s, C(2)-H and/or C(5)-H].

6,7-Bis(ethoxycarbonyl)-4,7-dihydro-4-ethyl-7-(p-nitroanilino) pyrazolo[1,5-a] pyrimidine-3-carbonitrile (21)——From 1 mmol of 1 and 3 mmol of p-nitroaniline, 279 mg (61.3%) of 20 (Table II) was obtained by the method described for the preparation of 17. PMR (DMSO- d_6) δ : 1.03—1.30 (6H, m, $2 \times \text{CO}_2\text{CH}_2\text{CH}_3$), 1.48 (3H, t, J = 7 Hz, NCH₂CH₃), 3.97—4.38 (6H, m, $2 \times \text{CO}_2\text{CH}_2\text{CH}_3$ and NCH₂CH₃), 6.67 and 7.95 (each 2H, each d, J = 9 Hz, Ar-H), 7.77 (1H, s, NH), 8.10 and 8.12 [each 1H, each s, C(2)-H and/or C(5)-H].

Reaction of 1 with p-Toluidine in the Presence of Et₃OBF₄——A solution of 9 mmol of p-toluidine dissolved in 50 ml of CH₂Cl₂ was added to a prereacted solution of 3 mmol of 1 and 9 mmol of Et₃OBF₄ in 10 ml of CH₂Cl₂, and the mixture was refluxed for 5 h. After usual work-up, the residual oil obtained was subjected to silica gel column chromatography. The first fraction eluted with CHCl₃ provided 90 mg (8.0%) of 3cyano-11b-ethoxycarbonyl-4-ethyl-10-methyl-4,6,7,11b-tetrahydropyrazolo[1',5': 1,2]pyrimido[5,6-c]quinolin-6-one (23) as colorless needles of mp 240—242°C (EtOH). IR ν_{\max}^{KBT} cm $^{-1}$: 3280 (NH), 2220 (CN), 1740, 1680 (CO). PMR (DMSO- d_6) δ : 0.97 (3H, t, J = 7 Hz, CO₂CH₂CH₃), 1.31 (3H, t, J = 7 Hz, NCH₂CH₃), 2.26 (3H, s, CH_3 , 3.85—4.18 (4H, m, $CO_2CH_2CH_3$ and NCH_2CH_3), 6.90 [1H, d, J=9 Hz, C(8)-H], 7.15 [1H, br d, J=9 Hz, J=9 9 Hz, C(9)-H], 7.66 [1H, s, C(2)-H], 8.24 [2H, s, C(5)-H and C(11)-H]. 10.48 (1H, s, NH). UV $\lambda_{\text{max}}^{\text{EtoH}}$ nm $(\log \varepsilon)$: 338 (2.80). Anal. Calcd for $C_{20}H_{19}N_5O_3$: C, 63.65; H, 5.07; N, 18.56. Found: C, 63.46; H, 5.03; N, 18.64. The second fraction eluted with CHCl₃ gave 225 mg (19.9%) of 3'-cyano-6'-ethoxycarbonyl-4'ethyl-5-methylspiro $\{indole-3(2H), 7'(4'H)-pyrazolo[1,5-a]pyrimidin\}-2-one (22)$ as colorless needles of mp 243-246°C (EtOH). IR ν_{\max}^{RB} cm⁻¹: 3220 (NH), 2220 (CN), 1730, 1700 (CO). PMR (DMSO- d_6) δ : 1.03 (3H, $t, J = 7 Hz, CO_2CH_2CH_3$, 1.37 (3H, $t, J = 7 Hz, NCH_2CH_3$), 2.16 (3H, s, CH_3), 3.75—4.20 (4H, m, $CO_2CH_2CH_3$) and $NC_{H_2}CH_3$, 6.63—7.12 (3H, m, Ar–H), 7.87 [2H, s, C(2')–H and C(5')–H], 10.68 (1H, s, NH). UV λ_{max}^{EtoH} nm (log ε): 324 (3.08). Anal. Calcd for $C_{20}H_{19}N_5O_3$: C, 63.65; H, 5.07; N, 18.56. Found: C, 63.35; H, 5.02; N, 18.44.

3'-Cyano-6'-ethoxycarbonyl-4-ethyl-6-methylspiro {indole-3(2H),7'(4'H)-pyrazolo[1,5-a]pyrimidin}-2-one (24)——From 1 mmol of 1 and 3 mmol of m-toluidine, 149 mg (39.4%) of 24 was obtained by the method described for the preparation of 22. This product was recrystallized from EtOH to give an analytical sample of mp 235—237°C. IR v_{\max}^{KBr} cm⁻¹: 3260 (NH), 2220 (CN), 1740, 1690 (CO). PMR (DMSO- d_6) δ : 1.05 (3H, J=7 Hz, CO₂CH₂CH₃), 1.38 (3H, t, J=7 Hz, NCH₂CH₃), 2.30 (3H, s, CH₃), 3.80—4.30 (4H, m, CO₂CH₂CH₃ and NCH₂CH₃), 6.67—7.02 (3H, m, Ar-H), 7.91 and 7.93 [each 1H, each s, C(2')-H and/or C(5')-H], 10.64 (1H, s, NH). Anal. Calcd for C₂₀H₁₉N₅O₃: C, 63.65; H, 5.07; N, 18.56. Found: C, 63.70; H, 4.83; N, 18.48.

