Communications to the Editor

(Chem. Pharm. Bull.) 30(9)3421—3423(1982)

PHOTOLYSIS OF 4-OXO-4H-BENZISOXAZOLO[2,3-a]PYRIDINES

Shunsuke Naruto*, Norio Nagamoto, Hiroyuki Mizuta,
Toyokichi Yoshida, and Hitoshi Uno
Research Laboratories, Dainippon Pharmaceutical Co., Ltd.,
Enoki-cho 33-94, Suita, Osaka 564, Japan

Photolysis of 4-oxo-4H-benzisoxazolo[2,3-a]pyridines (<u>1a-d</u>) and their C_1 -monobromides (<u>4a-d</u>) afforded benzofuro[3,2-b]pyridines (<u>2a-d</u>) via initial N_5 - 0_6 bond fission. However, similar photolysis of 9-methoxy-4-oxo-4H-benzisoxazolo[2,3-a]pyridine analog (<u>4f</u>) gave a pyridine derivative (<u>5</u>).

KEYWORDS —— photolysis; photo-isomerization; 4-oxo-4H-benz-isoxazolo[2,3-a]pyridines; benzofuro[3,2-b]pyridines; Friedlaender reaction; ring transformation

In the preceding communication, 1) we described the synthesis of benz-isoxazolo[2,3-a]pyridine derivatives ($\underline{1}$). In these studies, it was noted that $\underline{1}$ gradually underwent a photo-induced isomerization even in the course of repeated recrystallization from CHCl $_3$. Although it has been reported that only thermolysis of 9-nitrobenzisoxazolo[2,3-a]pyridinium tetrafluroborate gave 8-nitrobenzofuro-[3,2-b]pyridine in 20% yield, 2) any rearrangements of benzisoxazolo[2,3-a]pyridine ($\underline{1}$) were unknown. We now report the photochemical ring transformation of $\underline{1}$.

Photolysis [low-pressure Hg-lamp (0.5 h) or sun light (12-24 h), CHCl₃³] of la afforded benzofuro[3,2-b]pyridine derivative (2a). Other benzofuro[3,2-b]-pyridine derivatives (2) obtained by similar photolyses are shown in Table I. Photolysis of 9-methoxy-analogs (le-f), however, gave a dirty reaction mixture from which crystalline products could not be isolated.

The $^1\text{H-NMR}$ (PMR) spectrum (DMSO-d_6) of $\underline{2a}$ lacked a characteristic singlet signal attributed to C_1-H of $\underline{1a}$, 1) and showed one proton signal at δ 12.8-13.4 which was exchangable with D_0. The IR spectrum (KBr) of $\underline{2a}$ exhibited the bands (ν_{NH} 2750, $\nu_{\text{C=O}}$ 1640 cm $^{-1}$) attributable to the 2-pyridone moiety. Treatment of $\underline{2a}$ with Ac_0-pyridine gave an O-acetate ($\underline{3}$) [mp 189-191°C, $\nu_{\text{C=O}}^{\text{KBr}}$ 1760 cm $^{-1}$, PMR (CDCl_3) δ 2.06 (3H, s, OCOCH_3)].

The structure of $\underline{2}$ was unequivocally confirmed by an alternative synthesis of $\underline{2d}$ from ethyl 3-aminobenzofuran-2-carboxylate ($\underline{6}$). Treatment of $\underline{6}$ with 2-(1,2-benzisoxazol-3-yl)acetyl chloride $\underline{1}$ afforded an amide ($\underline{7}$) (mp 193-195°C (dec)) which was considered to be an intermediate of the Friedlaender reaction. Cyclization of $\underline{7}$ was accomplished in the presence of NaH in DMF at 50°C to give 2d in 20% yield.

On the other hand, bromination of $\underline{1}$ in acetic acid at 60-80°C gave monobromide ($\underline{4}$) as shown in Table I. With such bromination, 0-acetates, $\underline{1b}$ and $\underline{1f}$,

Table I Photolysis and Bromination of 4-Oxo-4H-benzisoxazolo[2,3-a]pyridines

Compound		Yield(%)					/ / >+
No.		<u>1</u> →2	$\underline{1} \rightarrow \underline{4}$	$\underline{4} \rightarrow \underline{2}$	mp °C	IR(KBr).v _{C=0} cm ⁻¹	MS (m/z) M ⁺
2a		62		43	266-269	1640	472
2b		90		80 ^{a)}	>300	1650, 1780	360
2c		47		65	254-256	1650, 1760	422
<u>2d</u>		98		74	>290	1650	318
4a			93	1	248-252	1660	550, 552
4b			91 ^{a)}		235-236	1670, 1770	438, 440
4c			93		242-245	1650, 1750	500, 502
4d		et en	99		244-246	1660	396, 398
4e			91		248-252 (dec)	1660	610, 612
4f			88 ^{a)}		235-236	1660, 1760	498, 500

a) Over-all yield of photolysis followed by acetylation with Ac20-pyridine.

gave deacetylbromides, $\underline{4d}$ and $\underline{4g}$, $\overline{}^{0}$ respectively. These deacetylbromides were converted to the corresponding O-acetates, $\underline{4b}$ and $\underline{4f}$, by acetylation. The substituted position of the bromine atom at C_1 was deduced from the PMR spectra of $\underline{4}$ which lacked C_1 -H signal of the starting materials ($\underline{1}$).

