Communications to the Editor

[Chem. Pharm. Bull.] 32(2) 818-821 (1984)

THE PREPARATION OF 14-HYDROXYLATED YOHIMBINE AND RESERPINE DERIVATIVES

Etsuji Yamanaka, Machiko Ono, 1) Satoe Kasamatsu, Norio Aimi, and Shin-ichiro Sakai*

Faculty of Pharmaceutical Sciences, Chiba University,

1-33 Yayoi, Chiba, 260, Japan

Hydroxylation at C-14 of yohimbine ($\underline{6}$), pseudoyohimbine ($\underline{7}$) and isoreserpine ($\underline{8}$) was made through oxidation of the enamines ($\underline{10}$, $\underline{15}$) with benzoyl or p-nitrobenzoyl peroxide followed by reduction with NaBH₄ and removal of benzoyl or p-nitrobenzoyl group to give the 14-hydroxylated compounds ($\underline{13}$, $\underline{14}$, $\underline{22}$).

KEYWORDS --- indole alkaloid; enamine; hydroxylation; yohimbine;
reserpine; benzoyl peroxide; quinolizidine

In a previous paper, we reported 2) two hydroxylation methods at C-14 (C-1 in the case of 1) of indole alkaloids using the indoloquinolizidine (1) as a starting material: a) oxidation of the 1,12b-dehydro derivative (enamine) with benzoyl peroxide followed by reduction with NaBH4 and removal of benzoyl group to give the cis-alcohol (2), and b) hydroboration-oxidation of the enamine to give the trans-alcohol (3). In addition, the partial synthesis of the natural alkaloid, 14α -hydroxyrauniticine (5), from rauniticine (4) was achieved by method b. Since indole alkaloids, yohimbine (6) and reserpine (9), are well-known as medicinal compounds, the extensibility of their bioactivities by the introduction of the 14-hydroxyl group will be widely useful. Here, we describe the application of the above hydroxylation method a) to yohimbine (6) and reserpine (9) to give the 14-hydroxylated compounds (13, 14, 21, 22).

Treatment of 3,14-dehydroyohimbine (10) 3) with (PhCO₂)₂ (1.5 eq) followed by reduction with NaBH₄ gave 14 β -benzoyloxyyohimbine (11, 42%) and 14 α -benzoyloxy-pseudoyohimbine (12, 5%) together with yohimbine (6, 20%) [11: $[\alpha]_D^{17} + 4.2^\circ (\text{MeOH})$; MS m/z(%): 474(M⁺,16), 352(100); HCl salt: mp 225-228°C(MeOH); $[\alpha]_D^{24} + 17.3^\circ (\text{MeOH})$. 12: mp 194-195°C(MeOH); $[\alpha]_D^{29} - 202.2^\circ (\text{MeOH})$; MS m/z(%): 474(M⁺,5), 352(100)]. 4) The yield of the minor benzoate (12) was raised to 16% [11, 25%] when $\text{Zn}(\text{BH}_4)_2$ was used as a reducing agent. The spectral data of 11 showed the transquinolizidine structure: the presence of Bohlmann bands in the IR spectrum and the characteristic chemical shift of C-6 (δ 21.3) in the 13 C-NMR spectrum. The 1 H-NMR signal of H-14 (δ 5.75) appeared as the broad singlet indicating cis arrangement of H-3 (axial) and H-14 (equatorial). The axial orientation of the benzoyloxy group was further confirmed by the observation of the upfield shift of C-16 (δ 52.6 \rightarrow δ 48.2) and C-20 (δ 40.2 \rightarrow δ 35.2) for 11 from 6 due to γ -gauche effect (Table). On the contrary, the spectral data of 12 showed the cis-quinolizidine structure: the absence of Bohlmann bands in the IR spectrum,

Table. C Chemical Shifts of Youlmpine and Reservine Derivatives																
		Yohimbines						Reserpines								
Carbon	6 ^{b)}	11.	13	7 ^{C)}	12 ^{d)}	14	8p)	16	18	19	21	22	₉ b)	17	20	
3	59.8	64.2	64.5	54.1	57.2	59.6	59.6	64.5	64.5	64.3	65.1	65.0	53.6	57.2	57.5	
6	21.5	21.3	21.5	16.7	17.2	16.6	21.6	22.0	22.0	22.1	21.8	21.8	16.7	17.0	17.2	
14	33.8	67.8	67.5	31.5	77.4	75.0	27.6	71.8	71.9	73.1	70.1	70.2	24.1	70.7	71.9	
15	36.4	40.4	41.4	31.9	37.1	38.6	37.0	44.1	44.7	43.9	46.6	46.2	32.2	37.6	37.5	
16	52.6	48.2	48.1	51.8	49.8	50.0	51.7	50.3	50.0	50.4	50.6	50.9	51.6	50.2	50.1	
20	40.2	35.2	34.4	39.4	39.7	38.9	34.6	36.3	36.6	36.4	36.2	35.9	33.8	35.4	35.4	
21	61.0	61.6	61.2	51.7	51.2	50.6	59.6	59.7	59.9	59.6	59.7	59.3	48.8	48.9	49.1	

