Chem. Pharm. Bull. 32(2) 438—446 (1984)

Cyclization of α- and β-Alkylthio-Substituted Amines Possessing Positively Charged Carbon at the Nitrogen. A New Synthetic Method for Thiazolidines, Thiomorpholines and Dihydro-1,4-benzothiazines

YOSHIHARU ISHIKAWA, YOSHIYASU TERAO, KUNIO SUZUKI, NOBORU SHIKANO and MINORU SEKIYA*

Shizuoka College of Pharmacy, 2-2-1 Oshika, Shizuoka 422, Japan

(Received May 25, 1983)

The present paper describes the finding that α - and β -alkylthio-substituted amines possessing a positively charged carbon such as =CHPh, CO₂R and CH₂SR at the nitrogen undergo cyclization in the presence of lithium disopropylamide or sodium hydride leading to thiazolidines, thiomorpholines and dihydro-1,4-benzothiazines.

Keywords—thiazolidine; thiomorpholine; dihydro-1,4-benzothiazine; cyclization; trimethylsilyl compound; sodium hydride; lithium diisopropylamide

As are well known, existing syntheses of thiazolidine and thiomorpholine rings are mostly carried out by sulfur-carbon of nitrogen-carbon bond closure. The present paper describes syntheses based on formation of the C_4 - C_5 bond of thiazolidines and C_2 - C_3 bond of thiomorpholines, as depicted in the following scheme. Few such reactions have appeared in the literature.

$$-C^{1}H_{2}X - (\overset{\downarrow}{C})_{n} - \overset{\downarrow}{N} - C^{2} = \underbrace{\qquad \qquad X \stackrel{(\overset{\downarrow}{C})_{n}}{X - X^{2}}}_{X = S \text{ or } SO_{2} \ n = 1 \text{ or } 2} \times \underbrace{\begin{pmatrix} \overset{\downarrow}{C} \\ \overset{\downarrow}{N} - \overset$$

In this scheme, where C_2 is a positively charged carbon in a group such as -N = CH, $-NCO_2R$ or NCH_2SR , the reaction proceeds in the presence of sodium hydride (NaH) or lithium disopropylamide (LDA). Mechanistically, the C_1 -carbanion first formed by deprotonation attacks the C_2 -carbon to form the thiazolidine or thiomorpholine ring. Our results on the production of thiazolidine and thiomorpholine derivatives are illustrated in Table I, and those on the production of dihydro-1,4-benzothiazine derivatives are given in Table II. All the reactions were carried out in tetrahydrofuran (THF) with the use of 3 molar equivalents of LDA or NaH. In particular, the formation of dihydro-1,4-benzothiazines, which is sterically much more favorable than that of thiazolidines and thiomorpholines, was almost quantitative.

Since the reaction is initiated by the formation of a carbanion at the alkyl carbon adjacent to sulfur, easily deprotonizable S-benzyl is very effective for the reaction. However, alkyl sulfone analogs, among which only carbamate derivatives¹⁾ are synthetically available, were sufficiently reactive, as can be seen in entry 6 in Table I and entry 5 in Table II. N-(Alkylsulfonylethyl)carbamate was exceptional, as can be seen in entry 9 in Table I, and was shown to undergo β -elimination with loss of carbamate. In spite of the inertness of S-alkyl

TABLE I. Syntheses of Thiazolidines and Thiomorpholines

	•		\$			-	
Substrate	Z	Васе	React. conditions ^a)	iditions ^{a)}	Product	Z	Yield
		Dasc	(°C)	(h)			(%)
PhCH ₂ SCH ₂ NCH ₂ SCH ₂ Ph 1	-	LDA	- 70	4	Ph S CH,	8 3	41 ^{b)}
(PhCH ₂ SCH ₂) ₃ N	7	LDA	r.t	28	Ph S CH ₂ SCH ₂ Ph	8 8	326)
$PhCH_2SCHN = CHPh$ 3	ဗ	LDA	- 50	vs ·	Ph S Ph	ဆိ	24
PhCH ₂ SCH ₂ NCO ₂ C ₂ H ₅ 4	4	LDA	-20	4	Ph S	p 8	26
PhCH ₂ SO ₂ CH ₂ NCO ₂ C ₂ H ₅ 5 CH ₃	vo	NaH	Reflux	7	Ph SQ2	&	. 04
$C_3H_7SO_2CH_2NCO_2C_2H_5$ 6	•	NaH	Reflux	4	C_2H_5 SQ_2 C_2H_5	æ	26
PhCH ₂ SCH ₂ CH ₂ N=CHPh 7a	7a	LDA	- 50	S	Ph S H	9a	76
PhCH ₂ SCH ₂ CH ₂ NHCO ₂ C ₂ H ₅ 7b	4 7	LDA	r.t.	15	Phq N-H	96	47
PhCH ₂ SO ₂ CH ₂ CH ₂ NCO ₂ C ₂ H ₅ 7c CH ₃	7c	NaH	Reflux	8	Ph SO ₂	3 6	0.0

b) Yield of the hydrochloride.

a) Solvent: THF.

c) β -Elimination occurred to give the corresponding carbamate and olefin.

