Chem. Pharm. Bull. 32(6)2426—2429(1984)

Facile Preparations of 1,4-(Diphenylmethyleneamino)piperazine-2,5-diones and N-Phenylmethyleneamino- β , γ , and δ -lactams from Benzylidene Hydrazines and α , β , γ , and δ -Haloacyl Halides

TADASHI OKAWARA, RIE KATO, and MITSURU FURUKAWA*

Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-hon-machi, Kumamoto 862, Japan

(Received October 11, 1983)

The reaction of benzylidene hydrazines (1) with various haloacyl halides (2) was carried out in aqueous NaOH-CH₂Cl₂ in the presence of a phase transfer catalyst to afford 1,4-(diphenylmethyleneamino)piperazine-2,5-diones (3) and N-phenylmethyleneamino- β , γ , and δ -lactams in yields of 31—84%.

Keywords—benzylidene hydrazine; alpha, beta, gamma, and delta-haloacyl halide; phase transfer catalyst; 1,4-(diphenylmethyleneamino)piperazine-2,5-dione; *N*-phenylmethyleneamino- β , γ , and δ -lactam

Several methods for the preparation of lactams by intramolecular N-alkylation of amide under phase transfer conditions have been reported.¹⁾ We have exploited one-pot syntheses of β -lactams by the reaction of amines,²⁾ α -amino acids,³⁾ and 1-substituted thioureas⁴⁾ with β -haloacyl halides under phase transfer conditions. This method is convenient and has the advantage of making the work-up easier.

We report here the reaction of benzylidene hydrazines with α , β , γ , and δ -haloacyl halides in the presence of a phase transfer catalyst (PTC). Recently, Taylor⁵⁾ found that the chloroacetylhydrazone of benzophenone underwent an intramolecular cyclization on treatment with sodium hydride in anhydrous THF to give 1-(diphenylmethylene)-3-oxo-1,2-diazetidinium ylide. In contrast, we obtained the 1,4-(diphenylmethyleneamino)piperazine-2,5-diones (3) from benzylidene hydrazine and α -haloacyl halides.

The reaction was carried out by slowly adding α -haloacyl halide (2) to a stirred solution

Chart 1

TABLE I. 1,4-(Diphenylmethyleneamino)piperazine-2,5-diones (3)

	R¹	R ²	X¹	X^2	mp (°C)	Yield (%)
3a	Ph	Н	Cl	Cl	189—190	51
3b	Ph	CH ₃	Br	Br	146—147	42
3c	Ph	C_2H_5	Br	Cl	150—151	53

Ph

$$R^1$$
 $NNH_2 + X(CH_2)_n C$
 R^2
 R^2
 R^3
 $NaOH-CH_2Cl_2$
 Ph
 R^1
 NN
 R^2
 NN
 R^3
 R^3

Chart 2

Table II. N-Phenylmethyleneamino- β , γ , and δ -lactams (5)

	R ¹	R ²	R ³	X	n	mp (°C)	Yield (%)
5a	Н	CH ₃	Br	Br	1	94—95	38
5b	H	CH_3	CH ₃	C1	1	8586	31
5c	Ph	CH_3	Br	Br	1	133—134	41
5d	Ph	CH_3	CH_3	Cl	1	158—159	51
5e	H	Н	Br	Br	2	158—159	36
5 f	Ph	Н	Br	Br	2	147148	84
5g	Ph	Н	Br	Br	3	124—125	74

of benzylidene hydrazine (1) in 30% NaOH–CH₂Cl₂ in the presence of a small amount of benzyltriethylammonium chloride, followed by stirring for 12 h at room temperature to afford 3 in 42—52% yields. The results are shown in Table I. The IR spectra of the products showed carbonyl absorption at $1760\,\mathrm{cm^{-1}}$. The possible structures are piperazine-2,5-dione and α -lactam, but the latter can be excluded because the above frequency is low for such a carbonyl group on a three-membered ring. A probable structure is considered to be the piperazine-2,5-dione (3); the observed frequency of the carbonyl band seems to be attributable to steric strain. The 1 H-NMR and mass spectra, and elemental analyses also support this structure. This reaction did not proceed when 5% NaOH was used instead of 30% NaOH.

