Communications to the Editor

Chem. Pharm. Bull. 32(3)1244—1247(1984)

A NEW GLYCOSYL ESTER OF A 3,4-SECO-TRITERPENE FROM KOREAN MEDICINAL PLANT,

<u>ACANTHOPANAX CHIISANENSIS</u> (ARALIACEAE)

Dug-Ryong Hahn, ^a Ryoji Kasai, ^b Jeung-Hee Kim, ^a Shigenori Taniyasu^b and Osamu Tanaka*, ^b College of Pharmacy, Chung-Ang University, ^a 221 Huksuk-Dong, Kwanak-Ku, Seoul Korea and Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine, ^b Kasumi, Minami-Ku, Hiroshima 734, Japan

From leaves and stem-bark of Korean medicinal plant. Acanthopanax chiisanensis, a new glycoside was isolated and its structure was established as the α -L-rhamnopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl(1 \rightarrow 6)- β -D-glucopyranosyl ester of 1(R)-hydroxy-3,4-seco-lup-4(23),20(30)-dien-3,11 α -olactone. This is the first example of a naturally occurring glycoside of 3,4-seco-triterpene.

KEYWORDS—— Acanthopanax chiisanensis; Araliaceae; Korean folk medicine; chiisanoside; chiisanogenin; 3,4-seco-triterpene ¹³C NMR; oligo-glycosyl ester

A folk medicine, leaves and stem-bark of <u>Acanthopanax chiisanensis</u> Nakai (智異山五加; Araliaceae) is used as an anti-rheumatic, an anti-inflamatic and a tonic in Korea. An ether-insoluble and 1-butanol(saturated with water)-soluble fraction of a methanolic extract of the leaves was chromatographed on silica gel to give a new glycoside named chiisanoside (1), colorless needles, mp 228°C (from 1-BuOH), $[\alpha]_D^{14}$ +7.7° (c=1.69, MeOH), C48H74O19·3H2O, yield: 0.2%, which was also isolated from the stem-bark in a lower yield than from the leaves.

On hydrolysis with crude hesperidinase. 1 afforded an acid-unstable aglycone named chiisanogenin ($\underline{2}$), colorless needles, mp 232-234°C (from Et₂0), [α] $_{D}^{22}$ +86.4° (c=0.66, MeOH), C₃₀H₄₄ $0_5 \cdot H_2O$, MS: m/z 484(M+) and 466(M+-H2O). As shown in Tables I and II, the 1H and ^{13}C NMR spectra showed that the following groups occur in $\underline{2}$: two isopropenyls (MS of $\underline{2}$: m/z 41 CH3- ζ =CH2), one carboxyl, one secondary hydroxyl and one lactone associated with a secondary hydroxyl group together with three methyls on quarternary carbons, eight methylenes, five methines and four On treatment with diazomethane in ether, 2 afforded a monomethyl ester (3) quarternary carbons. which on catalytic hydrogenation over PtO_2 gave a tetrahydromonomethyl ester (4). coupled with the biogenetic considerations suggested that $\underline{2}$ would be represented by a derivative of 3.4-seco-betulinic acid (5) having one secondary hydroxyl group and one lactone group (-C00-CH-). This was supported by a proton signal of $\underline{2}$ at δ 2.97 (1H, dd J=11 and 11Hz) which was proved in the present study, to be characteristic of H-19 of lupane-type triterpenes having a carboxyl group at C-17 and a 20(30)-double bond such as betulinic acid ($\underline{6}$), being absent in the spectra of betulin Further, comparison of the 13 C NMR spectrum of $\underline{2}$ with that of $\underline{6}$ $^{2)}$ revealed that the signals due to D and E ring-carbons of $\underline{6}$, except for C-13, as well as those of C-20, -28, -29 and -30 of 6 appeared at almost the same positions as that of 2. This also indicated that no additional functional group is located at the D and E rings of 2.