TABLE	11.	Synthesis	of Dihydr	o-1,4-benzo	othiazines

Entry	Substrate	No.	Daga	React. cond	itions ^{a)}	Duraturat	NT.	Yield
Entry	Substrate	NO.	Base	(°C)	(h)	Product	No.	(%)
1	SCH_2Ph $N = CHPh$	10a	LDA NaH	– 70 Reflux	1 6	S Ph N Ph	12a, a'	Quant.
2	SCH ₂ Ph NCH ₂ SPh CH ₃	10b	NaH	Reflux	10	S Ph	12b	Quant.
3	SCH ₂ Ph NCO ₂ C ₂ H ₅ CH ₃	10c	LDA	-70	3	S Ph	12c	Quant.
4	SO ₂ CH ₂ Ph NCO ₂ C ₂ H ₅ CH ₃	11a	NaH	Reflux	4	SQ ₂ Ph CH ₃	13a	90
5	SO ₂ C ₄ H ₉ NCO ₂ C ₂ H ₅ CH ₃	11b	NaH	Reflux	4	SO ₂ C ₃ H ₇	13b	95

a) Solvent: THF.

derivatives of o-aminothiophenol under the usual conditions, it was noticeable that the following S-trimethylsilylmethyl derivative reacted smoothly to give a thiomorpholine derivative possessing a trimethylsilyl grouping (which is replaceable by hydrogen) at the 2-position.

$$\begin{array}{c|c}
SCH_2Si & LDA \\
N = CHC_6H_5
\end{array}$$
14

Tables III and IV contain infrared (IR) and nuclear magnetic resonance (NMR) spectral and analytical data for the starting α - and β -aminosulfide and sulfone derivatives and for the o-aminothiophenol derivatives, including ten new compounds, and Tables V and VI contain data for the products of the present reaction, *i.e.*, thiazolidine, thiomorpholine and dihydro-1,4-benzothiazine derivatives, most of which are unknown in the literature.

The ¹H-NMR spectrum of **8a** contains an AB coupling at δ 4.00 and 4.33 (J=8.9 Hz) arising from the two protons of C_2 and an ABX coupling at δ 2.47, 3.33 and 4.60 (J=11.8, 9.5 and 6.3 Hz) arising from the two protons of C_4 and a proton of C_5 . In addition a long-range coupling at δ 3.33 and 4.00 (J=1.8 Hz) between a proton of C_2 and a proton of C_4 appears in this spectrum owing to the planar W shape of H N H of the thiazolidine ring.

Compound 8b was isolated as its hydrochloride, which was assigned on the basis of its analytical data. Treatment with alkali gave 5-phenylthiazolidine (8b'), the spectral data for which are given in Table V, with ready removal of the N-benzylthiomethyl grouping.