Next, the β , γ , and δ -lactams were synthesized from benzylidene hydrazines (1) and β , γ , and δ -haloacyl halides (4) in 5% NaOH-CH₂Cl₂ in the presence of PTC. The results are summarized in Table II.

In the reaction of α , ω -dihaloacyl chlorides (4) with 1, the corresponding piperazine-2,5-diones (3) were not detected. The β -lactams (n=1) were produced in 31—51% yields. The assignment of the structures (5a-d) was based on IR and mass spectra data. The IR spectra showed the carbonyl absorption at 1760—1770 cm⁻¹, and the mass spectra had fragments typical of ketones, azomethines, alkenes, and isocyanates derived from β -lactams.

In the course of preparation of the pyrazolidinium ylide from the 3-chloro-2,2-dimethylpropionyl hydrazone of benzophenone, Taylor⁵⁾ also isolated 1-diphenylmethyleneamino-3,3-dimethylazetidin-2-one (5d) under anhydrous conditions.

In the cases of n=2 and 3, the corresponding γ and δ -lactams (5e—g) were isolated. These products gave satisfactory IR, ¹H-NMR, and mass spectral data, and elemental analyses.

This reaction is considered to provide a useful one-pot synthesis of lactams from hydrazones.

Experimental

All the melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded with a JASCO IRA-1 grating infrared spectrometer. Nuclear magnetic resonance

	$ \begin{array}{c} \operatorname{IR} \ \nu_{\max}^{\operatorname{KBr}} \operatorname{cm}^{-1} \\ \operatorname{C} = O \end{array} $	¹ H-NMR (δ) in CDCl ₃	<i>m</i> / <i>e</i> (M ⁺)	Analysis (%) Calcd (Found)		
	C=0			C	Н	N
3a	1760	5.33 (s, CH ₂ × 2, 4H) 7.66 (m, Ph × 4, 20H)	472	76.30 (76.71	5.12 5.22	11.86 11.96)
3b	1760	1.25 (d, $CH_3 \times 2$, $6H$, $J =$ 7.0 Hz), 5.90 (q, $CH \times 2$, $2H$, $J = 7.0$ Hz), 7.66 (m, $Ph \times 4$, $20H$)	250 ^{a)}	76.78 (76.48	5.64 5.62	11.20 11.10)
3c	1760	0.80—1.90 (m, $C_2H_5 \times 2$, 10H), 5.90 (m, $CH \times 2$, 2H), 7.66 (m, $Ph \times 4$, 20H)	528	77.25 (77.12	6.10 6.19	10.60 10.56)

TABLE III. 1-(Diphenylmethyleneamino)piperazine-2,5-diones (3)

TABLE IV. N-Phenylmethyleneamino- β , γ , and δ -lactams (5)

	$ \begin{array}{c} \operatorname{IR} v_{\max}^{\operatorname{KBr}} \operatorname{cm}^{-1} \\ \operatorname{C} = O \end{array} $	11*NVIX (0) III CDCI2	m/e (M+)	Analysis (%) Calcd (Found)		
				C	Н	N
5a	1770	2.00 (s, CH ₃ , 3H), 3.89 (d, С <u>Н</u> H, 1H, <i>J</i> =6.0 Hz), 4.11 (d, СН <u>Н</u> , 1H, <i>J</i> =6.0 Hz), 7.53 (m, Ph, 5H), 7.97 (s, CH, 1H)	266, 268	49.46 (49.65	4.15 4.14	10.49 10.52)
5b	1760	1.33 (s, CH ₃ × 2, 6H), 3.37 (s, CH ₂ , 2H), 7.67 (m, Ph, 5H), 8.65 (s, CH, 1H)	202	71.26 (71.48	6.98 7.21	13.85 13.48)
5c	1760	1.83 (s, CH ₃ , 3H), 3.20 (m, CH ₂ , 2H), 7.38 (m, Ph×2, 10H)	342, 344	59.50 (59.25	4.41 4.42	8.16 7.93)
5d	1760	1.23 (s, CH ₃ × 2, 6H), 2.75 (s, CH ₂ , 2H), 7.36 (m, Ph × 2, 10H)	278	77.67 (77.49	6.52 6.67	10.06 10.06)
5e	1710	2.61 (m, CH ₂ , 2H), 3.80 (m, CH ₂ , 2H) 4.55 (q, CH, 1H), 7.55 (m, Ph, 5H), 8.18 (s, CH, 1H)	266, 268	49.46 (49.90	4.15 4.32	10.49 10.36)
5f	1700	2.40 (m, CH ₂ , 2H), 3.50 (m, CH ₂ , 2H), 4.33 (q, CH, 1H), 7.42 (m, Ph × 2, 10H)	342, 344	59.50 (59.84	4.41 4.49	8.16 8.10)
5g	1660	2.12 (m, CH ₂ × 2, 4H), 3.50 (m, CH ₂ , 2H), 4.42 (m, CH, 1H), 7.48 (m, Ph × 2, 10H)	356, 358	60.52 (60.32	4.80 4.58	7.84 7.72)