The lactone group was found to be relatively stable and a dicarboxylic acid could not be obtained from $\underline{2}$ even by careful neutralization of its alkaline solution. Inspection of the molecular model demonstrated that the location of a secondary hydroxyl group capable of forming the lactone with the 3-carboxylic acid of $\underline{5}$ must be limited to its $\underline{11}$ position (either α - or β -configuration). On reductive opening of the lactone group with NaBH4-AlCl3, $\underline{^3}$) $\underline{2}$ yielded a trihydroxy-compound ($\underline{8}$) and the coupling pattern of the proton signal of this compound at δ 3.97 (1H, ddd J=11, 11 and 6Hz) was consistent with that of the 11α -hydroxyl group of the steroid series. $\underline{^4}$) The unexpected coupling pattern of the lactonyloxy proton of $\underline{2}$ (δ 4.53 (1H, ddd J=8, 8 and 8Hz)) may be explained in terms of the deformation of its C ring due to the lactone ring formation.

The location of a secondary hydroxyl group of $\underline{2}$ was elucidated to be at C-1 by the following The proton signals of 2 at δ 2.93(1H, d J=15Hz) and 2.72(1H, dd J=15 and 8Hz) were assigned to methylene protons vicinal to the lactone-carbonyl group; the irradiation of the former resulted in the transformation of the latter into a doublet (J=8Hz) and the irradiation of the latter led to the transformation of a carbinyl proton signal at δ 3.57(1H, d J=8Hz) into a singlet. The absence of the coupling between the carbinyl proton and the proton at δ 2.93 must be due to the nearly 90° of their dihedral angle. On acid hydrolysis, 1 yielded glucose, rhamnose and a modified aglycone (9) together with several other minor products formed from its genuine aglycone The ${}^{1}\text{H}$ and ${}^{13}\text{C}$ NMR spectra of $\underline{9}$ (Tables I and II) indicated the disappearance of one of two isopropenyl groups of $\underline{2}$ and formation of geminal methyls on a carbon attached to an ether linkage, formulating $\underline{9}$ as shown in Chart 2. The formation of $\underline{9}$ from $\underline{2}$ as well as the decoupling experiment between proton signals on C-2 (δ 2.34(1H, dd J=11 and 14Hz) and 3.09(1H, dd J=3 and 14Hz)) and a signal at δ 4.31(1H, dd J=3 and 11Hz) of $\underline{9}$ further substantiated the location of the secondary hydroxyl group of $\underline{2}$ at C-1. It is notable that in the spectrum of $\underline{9}$, the coupling of H-1 with both the protons on C-2 was observed in contrast to the case of $\underline{2}$. The chirality of C-1 was established to be R by means of the modified Horeau method, $^{5)}$ leading to the formulation of $\underline{2}$ as shown in Chart 1.

Finally, the structure of $\underline{2}$ was confirmed by comparison of the $\underline{^{13}}$ C NMR spectrum of $\underline{8}$ with that of 3,4-seco-lup-4(23),20(30)-diene-3,28-diol ($\underline{10}$) prepared from betulin ($\underline{7}$) through $\underline{11}$ - $\underline{13}$, $\underline{5}$ and $\underline{14}$