TABLE III. Analytical and Spectral Data for Starting Compounds

	or mp °C	IR VKBr or neat	¹ H-NMR δ (in CDCl ₃ , J =Hz)	Formula	Ca.	Analysis (%) Calcd (Found)	- (1
OZ	(Kecryst. solvent)	c w		;	၁	Н	z
	180—182 (0.1)		2.36 (3H, s, NCH ₃), 3.70 (4H, s, $2 \times PhCH_2S$),				
	[lit., ³⁴⁾ bp 182— 185 (0.05)]		3.80 (4H, s, $2 \times \text{SCH}_2\text{N}$), 7.23 (10H, s, $2 \times \text{C}_6\text{H}_5$)				
2	43—44 (EtOH)		3.70 (6H, s, $3 \times PhCH_2S$), 3.93 (6H, s, $3 \times SCH_2N$),				
	(lit.,3b) mp 46)		7.24 (15H, s, $3 \times C_6 H_5$)				
ෆ	80—81 (EtOH)	1630 (C=N)	~				
	(lit., $^{3b)}$ mp 67)		7.65–7.95 (15H, m, $3 \times C_6H_5$), 8.28 (1H, s, N=CH)				
4	141—143	1706 (C=O)	1.23 (3H, t, $J = 7.2$, CH ₃), 2.85 (3H, s, NCH ₃),	$C_{12}H_{17}NO_2S$	60.22	7.16	5.85
	(9.0)		3.73 (2H, s, PhCH ₂ S), 4.11 (2H, q, $J=7.2$, OCH ₂),		(60.18	7.14	5.91)
			4.42 (2H, s, NCH2S), 7.23 (5H, s, C6H5)				
3	77—78	1716 (C=0)	1.29 (3H, t, $J=7.2$, CH ₃), 3.08 (3H, s, NCH ₃),	$C_{12}H_{17}NO_4S$	53.12	6.32	5.16
	(AcOEt)	1284 (SO.)	$4.18 \text{ (2H, q, } J=7.2, \text{ OCH}_2), 4.24 \text{ (2H, s, PhCH}_2\text{SO}_2,$		(53.11	6.35	5.19)
		$1159^{(502)}$	4.51 (2H, s, SO ₂ CH ₂ N), 7.32 (5H, s, C ₆ H ₅)				
9	112—113	1712 (C=O)	1.15 (3H, t, $J=7.3$, CH ₃), 1.30 (3H, t, $J=7.1$,	$C_8H_{17}NO_4S$	43.03	7.68	6.27
	(0.02)	1289	OCH ₂ CH ₃), 1.69—2.11 (2H, m, C-CH ₂ -C), 2.89—3.06		(43.45	2.68	6.47)
		1151 (502)	(2H, m, SO ₂ CH ₂), 3.16 (3H, s, NCH ₃), 4.21				
			$(2H, q, J=7.1, OCH_2), 4.53 (2H, s, SO_2CH_2N)$				
7a	155—157	1644 (C=N)	2.71 (2H, t, $J=4.6$, $SC\underline{H}_2CH_2N$), 3.68 (2H, s,	$C_{16}H_{17}NS$	75.25	6.71	5.48
	(0.05)		PhCH ₂ S), 3.70 (2H, t, $J=4.6$, SCH ₂ CH ₂ N), 7.17		(/2.06	6.69	5.57)
			(5H, s, C ₆ H ₅), 7.20—7.35, 7.50—7.69 (5H, m, C ₆ H ₅)				
7b	34—35	3352 (NH)	2.46 (2H, t, $J = 6.0$, SCH_2CH_2N), 3.32 (2H, t, $J = 6.0$,	$C_{17}H_{19}NO_2S$	67.74	6.35	4.65
	(EtOH)	1710 (C=0)	$SCH_2C\underline{H}_2N$), 3.58 (2H, s, PhCH ₂ S), 5.03 (2H, s, OCH ₂),		(68.04	6.37	4.68)
			5.04 (1H, br, NH), 7.18 (5H, s, C ₆ H ₅), 7.22				
			$(5H, s, C_6H_5)$				
7c	201 - 202	1710 (C=0)	1.19 (3H, t, $J=7.2$, CH ₃), 2.88 (3H, s, NCH ₃),	$C_{13}H_{17}NO_4S$	54.72	6.71	4.91
	(0.1)	1310 (SO)	3.04 (2H, t, J=7.3, NCH2), 3.62 (2H, t, J=7.3,		(54.63	68.9	4.88)
		1165 (302)	SO_2CH_2), 4.12 (2H, q, $J=7.2$, OCH ₂), 4.25				
			(2H, s, PhCH2SO2), 7.48 (5H, s, C6H5)				

TABLE IV. Analytical and Spectral Data for Starting Compounds

Compound	mp °C (Recryst.	IR vKBr or neat	¹ H-NMR δ (in CDCl ₃ , J =Hz)	Formula	A	Analysis (%) Calcd (Found)	(p
	solvent)				C	H	z
10a	98—99 (EtOH)	1618 (C=N)	4.10 (2H, s, SCH ₂), 6.9–7.5, 7.7–8.1 (14H, m, C_6H_4 , $2 \times C_6H_5$), 8.23 (1H, s, -CH=)	$C_{20}H_{17}NS$	79.17	5.65	4.62
10b	44—45 (Et ₂ O)		2.79 (3H, s, NCH ₃), 3.95 (2H, s, SCH ₂), 4.87 (2H, s, NCH ₂), 7.13 (5H, s, C ₆ H ₅), 6.85—7.2 (9H, m, C ₆ H ₄ , C ₆ H ₅)	$C_{21}H_{21}NS_2$	71.75 (71.59	6.02	3.98
10c	52-53 (Iso-Pr ₂ O)	1700 (C=O)	1.12 (3H, t, $J = 7.2$, CH ₃), 3.03 (3H, s, NCH ₃), 3.97 (2H, s, SCH ₂), 4.02 (2H, q, $J = 7.2$, OCH ₂), 6.92—7.32 (9H, m, C ₆ H ₄ , C ₆ H ₅)	$C_{17}H_{19}NO_2S$	67.74	6.35	4.65 4.64)
11a	49-50 (Iso-Pr ₂ O)	$ \begin{array}{c} 1695 \ (C=O) \\ 1318 \\ 1132 \ (SO_2) \end{array} $	1.24 (3H, t, $J=7.2$, CH ₃), 3.20 (3H, s, NCH ₃), 4.18 (2H, q, $J=7.2$, OCH ₂), 5.14 (2H, s, SO ₂ CH ₂), 7.10 (5H, s, C ₆ H ₅), 7.17—7.87 (4H, m, C ₆ H ₄)	$C_{17}H_{19}NO_4S$	61.24 (61.24	5.74	4.20
11b	Oil	1724 (C=0) 1324 (SO2)	0.70—1.95 (10H, m, 2×CH ₃ , –CH ₂ CH ₂ –), 3.18 (2H, t, <i>J</i> =7.8, SO ₂ CH ₂), 3.21 (3H, s, NCH ₃), 4.14 (2H, q, <i>J</i> =7.2, OCH ₂), 7.18—8.12 (4H, m, C ₆ H ₄)	$C_{14}H_{21}NO_4S$	56.16 (55.60	7.07	4.68
14	95—97 (EtOH)	1624 (C=N)	0.19 (9H, s, Si(CH ₃) ₃), 2.08 (2H, s, SCH ₂ Si), 6.50—7.50, 7.60—7.95 (4H, m, C ₆ H ₄), 8.29 (1H, s, CH=N)	C ₁₇ H ₂₁ NSSi	68.17	7.07	4.68