Table. ¹³C Chemical Shifts of Yohimbine and Reserpine Derivatives^{a)}

a) The values are in ppm downfield from $\mathrm{Me_4Si}$. The spectra were measured in $\mathrm{CDCl_3}$ unless otherwise stated. b) Values from ref. 5. c) values from ref. 9. d) In $\mathrm{CD_2Cl_2}$ solution.

 $^{1}\text{H-NMR}$ signal of H-3 at &4.78 in the downfield position 6) and $^{13}\text{C-NMR}$ signal of C-6 at &8.7.2 in the upfield position. 5) The equatorial orientation of the benzoyloxy group was confirmed by analysis of the coupling pattern of H-14 (&8.44,dd,J $_{14}$,15 =11Hz,J $_{3.14}$ =5Hz) showing the diaxial arrangement of H-14 and H-15.

Treatment of 11 with NaOMe in refluxing MeOH gave 14 β -hydroxyyohimbine (13) [80%; mp 155-158°C(MeOH-H $_2$ O); [α] $_D^{17}$ +10.9°(MeOH); MS m/z(%): 370(M $^+$,100); 1 H-NMR δ : 3.40(br s,H-3), 3.98(br s,H-14)]. The ester exchange of 12 occurred at room temperature to give 14 α -hydroxypseudoyohimbine (14)[80%; [α] $_D^{22}$ -80.8°(MeOH); MS m/z(%): 370(M $^+$,100); 1 H-NMR δ : 4.48(m,H-3)].

In the case of reserpine (9), the hydroxylation gave much different results from yohimbine (6). 3,14-Dehydroreserpine (15) was prepared in the usual manner. 3,8 Treatment of the enamine (15) with $(\text{PhCO}_2)_2-\text{NaBH}_4$ gave $14\alpha-\text{benzoyl-oxyisoreserpine}$ (16,36%) and $14\alpha-\text{benzoyloxyreserpine}$ (17,5%)[16: mp 147°C (MeOH-H₂O); $[\alpha]_D^{29}-135.3^{\circ}$ (CHCl₃); MS m/z(%): $728\,(\text{M}^+,1)$, $606\,(62)$, $212\,(100)$; $^1\text{H-NMR}$ δ : $3.52\,(\text{H-3})$, $5.77\,(\text{t,J=10Hz,H-14})$. 17: mp 196°C (MeOH); $[\alpha]_D^{29}-162.9^{\circ}$ (CHCl₃); MS m/z(%): $728\,(\text{M}^+,0.5)$, $212\,(100)$; $^1\text{H-NMR}$ δ : $4.77\,(\text{d,J=5Hz,H-3})$, $6.09\,(\text{dd,J}_{14,15}=11\text{Hz,J}_{3,14}=5\text{Hz,H-14})$]. $^1\text{H-}$ and $^1^3\text{C-NMR}$ (Table) spectral data showed the transquinolizidine structure for 16 and cis-quinolizidine structure for 17, respectively. The equatorial orientation of the benzoyloxy group of 16 and 17 was determined by analyses of their coupling patterns of H-3 and H-14.

Treatment of the major benzoate (16) with NaOMe in MeOH at room temperature gave methyl 14α -benzoyloxyisoreserpate (18)[84%; $[\alpha]_D^{29}$ -10.8°(CHCl $_3$); MS m/z(%): 534(M $^+$,1), 412(100); 1 H-NMR δ : 3.49(d,J=9.5Hz,H-3), 5.68(t,J=9.5Hz,H-14)]. $^{7)}$ In order to obtain the 14-hydroxyl compound (21), compound (18) was treated with NaOMe in refluxing MeOH to give the reaction mixture which showed several spots on TLC. Therefore, p-nitrobenzoyl peroxide was chosen as an oxidizing agent instead of benzoyl peroxide since the p-nitrobenzoyl group was removed much more easily than the benzoyl group. The enamine (15) was treated with p-nitrobenzoyl peroxide followed by reduction with NaBH $_4$ to give 14α -p-nitrobenzoyloxy-isoreserpine (19,47%) and 14α -p-nitrobenzoyloxyreserpine (20,7%)[19: mp 209°C (MeOH); $[\alpha]_D^{31}$ -122.9°(CHCl $_3$); MS m/z(%): 773(M $^+$,1), 606(100); 1 H-NMR δ : 3.54(d, J=10Hz,H-3), 5.82(t,J=10Hz,H-14). 20: mp 228°C(MeOH); $[\alpha]_D^{31}$ -228.5°(CHCl $_3$);