		Table :		al Shifts (δ)	in CDCl ₃	
	<u>2</u> a	<u>3</u> c	<u>4</u> C	<u>8</u> a	<u>9</u> b	
26-Me	0.91(s)d 1.02(s)d 1.08(s)d	0.90(s)d 1.01(s)d 1.06(s)	0.84(s)d 0.98(s)d 1.02(s)	1.01(s) ^d 1.03(s) ^d 1.31(s) ^d	0.96(s)d 1.02(s)d 1.11(s)	Chart l
23-Me		 1.74(s)	e e e	1.84(s)	1.18(s) ^d 1.25(s) ^d	∋o 1
	1.69(s) 2.72 (dd J=15,8)	1.69(s) e	e e	1.70(s) e	1.69(s) 3.09 (dd J=14,3)	29 20 20 21 21 H 18 17 21
	2.93 (d J=15)	е	e ·	е	2.34 (dd J=11,14)	2 25 26 13H COOR
19-H	2.97 (ddd J=11,11,4	e .)	е	3.00 (ddd J=11.1	3.00 1,4)(ddd J=11,11,4)	HO HO H 8 27
1-H	3.57 (d J=8)	3.58 (d J=8)	3.95 (d J=7)	е	4.31 (dd J=11,3)	H 6
11-H	4.53 (ddd .1=8.8.8)	е	4.58 (ddd .1=8.8	3.97 8)/ddd .l=11 1	3.94 1,6)(ddd J=11,11,5)	6 1
23-H ₂	4.83(br s)	4.85(br s	\ 	4.76(br s)		$\underline{\mathbf{I}}: \mathbf{R} = \mathbf{\beta} - \mathbf{G} \cdot \mathbf{C} - \mathbf{\beta} - \mathbf{G} \cdot \mathbf{C} - \mathbf{\alpha} - \mathbf{R} \mathbf{n} \mathbf{a}$
30-H2	4.86(br s) 4.64(br s) 4.76(br s)	4.85(br s 4.85(br s 4.63(br s 4.76(br s 3.67(s)	$\frac{1}{2}$	4.88(br s) 4.63(br s) 4.76(br s)	4.64(br s) 4.76(br s)	<u>2</u> :R=H <u>3</u> :R=Me
-COOMe		3.67(s)	3.65(s)			

a:measured at 270MHz; b:measured at 400MHz; c:measured at 90MHz; d:unassigned; e:obscure.

Table II. 13 C-Chemical Shifts (δ) in CDCl $_3$

								J									
С	<u>1</u> a	<u>2</u> a	<u>6</u> 2)	<u>7</u> 2)	8	9	<u>10</u>	<u>15</u>	С	<u>1</u> a	<u>2</u> a	<u>6</u> 2)	<u>7</u> 2)	<u>8</u>	9	<u>10</u>	<u>15</u>
1	75.0	75.3	39.0	38.8	79.1	86.4	32.6	32.7	16	32.5	32.7	32.6	29.2	32.1	32.2	29.0	29.6
2	38.6	38.7	27.6	27.4	36.9	37.9ª	26.0	22.2	17	56.7	56.4	56.3	47.9	56.2	56.3	47.6	46.3
3	173.1	172.9	78.2	79.1	62.1	173.3	63.3	65.0	18	47.5	47.9	47.1	47.9	46.9	46.8	47.6	47.7
4	147.6	147.7	39.0	38.8	154.4	79.7	147.9	147.7	19	49.5	49.6	49.4	48.8	48.7	48.8	48.6	48.7
5	49.5	49.6	55.5	55.3	46.6	55.6 ^e	50.2	50.3	20	150.7	150.5	150.9	150.5	149.7	149.9	150.2	150.9
6	25.1	25.2	18.4	18.3	25.8	36.1ª	24.9	25.1	21	29.5	29.7	29.9	29.8	29.7	29.9	29.6	29.6
7	33.4	33.6	34.5	34.3	34.6	* u	35.1	35.3	22	36.8	37.3	37.3	34.0	37.6	37.4	33.8	34.6
8	41.6	41.6	40.8	41.0	42.3	* ^	40.4	40.6	23	113.9	113.9	28.2	28.1	113.9	24.4		113.1
9	44.0	44.2	50.7	50.5	51.4	48.1 ^e	40.4	40.6	24	23.5	23.6	15.4	15.4	21.4,	ູ 32.3	23.1	23.1
10	44.0	44.2	37.3	37.3	46.7	46.5	38.9	39.1	25	18.9	19.0	(16.1	16.1	17.1	18.5	20.3	20.3
11	70.2	70.6	21.0	20.9	69.8	68.3	21.2	21.4	26	17.9	⁰ 17.9	16.1	16.1	15.3 ^t	' 17.6'	16.1	15.9
12	32.2	32.5	25.6	25.2	33.5	35.2 ⁰	24.5	24.6	27	13.8	13.8	14.8	14.8	14.6	15.0	14.6	14.8
13	35.2	35.3	38.2	37.2	36.8	37.0	37.2	37.2	28	175.0	178.6	178.9	60.2	180.5	179.6	60.1	62.6
14	42.1	42.2	42.5	42.8	42.8	42.5	40.3	43.1	29	18.9	19.0	19.4	19.1	19.3	18.9	19.0	19.3
15	30.7	31.1	30.8	27.1	30.5	30.5	27.0	27.1	30	110.6	110.6	109.4	109.7	110.4	110.2	109.6	109.9