TABLE V. Thiazolidines and Thiomorpholines

(Recryst. 67.4) (Recryst. 67.4) (Recryst. 67.4) (ED(H) (ED(H) (ED(H) (C ₂ -H ₁), 33.3 (H, 46.4 J=118, 9.5 (ED(H) (C ₃ -H ₂), 4.60 (H, 4d. J=9.5, 6.3 (ED(H) (C ₄ -H ₂), 33.3 (H, 46.4 J=118, 6.3 1.8, C ₄ (ED(H) (C ₄ -H ₂), 33.3 (H, 46.4 J=12.5, 6.1 (C ₄ -H ₂), 4.60 (H, 4d. J=9.5, 6.3 (ED(H) (C ₄ -H ₂), 33.3 (H, 46.4 J=12.5, 6.1 (C ₄ -H ₂), 33.3 (H, 4d. J=12.5, 6.1 (C ₄ -H ₂), 33.3 (H, 4d. J=12.5, 6.1 (C ₄ -H ₂), 33.3 (H, 4d. J=12.5, 6.1 (C ₄ -H ₂), 33.3 (H, 4d. J=12.5, 6.4 (C ₄ -H ₂), 33.3 (H, 4d. J=9.0, C ₄ -H ₂) (C ₄ -H ₂), 33.3 (H, 4d. J=9.0, C ₄ -H ₂) (EE(OH) (EE(OH) (C ₄ -H ₂), 33.3 (H, 4d. J=9.0, C ₄ -H ₂) (C ₄ -H ₂), 33.4 (H, 4. J=9.0, C ₄ -H ₂) (C ₄ -H ₂), 33.4 (H, 4. J=9.0, C ₄ -H ₂) (C ₄ -H ₂), 33.4 (H, 4. J=9.0, C ₄ -H ₂) (EE(OH) (C ₄ -H ₂), 33.4 (H, 4. J=9.0, C ₄ -H ₂) (C ₄ -H ₂), 33.4 (H, 4. J=9.0, C ₄ -H ₂) (EE(OH) (C ₄ -H ₂), 33.4 (H, 4. J=7.1, C ₄ -H ₂) (C ₄ -H ₂), 33.4 (H, 4. J=7.1, C ₄ -H ₂) (C ₄ -H ₂), 33.4 (H, 4. J=7.1, C ₄ -H ₂) (C ₄ -H ₂), 33.4 (H, 4. J=7.1, C ₄ -H ₂) (EE(OH) (EE(OH) (C ₄ -H ₂), 34.1 (H, 4. J=10.7, C ₄ -H ₂) (EE(OH) (EE(OH) (C ₄ -H ₂), 34.1 (H, 4. J=10.7, C ₄ -H ₂) (EE(OH) (C ₄ -H ₂), 36.6 (H, 3. A. J=10.7, C ₄ -H ₂) (EE(OH) (C ₄ -H ₂), 36.6 (H, 3. A. J=10.7, C ₄ -H ₂) (EE(OH) (C ₄ -H ₂), 36.6 (H, 4. J=10.7, C ₄ -H ₂) (EE(OH) (EE(OH) (C ₄ -H ₂), 36.6 (H, 3. A. J=10.7, C ₄ -H ₂) (EE(OH) (EE(OH)	Compound	bp °C (Torr)	IR VKBr or neat		13C-NMR 8	<u> </u>	Ana	Analysis (%) Calcd (Found)	ි දි
186-187° 186-187° 186-18.9 186-18.9 186-18.9 186-187° 186-18.9 186-18.9 186-18.9 186-18.9 186-18.6 186.3 186.2 186.3 186.2 186.3 186.2 186.3 186.2 186.3 186.2 186.3 186.2 186.3 186.2 186.3 186.2 186.3 186.2 186.3 186	No.	(Recryst. solvent)		$H-NMK \circ (in CDCl_3, J=HZ)$	(in CDCl ₃)	roimina	С	Н	z
112-113 3340 (NH) 2.12, 7.44 (SH, m. ζ_{H}) 5.32 (c) 5.32 (d)	æ.	186—187 ^{a)} (EtOH)		2.38 (3H, s, NCH ₃), 2.47 (1H, dd, $J = 11.8$, 9.5 $C_4 - H_A$), 3.33 (1H, ddd, $J = 11.8$, 6.3, 1.8, $C_4 - H_B$), 4.33 (1H, ddd, $J = 81.9$, $C_2 - H_A$), 4.00 (2H, dd, $J = 8.9$, $C_2 - H_A$), 4.00 (2H, dd, $J = 8.9$, $J = 8.9$	41.56 (q) 51.09 (d) 64.04 (t)	C ₁₀ H ₁₄ CINS ^{b)}	55.67 (55.53	6.54	6.49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 8		3310 (NH)	$J = 6.5$, 1.6, $C_2 - H_B$, 4.00 (1ft, dd, $J = 7$), 6.5, PhCH), 7.12—7.44 (5ft, m, $C_6 H_5$) 2.12 (1ft, br, NH), 3.02 (1ft, dd, $J = 12.5$, 6.1, $C_4 - H_A$), 3.53 (1ft, dd, $J = 12.5$, 6.4, $C_4 - H_B$),	55.32 (d) 57.00 (t)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	æ	112—113 (EtOH)	3340 (NH)	4.2—4.6 (1H, m, C_5 –H), 7.12—7.30 (5H, m, C_6 H ₅) 2.75 (1H, br, NH), 4.36 (1H, d, J =9.0, C_4 –H) 4.76 (1H, d, J =9.0, C_5 –H), 6.07 (1H, s, C_2 –H) 7.18—8.79 (15H, m, $3 \times C_6$ H ₅) 2.75 (1H, br, NH), 4.35 (1H, d, J =7.1, C_4 –H) 4.80 (1H, d, J =7.1, C_8 –H), 5.89 (1H, s, C_2 –H)	61.98 (1) 63.72 (d) 71.68 (d) 77.26 (d) 63.50 (d) 70.99 (d)	$C_{21}H_{19}NS$	79.46 (79.31	6.03	4.41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	142—144 (0.3)	1682 (C=O)	7.18—8.79 (15H, m, $3 \times C_6 H_5$) 2.75 (3H, s, NCH ₃), 4.11 (1H, d, $J = 7.8$, $C_2 - H_A$), 4.23 (1H, d, $J = 7.8$, $C_2 - H_B$), 4.75 (1H, s, $C_5 - H$), 7.17—7.33 (5H, m, $C_6 H_5$)	74.44 (d) 31.42 (q) 47.41 (t) 50.44 (d)	C ₁₀ H ₁₁ NOS	62.15	5.74	7.25 7.24)
122—123 1665 (C=O) 1.12 (3H, t, $J=7.1$, CH ₃), 1.93—2.28 (2H, m, 1.32 (q) C ₆ H ₁₁ NO ₃ S 40.66 6.26 (2.6 (2.6 (2.6 (2.6 (2.6 (2.6 (&	158—158.5 (EtOH)	1713 (C=O) 1324 (SO ₂)	3.16 (3H, s, NCH ₃), 4.47 (1H, d, $J = 10.7$, $C_2 - H_a$), 4.65 (1H, d, $J = 10.7$, $C_2 - H_B$), 4.82 (1H, s, PhCH), 7.31—7.40 (5H, m, $C_6 H_5$)	171.05 (s) 31.37 (q) 66.64 (d) 67.94 (t)	$C_{10}H_{11}NO_3S$	53.32 (53.52	4.92 5.00	6.22 6.28)
88—89 3334 (NH) 1.90 (1H, br, NH), 3.98 (2H, s, $-CH-CH-$), 20.23 (t) $C_{16}H_1^{1}NS$ 75.25 6.71 (EtOH) 2.44—3.46 (4H, m, $-CH_2-CH_2-$), 7.05 (10H, s, -2.23 (t) -2.23 (t) -2.25 6.71 (75.06 6.72 2 $\times C_6H_5$) 153—154 1660 (C = O) 2.73—2.87 (2H, m, C_5-H), 3.49—3.66 (2H, m, -2.33 (5H, m,	₩.	122—123 (0.3)	1665 (C=O) 1321 1135 (SO ₂)	1.12 (3H, t, J=7.1, CH ₃), 1.93—2.28 (2H, m, –CH ₂ CH ₃), 3.06 (3H, s, NCH ₃), 3.47 (1H, dd, J=5.8, 5.9, C ₅ -H), 4.54 (1H, d, J=10.74, C ₂ -H _A), 4.34 (1H, d, J=10.74, C ₂ -H _B)	146.71 (S) 11.32 (q) 19.07 (t) 30.83 (q) 61.98 (d) 68.21 (t)	C ₆ H ₁₁ NO ₃ S	40.66 (40.51	6.26	7.90
153—154 1660 (C=O) 2.73—2.87 (2H, m, C ₅ -H), 3.49—3.66 (2H, m, 25.36 (t) C ₁₀ H ₁₁ NOS 62.15 5.74 (d) C ₆ -H ₂), 4.63 (1H, s, C ₂ -H), 7.25—7.50 (5H, m, 46.00 (d) C ₆ H ₃), 7.60 (1H, br, NH) 169.80 (s)	9a	88—89 (EtOH)	3334 (NH)	1.90 (1H, br, NH), 3.98 (2H, s, -CH-CH-), 2.44-3.46 (4H, m, -CH ₂ -CH ₂ -), 7.05 (10H, s, 2 × C ₆ H ₅)	165.57 (s) 20.23 (t) 48.76 (t) 51.80 (d)	C ₁₆ H ₁₇ NS	75.25 (75.06	6.71	5.48
	9 6	153—154 (EtOH)	1660 (C=O)	2.73—2.87 (2H, m, C ₅ –H), 3.49—3.66 (2H, m, C ₆ –H ₂), 4.63 (1H, s, C ₂ –H), 7.25—7.50 (5H, m, C ₆ H ₅), 7.60 (1H, br, NH)	69.24 (d) 25.36 (t) 44.10 (t) 46.60 (d) 169.80 (s)	$C_{10}H_{11}NOS$	62.15 (62.31	5.74	7.25