MS m/z(%): 773(M⁺,9), 606(88); 1 H-NMR $_{0}$: 4.73(d,J=5Hz,H-3), 6.15(dd,J $_{14$,15</sub>=11Hz, J $_{3,14}$ =5Hz,H-14)]. The stereostructures of 19 and 20 were further confirmed by analyses of 13 C-NMR data (Table). When Zn(BH $_{4}$) $_{2}$ was used as a reducing agent instead of NaBH $_{4}$, 19 and 20 were obtained in 19 and 9% yields, respectively. The major benzoates [16 and 19 (3 α -H, 14 β -H)] possessed trans configuration between H-3 and H-14 in the case of reserpine, while the major benzoate [11 (3 α -H, 14 α -H)] in the case of yohimbine possessed cis configuration between H-3 and H-14.

Treatment of the compound (19) with NaOMe in MeOH at room temperature gave methyl 14 α -hydroxyisoreserpate (21) [52%; mp 191°C(benzene); [α] $_{D}^{31}$ -50.8°(CHCl $_{3}$); MS m/z(%): 430(M⁺,100); 1 H-NMR δ : 3.07(d,J=9.5Hz,H-3), 4.15(td,J $_{3}$,14 $^{-J}$ 14,15 $^{-9}$.5Hz, J $_{14}$,OH $^{-4}$.5Hz,H-14,changed to triplet on addition of D $_{2}$ 0)].

The diol compound (21) was acylated with 3,4,5-trimethoxybenzoyl chloride (4 eq) in pyridine in the presence of p-dimethylaminopyridine (2 eq) at room temperature to give 14α -hydroxyisoreserpine (22) [58%; mp 142° C(benzene-hexane); [α] $_{D}^{28}$ -129.1°(CHCl $_{3}$); MS m/z(%): 624(M $^{+}$,2), 212(100); 1 H-NMR δ : 3.13(d,J=10Hz,H-3), 4.26(t,J=10Hz,H-14,changed to the clear triplet on addition of D $_{2}$ 0)]. 7

Hydroxylation of the enamines (10 and 15) by hydroboration-oxidation was unsuccessful. The biological activities of the compounds obtained here are under investigation.

REFERENCES AND NOTES

- 1) Present address: School of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, 274, Japan.
- 2) E. Yamanaka, E. Maruta, S. Kasamatsu, N. Aimi, S. Sakai, D. Ponglux, S. Wongseripipatana and T. Supavita, <u>Tetrahedron Lett.</u>, 24, 3861 (1983).
- 3) W.O. Godtfredsen and S. Vangedal, <u>Acta Chem. Scand.</u>, 10, 1414 (1956).
- 4) Satisfactory spectral data were obtained for all new compounds with elementary analyses or high resolution MS. ¹H-NMR spectra were measured in CDCl₃ at 100 MHz for 11—14 and at 270 MHz for 15—22. ¹³C-NMR spectra were run at 67.8 MHz.
- 5) E. Wenkert, C-J. Chang, H.P.S. Chawla, D.W. Cochran, E.W. Hagaman, J.C. King and K. Orito, <u>J. Am. Chem. Soc.</u>, 98, 3645 (1976).
- 6) M. Lounasmaa and S-K. Kan, <u>Tetrahedron</u>, <u>36</u>, 1607 (1980).
- 7) The stereostructures were confirmed by analyses of 13 C-NMR spectra (Table).
- 8) Reserpine (9) was oxidized with t-BuOC1 followed by treatment with HCl in refluxing MeOH to give 3-dehydroreserpine chloride [91%; mp 184°C)], which was treated with aq. KOH/MeOH to give 3,14-dehydroreserpine (15) [84%; $^1\text{H-NMR}$ δ : 4.61(1H,s,H-14)].
- 9) E. Wenkert, T.D.J. Halls, G. Kunesch, K. Orito, R.L. Stephens, W.A. Temple and J.S. Yadav, <u>J. Am. Chem. Soc.</u>, 101, 5370 (1979).

(Received January 5, 1984)