R'=-C00H

R'=-CH20H

R'=-C00H

R'=-COOH

R'=-COOH R'=-C00Me

10:R=-CH₂OH R'=-CH₂OH 15:R=-CH₂OAc R'=-CH₂OAc

12:R= =NOH R'=-COOH

a: measured in C_5D_5N ; b-e: may be interchanged; *: obscure (overlapped by other signal).

 $\underline{7}$: R= $<_{H}^{OH}$

<u>11</u>:R= =0

13:R=-CN 5:R=-C00H 14:R=-C00Me

Çн₂он

<u> 18</u>

Chart 2 COOMe СООН

LiI, MeOH 2,6-lutidine

 $17: R=\alpha-Ara^2-\alpha-Rha^3-\beta-Rib$ R'= β -G1c $\frac{6}{\beta}$ -G1c $\frac{4}{\alpha}$ -Rha

Table III. $^{13}\text{C-Chemical Shifts}$ (6) of Sugar Moiety in $\text{C}_5\text{D}_5\text{N}$

Carbon	<u>1</u>	<u>16</u> 9)			
Glc-l	95.2	96.1			
-2	73.8	73.8			
-3	78.4	78.4			
-4	70.5	70.7			
- 5	76.3	76.4			
-6	69.2	69.3			
Glc-1'	104.7	104.8			
-21	75.2	75.2			
-3'	76.9	76.4			
-4'	78.4	78.0			
-5'	77.8	77.1			
-6'	61.3	61.2			
Rha-1	102.5	102.7			
-2	72.5ª	72.6			
-3	72.3ª	72.6			
-4	73.8	73.8			
- 5	70.2	70.2			
-6	18.3	18.4			

a: may be reversed.

 $16:R=\beta-G1c\frac{6}{\beta}-G1c\frac{4}{\alpha}-Rha$

ome
$$\alpha$$
-Ara $\frac{2}{\alpha}$ -Rha $\frac{3}{\beta}$ -Rib

19

by the abnormal Beckmann rearrangement.⁶⁾ Assignment of the carbon signals of $\underline{10}$ was established by comparison with the spectrum of its diacetate ($\underline{15}$) in consideration of the acetylation shift.⁷⁾ It was substantiated that all of the carbon signals due to the D and E rings of $\underline{5}$ appeared in the spectrum of $\underline{8}$ and the signals due to carbons on the A. B and C rings of $\underline{8}$ could be reasonably assigned considering the hydroxylation shifts $\underline{8}$ at C-1 and -11 α positions of $\underline{10}$ (Table II).