a) Melting point of the hydrochloride. b) Analytical data for the hydrochloride.

TABLE VI.	Dihydro-1,4-benzothiazine	es
-----------	---------------------------	----

Compound	mp (°C) (Recryst.	IR v ^{KBr} cm ⁻¹	¹ H-NMR δ (in CDCl ₃ , J =Hz)	Formula		alysis (cd (Fou	.,
No.	solvent)	max			С	Н	N
12a (cis)	166—167 (EtOH)	3428 (NH)	4.10 (1H, br, NH), 4.30 (1H, d, $J=3$, S-CH), 4.91 (1H, d, $J=3$, N-CH), 6.35—7.05 (14H, m, $2 \times C_6H_5$, C_6H_4)	C ₂₀ H ₁₇ NS	79.17 (79.00	5.65 5.69	4.61 4.86)
12a ' (trans)	152—153 (EtOH)	3393 (NH)	4.16 (1H, d, $J=9$, S-CH), 4.25 (1H, br, NH), 4.55 (1H, d, $J=9$, N-CH), 6.80—7.14 (14H, m, $2 \times C_6H_5$, C_6H_4)	C ₂₀ H ₁₇ NS	79.17 (79.48	5.65 5.68	4.61 4.71)
12b	68—69 (EtOH)		2.91 (3H, s, NCH ₃), 3.55 (2H, d, N-CH ₂), 4.36 (1H, t, S-CH), 6.53—7.34 (9H, m, C ₆ H ₅ , C ₆ H ₄)	C ₁₅ H ₁₅ NS	74.65 (74.70	6.26 6.25	5.80 5.83)
12c	153—154 (EtOH)	1680 (C=O)	3.48 (3H, s, NCH ₃), 4.63 (1H, s, S-CH), 6.90—7.45 (9H, m, C ₆ H ₅ , C ₆ H ₄)	C ₁₅ H ₁₃ NOS	70.56 (70.17	5.13 5.19	5.49 5.49)
13a	168—169 (AcOEt)	1684 (C=O) 1322 1162 (SO ₂)	3.55 (3H, s, NCH ₃), 5.14 (1H, s, SO ₂ -CH), 6.68—7.92 (9H, m, C ₆ H ₅ , C ₆ H ₄)	C ₁₅ H ₁₃ NO ₃ S	62.70 (62.73		4.87 4.91)
13b	109—110 (Iso-Pr ₂ O)	$ \begin{array}{c} 1680 \ (C=O) \\ 1314 \\ 1172 \ (SO_2) \end{array} $	0.92 (3H, t, ω –CH ₃), 1.10–2.19 (4H, m, –CH ₂ CH ₂ –), 3.43 (3H, s, NCH ₃), 3.89 (1H, dd, J =7.2, 7.8, SO ₂ CH), 7.05–7.92 (4H, m, C ₆ H ₄)	C ₁₂ H ₁₅ NO ₃ S	56.90 (57.09		5.53 5.55)
15	67—69 (MeOH)	3378 (NH)	-0.18 (9H, s, Si(CH ₃) ₃), 2.70 (1H, d, J =8.8, S-CH), 4.45 (1H, d, J =8.8, N-CH), 3.97 (1H, s, NH), 6.30—7.15 (4H, m, C ₆ H ₄), 7.30 (5H, s, C ₆ H ₅)	$C_{17}H_{21}NSSi$	68.17 (67.91	7.07 7.03	4.68 4.66)

Compound 8c was regarded as a mixture of two stereoisomers from its $^1\text{H-NMR}$ and $^{13}\text{C-NMR}$ spectral data. However, attempts to separate them failed. On the assumption that the two bulky phenyls at C_4 and C_5 exist in *trans*-configuration [coupling constants (9.0 Hz and 7.1 Hz) between the C_4 and C_5 protons of the two isomers do not differ greatly], these two isomers may be assigned as *cis* and *trans* with respect to the two phenyls at C_2 and C_4 or C_5 .