Photolysis (sun light, 12-24 h, CHCl₃^{3a)}) of the bromides, <u>4a</u>, <u>4b</u>, <u>4c</u> and <u>4d</u>, afforded <u>2a</u>, <u>2d</u> (accompanied by deacetylation), <u>2c</u> and <u>2d</u>, respectively (Table I). However, similar photolysis of 9-methoxy-analog (<u>4f</u>) in CHCl₃^{3a)} gave a pyridine derivative (<u>5a</u>)⁸⁾ (mp 190-194°C) in 28% yield. The structure of <u>5a</u> was deduced from its elemental analysis, IR spectrum, mass spectrum (MS), and PMR data. ⁸⁾ It was assumed that the ethoxyl group of <u>5a</u> originated from EtOH in commercial chloroform. This assumption was confirmed by the following experiments. Photolysis of <u>4f</u> in 5% EtOH-CHCl₃ and in EtOH gave <u>5a</u> in 60% and 40% yields, respectively. Furthermore, photolysis (sun light, 4 h) of <u>4f</u> in MeOH gave a methoxy-analog (<u>5b</u>)⁸⁾ (mp 202-204°C) in 40% yield.

In the dark condition, no isomerization of $\underline{1}$ and $\underline{4}$ was observed and the starting materials ($\underline{1}$ and $\underline{4}$) were recovered unchanged. Thus, it may be considered that the ring transformation of 4-oxo-4H-benzisoxazolo[2,3- \underline{a}]pyridines proceeded by initial homolytic N₅-O₆ bond fission as in the case of the well-known photolysis of isoxazole rings.

REFERENCES AND NOTES

- 1) S. Naruto, N. Nagamoto, H. Mizuta, T. Yoshida, and H. Uno, Chem. Pharm. Bull., preceding paper in this issue.
- 2) R. A. Abramovitch and M. N. Inbasekaran, J. Chem. Soc. Chem. Commun., 1978, 149. They reported that photolysis of benzisoxazolo[2,3-a]pyridinium tetrafluroborate did not give any benzofuro[3,2-b]pyridines.
- 3) a) CHCl₃: commercial chloroform containing 0.5-1.0% of EtOH as stabilizer. b) It was noted that <u>la-d</u> were sparingly insoluble in MeOH, EtOH and dioxane at room temperature and that photolysis (sun light, 4 h) of <u>la</u> in MeOH (concentration of 0.08 mM) afforded several products in which <u>2a</u>, <u>2d</u> and methyl tosylate were detected. Of these products of the above photolysis, <u>2d</u> was isolated in 10% yield.
- 4) All new compounds except $\underline{4g}$ in this paper gave satisfactory spectral (PMR, IR, and MS) and analytical data.
- 5) S. S. Sangapure and Y. S. Agasimundin, Indian J. Chem., 14B, 688 (1976).
- 6) V. P. Vaidya, S. B. Mahajan, and Y. S. Agasimundin, Indian J. Chem., <u>20B</u>, 391 (1981).
- 7) This compound (4g) was used for acetylation without further purification.
- 8) <u>5a</u>: IR (KBr) 3200-2400, 1770, 1640 cm⁻¹. PMR (δ in CDCl₃) quinone moiety; OCH₃ 2.95 (3H, s), OCH₂CH₃ 0.99 (3H, t), OCH₂CH₃ 3.3 (2H, m), vinyl protons 6.88 (1H, d, <u>J</u>=3.0 Hz), 6.38 (1H, dd, <u>J</u>=10.5, 3.0 Hz), 6.02 (1H, d, <u>J</u>=10.5 Hz). Pyridine moiety; OH 14.0 (1H, bs, exchangable with D₂O), COCH₃ 2.19 (3H, s). Benzisoxazole moiety; OCH₃ 3.95 (3H, s), aromatic protons 7.01 (1H, dd, <u>J</u>=2.5, 0.5 Hz), 7.18 (1H, dd, <u>J</u>=9.0, 2.5 Hz), 7.48 (1H, dd, <u>J</u>=9.0, 0.5 Hz). <u>5b</u>: PMR (δ in CDCl₃) COCH₃ 2.20 (3H, s), OCH₃ 2.94 (6H, s), aromatic OCH₃ 3.91 (3H, s).

(Received July 10, 1982)