The MS of a peracetate of 1 exhibited fragment ions at m/z 849 [(Glc-Glc-Rha)Acg], $561[(Glc-Rha)Ac_6]$ and $273(terminal Rha-Ac_3)$. On going from 2 to 1, the signal due to the carboxyl carbon (δ 178.6) was displaced to δ 175.0 while other carbon signals remained almost unshifted, indicating that a glycosyl linkage of 1 must be located at its 28-carboxyl group. On searching the carbon signal assignments of rhamnosyl-glucosyl-glucosyl ester units in the literature, the carbon signals of the sugar moiety of $\underline{1}$ were found to be identical with those of papyrioside L-IIc($\underline{16}$), an oligo-glycosyl ester from Tetrapanax papiriferum (Araliaceae) 9) as shown in Table III. we have found that on refluxing with anhydrous LiI and 2,6-lutidine in anhydrous methanol, a glycosyl ester linkage at the 28-carboxylic acid of triterpenes can be selectively cleaved without any cleavage of 3-0-glycoside bonding to give quantitatively a corresponding methyl glycoside (an anomeric mixture) together with its sapogenin or prosapogenin. 10) For instance, the treatment of huzhangoside B (17) recently isolated from Anemone rivularis (Ranunculaceae) under this condition afforded methyl oligo-glycoside (18) and its prosapogenin (19) almost quantitatively as shown in Chart 2.11) Treatment of 1 under the same condition yielded a methyl oligo-glycoside which was It follows that 1 can be formulated as α -L-rhamnopyranosyl(1---> identical with 18. 4)- β -D-glucopyranosyl(1 \rightarrow 6)- β -D-glucopyranosyl ester of $\underline{2}$. This is the first example of the glycosides of 3,4-seco-triterpenes in nature.

ACKNOWLEDGEMENT The authors are grateful to Professor T. Nakajima and Miss N. Yoshida, Tokyo Medical and Dental University for the measurement of ^1H NMR at 270MHz and to JEOL Co. Ltd. for the measurement of ^1H NMR at 400MHz. Thanks are also due to Professor T. Suga, Faculty of Science, Hiroshima University for his advice on 3,4-seco-triterpenes.

REFERENCES

- 1) H.Kohda and O.Tanaka, Yakugaku Zasshi, 95, 246 (1975).
- 2) a) E.Wenkert, G.V.Baddeley, I.R.Burfitt and L.N.Moreno, Org.Magn.Reson., 11, 337 (1978); b) M.Sholichin, K.Yamasaki, R.Kasai and O.Tanaka, Chem.Pharm.Bull., 28, 1006 (1980).
- 3) G.R.Pettit and T.R.Kasturi, J.Org.Chem., 26, 4557 (1961).
- 4) N.S.Bhacca and D.H.Williams, "Application of NMR Spectroscopy in Organic Chemistry", Holden-Day Inc., San Francisco, London and Amsterdam, (1964) p. 83.
- 5) C.J.W.Brooks and J.D.Gilbert, Chem.Commun., 1973, 194.
- 6) a) G.P.Moss and S.A.Nicolaidis, Chem.Commun., 1969, 1077; b) C.W.Shoppee, N.W.Hughes, R.E.Lack and J.T.Pinhey, J.Chem.Soc.,(C), 1970, 1443; c) K.F.Cohen, R.Kazlauskas and J.T.Pinhey, J.Chem.Soc., Perkin Trans. I, 1973, 2076.
- 7) a) D.E.Dorman, D.Bauer and J.D.Roberts, J.Org.Chem., <u>40</u>, 3729 (1975); b) E.Wenkert, M.J.Gasic, E.W. Hagaman and L.D.Kwart, Org.Magn.Reson., <u>7</u>, 51 (1975).
- 8) H.Eggert, C.L.VanAntwerp, N.S.Bacca and C.Djerassi, J.Org.Chem., 41, 71 (1976).
- 9) S. Amagaya, T.Takeda, Y.Ogihara and K.Yamasaki, J.Chem.Soc., Perkin Trans. I, <u>1979</u>, 2044.
- 10) D.-R.Hahn, J.-H.Kim, R.Kasai, K.Mizutani, S.Taniyasu, K.Ohtani and O.Tanaka, 26th Symposium on the Chemistry of Natural Products (Kyoto, October, 1983).
- 11) K.Mizutani, K.Ohtani, J.-X.Wei, R.Kasai and O.Tanaka, Planta Medica, submitted.

(Received January 5, 1984)