The product²⁾ obtained from 10a was separated into two isomers, 12a and 12a', by fractional recrystallization from ethanol. The ratio of the two isomers was estimated to be about 1:1 by calculation based on the ¹H-NMR signals of the mixture. Table VI contains spectral data for these *cis* and *trans* isomers with respect to C_2 and C_3 configuration. The isomer 12a', possessing a much larger value (J=9 Hz) of coupling constant at δ 4.16 and 4.55 relative to that of 12a (J=3 Hz) at δ 4.30 and 4.91, is regarded as the *trans* isomer based on the Karplus theory, since the plane angle of the C-H bonds of the *trans* isomer at C_2 and C_3 is estimated to be nearly 180°, whereas that of the *cis* isomer is nearly 60°.

Compound 15 was obtained as a single isomer. The large coupling contant ($J = 8.8 \, \text{Hz}$) at $\delta 2.70$ and 4.45 in its ¹H-NMR spectrum is regarded as that of a *trans* isomer, in the same way as inferred for 12a'.

Experimental

All melting and boiling points are uncorrected. IR spectra were taken on a Hitachi EPI-G2 spectrometer. ¹H-

NMR and 13 C-NMR spectra were recorded on a JEOL JNM-FX90Q spectrometer; all chemical shifts are given in ppm downfield from tetramethylsilane. The following abbreviations are used: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, br=broad.

Preparation of Substrates for Cyclization—Spectral and analytical data for all substrates used are listed in Tables III and IV. Among them, 1, 2, and 3 were prepared according to previously reported methods.³⁾ The other previously unknown compound were prepared as follows.

Preparation of **4**, **5** and **6**: Methylaminomethyl benzyl and propyl sulfide hydrochlorides (**16a**, **b**) were prepared from the corresponding primary amine hydrochloride, alkanethiol and formaldehyde, according to the previously reported method.⁴) The previously unknown compound **16b**: mp 104—105 °C (CH₃CN). *N*-Ethoxycarbonylation of **16a** and **16b** by allowing them to react with ethyl chloroformate triethylamine gave **4** and (*N*-methyl ethoxycarbamoyl)methyl propyl sulfide (**17**). Compound **17**: oil, IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1710 (C=O), ¹H-NMR (in CDCl₃) δ : 0.96 (3H, t, J=7.0 Hz, CH₂CH₂CH₃), 1.23 (3H, t, J=7.0 Hz, OCH₂CH₃), 1.15—1.85 (2H, m, CH₂CH₂CH₃), 2.49 (2H, t, J=7.5 Hz, CH₂CH₂S), 2.86 (3H, s, NCH₃), 4.10 (2H, q, J=7.0 Hz, CH₂O), 4.38 (2H, s, NCH₂S). Oxidation of **4** and **17** with potassium permanganate in acetic acid gave **5** and **6**.

Preparation of 7a—c: Aminoethyl benzyl sulfide (18) obtained by benzylation of aminoethanethiol was allowed to react with benzaldehyde and benzyl chloroformate in the usual manner to give 7a and 7b, respectively. For the preparation of 7c, 18 was successively N-methylated (N-formylation followed by reduction with lithium aluminum hydride), N-ethoxycarbonylated and oxidized with potassium permanganate, by the usual methods.