6,7-Bis(ethoxycarbonyl)-4,7-dihydro-4-ethyl-7-(8-hydroxy-5-quinolyl)pyrazolo[1,5-a] pyrimidine -3-carbonitrile (25)——A solution of 3 mmol of 8-hydroxyquinoline dissolved in 20 ml of CH_2Cl_2 was added to a prereacted solution of 1 mmol of 1 and 3 mmol of Et_3OBF_4 in 5 ml of CH_2Cl_2 , and the mixture was stirred at room temperature for 6 d. After usual work-up, the crude crystalline solid was recrystallized from EtOH to give 85 mg (18.4%) of 25 as colorless needles of mp 210—213°C. IR $\nu_{\max}^{\rm KBr}$ cm⁻¹: 3340 (OH), 2220 (CN), 1750, 1690 (CO). PMR (DMSO- d_6) δ : 0.96—1.26 (6H, m, 2 × $CO_2CH_2CH_3$), 1.43 (3H, t, J=7 Hz, NCH₂CH₃), 3.83—4.36 (6H, m, 2 × $CO_2CH_2CH_3$ and NCH₂CH₃), 7.26—8.86 (5H, m, Ar-H), 7.76 and 7.86 [each 1H, each s, C(2)-H and/or C(5)-H]. FeCl₃ test: positive (dark green). Anal. Calcd for $C_{24}H_{23}N_5O_5$: C, 62.46; H, 5.02; N, 15.18. Found: C, 62.26; H, 5.22; N, 15.19.

7-(2-Benzo[b] furanyl)-6,7- bis (ethoxycarbonyl)-4,7-dihydro-4- ethylpyrazolo[1,5-a] pyrimidine-3- carbonitrile (26)——From 1 mmol of 1 and 3 mmol of benzo[b] furan, 206 mg (47.4%) of 26 was obtained by the method described for the preparation of 3. This product was recrystallized from AcOEt-n-hexane mixture to give an analytical sample of mp 167°C. 1R $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 2220 (CN), 1760, 1690 (CO). PMR (DMSO- d_6) δ : 1.08—1.52 (9H, m, $2 \times {\rm CO}_2{\rm CH}_2{\rm CH}_3$ and NCH₂CH₃), 3.95—4.38 (6H, m, $2 \times {\rm CO}_2{\rm CH}_2{\rm CH}_3$ and NCH₂CH₃), 7.10 [1H, s, C(3)—H of benzo[b] furan], 7.10—7.70 (4H, m, Ar–H), 7.90 and 8.02 [each 1H, each s, C(2)—H and/or C(5)—H]. Anal. Calcd for ${\rm C}_{23}{\rm H}_{22}{\rm N}_4{\rm O}_5$: C, 63.58; H, 5.10; N, 12.90. Found: C, 63.83; H, 5.26; N, 12.94.

7-Acetonyl-6,7-bis(ethoxycarbonyl)-4,7-dihydro-4-ethylpyrazolo[1,5-a] pyrimidine-3-carbonitrile (27)—A prereacted solution of 1 mmol of 1 and 3 mmol of Et₃OBF₄ in 5 ml of CH₂Cl₂ was concentrated *in vacuo* and the residual oil was dissolved in 20 ml of acetone. Five mmol of K₂CO₃ was added, and the mixture was refluxed for 5 h. After removal of the solvent by evaporation, the residue was dissolved in CHCl₃. The CHCl₃ solution was washed with water, dried over Na₂SO₄ and concentrated. The residual oil was subjected to silica gel column chromatography. The first fraction cluted with CHCl₃ provided 161 mg (43.1%) of 27 as colorless needles of mp 122—123°C (AcOEt-n-hexane). IR n_{max}^{KBT} cm⁻¹: 2220 (CN), 1740, 1710, 1690 (CO). PMR (DMSO- d_6) δ : 0.98—1.42 (9H, m, 2×CO₂CH₂CH₃ and NCH₂CH₃), 1.95 (3H, s, COCH₃), 3.41 and 3.69 (2H, ABq, J=17 Hz, CH₂COCH₃), 3.85—4.25 (6H, m, 2×CO₂CH₂CH₃ and NCH₂CH₃), 7.69 [1H, s, C(5)-H], 7.96 [1H, s, C(2)-H]. Anal. Calcd for C₁₈H₂₂N₄O₅: C, 57.74; H, 5.92; N, 14.97. Found: C, 57.99; H, 5.69; N, 15.10.

Acknowledgement We are grateful to Dr. S. Matsunaga and Dr. A. Numata for the measurements of MS and PMR spectra and to Mrs. Y. Tsukamoto for elemental analyses. We are also indebted to Miss U. Shimada for her skillful technical assistance.

References and Notes

- 1) Part II: T. Kurihara, K. Nasu, M. Inoue, and T. Ishida, Chem. Pharm. Bull., 30, 383 (1982).
- 2) This work was presented at the 31st Meeting of the Kinki Branch of the Pharmaceutical Society of Japan, Kobe, November, 1981.
- 3) T. Kurihara and K. Nasu, Chem. Pharm. Bull., 29, 2520 (1981).
- 4) T.J. Curphey, J. Am. Chem. Soc., 87, 2063 (1965).
- 5) The stereostructures of compounds 3, 4 and 11 remain undetermined.
- 6) C.J. Pouchert and J.R. Campbell, "The Aldrich Library of NMR Spectra," Vol. VI, Aldrich Chemical Company, Inc., Milwaukee, Wisconsin, 1974, p. 65.
- 7) In the cases of aniline and 2,5-xylidine, 7-p-aminophenyl adducts (13 and 16) with N-ethylation were isolated.
- 8) C.J. Pouchert and J.R. Campbell, "The Aldrich Library of NMR Spectra," Vol. VIII, Aldrich Chemical Company, Inc., Milwaukee, Wisconsin, 1974, p. 80.