(1H-NMR) spectra were determined with a JEOL 60H high resolution NMR instrument. Mass spectra were measured with a JEOL 01SG mass spectrometer.

2,3-Dibromo-2-methylpropionyl Chloride (4, $X=R^2=Br$, $R^3=CH_3$, n=1) and 3-Chloro-2,2-dimethylpropionyl Chloride (4, X=Cl, $R^2=R^3=CH_3$, n=1)—These compounds were obtained from 2,3-dibromo-2-methylpropionic acid and 3-chloro-2,2-dimethylpropionic acid.²⁾

Dibromoacyl Chloride $(4,X=R^2=Br, R^3=H, n=2, 3 \text{ and } 4)$ —These compounds were prepared from the corresponding lactones and bromine, followed by treatment with $SOCl_2$.²⁾

General Procedure for Preparation of 1,4-(Diphenylmethyleneamino)piperazine-2,5-diones (3)—An α -haloacyl chloride 2 (5 mmol) was added dropwise to a stirred solution of benzophenone hydrazone 1 (5 mmol) in 30% NaOH (5 ml) and CH₂Cl₂ (20 ml) under cooling with ice-water. When the addition was over, benzyltriethylammonium chloride (10 mg) was added. The reaction mixture was stirred for 12 h at room temperature. The CH₂Cl₂ layer was

a) The parent ion was not detected under any conditions tested.

separated, washed with H_2O (10 ml \times 2), dried over anhydrous Na_2SO_4 , and evaporated to dryness. The residue was purified by recrystallization from EtOH. The IR, ¹H-NMR and mass spectral data, and elemental analyses are listed in Table III.

General Procedure for Preparation of N-Phenylmethyleneamino- β , γ , and δ -lactams (5)—By the same method as described above, compounds (5) were obtained from 1 and 4 with 5% NaOH-CH₂Cl₂. Compounds 5a and 5b were purified by silica gel column chromatography (CHCl₃). Compounds 5c—g were recrystallized from EtOH. The IR, ¹H-NMR, and mass spectral data, and elemental analyses are summarized in Table IV.

References

- 1) a) S. Fletcher and I. Kay, J. Chem. Soc., Chem. Commun., 1978, 903; b) H. Takahata, Y. Ohnishi, H. Takehara, K. Tsurutani, and T. Yamazaki, Chem. Pharm. Bull., 29, 1063 (1981); c) S. Sebti and A. Foucaud, Synthesis, 1983, 546.
- 2) T. Okawara, T. Matsuda, and M. Furukawa, Chem. Pharm. Bull., 30, 1225 (1982).
- 3) T. Okawara, T. Matsuda, Y. Noguchi, and M. Furukawa, Chem. Pharm. Bull., 30, 1574 (1982).
- 4) T. Okawara, K. Nakayama, and M. Furukawa, Chem. Lett., 1982, 1791.
- 5) E. Taylor, N. Haley, and R. Clemene, J. Am. Chem. Soc., 103, 7743 (1981).