Preparation of 10a—c and 11a, b: o-Benzylthio-, o-butylthio- and o-trimethylsilylmethylthioanilines (19,⁵⁾ 20,⁶⁾ 21) were prepared by alkylation of o-aminothiophenol. The new compound 21: oil, IR $\nu_{\text{max}}^{\text{neat}}$ cm⁻¹: 3460, 3360 (NH), ¹H-NMR (in CDCl₃) δ : 0.16 (9H, s, Si(CH₃)₃), 2.05 (3H, s, NCH₃), 2.85 (2H, s, SiCH₂N), 6.5—7.4 (4H, m, C₆H₄). Usual condensation of 19 and 21 with benzaldehyde gave 10a and 14, respectively. N-Formylation of 19 and 20 followed by lithium aluminum hydride reduction gave the corresponding N-methyl derivatives (22, 23). ⁷⁾ Compound 22: bp 147—148 °C (5 Torr), IR $\nu_{\text{max}}^{\text{neat}}$ cm⁻¹: 3380 (NH), ¹H-NMR (in CDCl₃) δ : 0.16 (9H, s, Si(CH₃)₃), 2.05 (3H, s, NCH₃), 2.85 (2H, s, SiCH₂N), 4.5—5.0 (1H, br, NH), 6.2—7.45 (4H, m, C₆H₄). N-Phenylthiomethylation of 22 by reaction with thiophenol and formaldehyde gave 10c and N-ethoxycarbonylation of 22 and 23 gave the corresponding o-benzylthio- and o-butylthio-N-ethoxycarbonyl-N-methylanilines (10c, 24). Compound 24: oil, IR $\nu_{\text{max}}^{\text{neat}}$ cm⁻¹: 1710 (C=O), ¹H-NMR (in CDCl₃) δ : 1.3—1.7 (10H, m, CH₂CH₂CH₃, OCH₂CH₃), 1.38 (2H, t, J=7.5 Hz, SCH₂), 3.97 (2H, q, J=7.0 Hz, OCH₂), 6.95—7.28 (4H, m, C₆H₄). Oxidation of 10c and 24 with m-chloroperbenzoic acid gave 11a and 11b, respectively.

Cyclization to Thiazolidines (8a—f) and Thiomorpholines (9a, b) (see Table I)—General Procedure: A solution of a substrate (1—4, 7—8) (0.03 mol) in 50 ml of THF was added dropwise to a solution of LDA (prepared from 0.09 mol of diisopropylamine and a hexane solution of 0.09 molar eq of butyllithium in 250 ml of THF) with stirring at -70 °C. The solution was stirred under the conditions shown in Table I. The reaction was quenched by addition of water (0.5 ml) and then carbon dioxide was passed through the solution. After concentration under reduced pressure, benzene was added to the resulting residue. Insoluble materials were filtered off. The filtrate was washed with water and dried over MgSO₄. The products 8a and 8b were obtained as their hydrochlorides by passing dry hydrogen chloride into the benzene solutions. The products 8c, d and 9a, b were obtained by distillation of the residue after removal of benzene.

In the case of entries 5 and 6, the reaction was carried out under the conditions shown in Table I using 0.09 molar eq of NaH as a suspention.

Yields of the products are shown in Table I and their spectral and analytical data are listed in Table V.

The product **8b** [hydrochloride: mp 125—126 °C (EtOH), Anal. Calcd for $C_{17}H_{20}CINS_2$: C, 60.42; H, 5.97; N, 4.14. Found: C, 60.26; H, 5.93; N, 4.45.] was easily converted by treatment with alkali to **8b**′, the data for which are listed in Table V.

Cyclization to Dihydro-1,4-benzothiazines (12a—c, 13a, b and 15) (see Table II)—General Procedure: A solution of a substrate (10a—c, 11a, b and 14) (0.01 mol) in 20 ml of THF was added dropwise to a solution of 0.03 molar eq of LDA in 80 ml of THF at $-70\,^{\circ}$ C or to a suspension of 0.03 molar eq of NaH in 80 ml of THF at room temperature. The reaction was carried out under the conditions shown in Table II. After addition of saturated aqueous ammonium chloride, the THF layer was separated and the aqueous layer was extracted with benzene. The combined organic layer was dried over MgSO₄. After removal of the solvent, the residual solid was recrystallized from an appropriate solvent.

Yields of the products are listed in Table II and their spectral and analytical data are shown in Table IV.

Acknowledgement The authors are indebted to Dr. K. Narita and the staff of the analysis center of this college for microanalysis.

References and Notes

1) N-Benzylidene and N-alkyl or phenylthiomethyl derivatives are not available, because of the difficulty of

- oxidation of the corresponding sulfides to the sulfones.
- 2) This compound has been reported previously without description of the isomers. V. Carelli, P. Marchini, M. Cardellini, F. M. Moracci, G. Liso and M. G. Lucarelli, *Tetrahedron Lett.*, **1969**, 4619.
- 3) a) K. Suzuki and M. Sekiya, Chem. Lett., 1979, 1241; b) G. Dougherty and W. H. Taylor, J. Am. Chem. Soc., 55, 4588 (1933); c) G. F. Grillot, H. Felton, B. R. Garrett, H. Greengerg, R. Green, R. Clementi and M. Moskowitz, J. Am. Chem. Soc., 76, 3969 (1954).
- 4) Y. Terao, K. Matsunaga and M. Sekiya, Chem. Pharm. Bull., 25, 2964 (1977).
- 5) F. Kurzer and P. M. Sanderson, J. Chem. Soc., 1962, 230.
- 6) D. G. Foster and E. E. Reid, J. Am. Chem. Soc., 46, 1940 (1924).
- 7) K. Akiba, H. Shiraishi and N. Inamoto, Bull. Chem. Soc. Jpn., 52, 263 (1979).