Communications to the Editor

Chem. Pharm. Bull. 32(6)2456-2459(1984)

THE REACTION OF 1,4-DIHYDROCYCLOPENT[b]INDOLES WITH DIMETHYL ACETYLENEDICARBOXYLATE

Takushi Kurihara,* Keiko Nasu, and Satomi Haginaga Osaka College of Pharmacy, 2-10-65, Kawai, Matsubara, Osaka 580, Japan

Diethyl 1,4-dihydro-4-methyl-3-(N-methyl-3-indolyl)cyclopento[\underline{b}] indole-1,2-dicarboxylate (3) reacted with dimethyl acetylene-dicarboxylate (DMAD) in acetonitrile under reflux to give the 5,10-dihydrocyclopent[\underline{b}]indole (5). The same reaction in benzene gave the maleate (or fumarate) (6) and the 1,1a,3a,4-tetrahydrocyclobut[2,3] cyclopent[\underline{b}]indole (8). Thermolysis of 8 resulted in the formation of 5. In contrast to a [2 + 2] cycloaddition reaction of 3 and DMAD, 2 reacted with two molecules of DMAD to give the 1,1a,5a,6-tetrahydrocyclohex[2,3]cyclopent[\underline{b}]indole (10).

KEYWORDS — 1,4-dihydrocyclopent [b] indole; dimethyl acetylenedicarboxylate; [2 + 2]cycloaddition; 5,10-dihydrocyclohept[b] indole; tetrahydrocyclobut[2,3]cyclopent[b] indole; tetrahydrocyclohex [2,3]cyclopent[b] indole; thermolysis

In a preceding paper, $^{1)}$ we reported that heating the 1,4-dihydrocyclopent $[\underline{b}]$ indoles (2 and 3), prepared by the reaction of the pyrazolo $[1,5-\underline{a}]$ pyrimidine derivative ($\frac{1}{b}$) with indoles in the presence of triethyloxonium fluoroborate, $^{2)}$ resulted in the formation of intermediate 2,4-dihydrocyclopent $[\underline{b}]$ indoles, which reacted with olefins to yield [4+2] cycloadducts, bicyclo [2,2,1] hept $[2,3-\underline{b}]$ indoles $(\frac{1}{a})$.

The reaction of indoles with DMAD has been extensively investigated. The reaction of indoles with DMAD has been extensively investigated. Neckers reported $^{4)}$ photocycloaddition of DMAD to 1,3-dimethylindole to yield derivatives of cyclobutenes which are transformed to benzazepines by ring-opening. Taylor reported $^{5)}$ the reaction of 1,3-dimethylindole with DMAD in the presence of boron trifluoride (BF3)-etherate to give the benzazepine which might be obtained by thermal decomposition of an intermediate cyclobutene adduct. The cyclobutene was afterward isolated as a red oil in only 0.6% yield by Neckers $^{4)}$ under the same conditions. Rodorigues also reported $^{6)}$ that the thermal reaction of 1,2,3-

X=0 or NH

trimethylindole and 1,3-dimethylindole with DMAD in the presence of ${\rm BF}_3$ -etherate gave the cyclobutene adducts in good yields. In these connections, we now describe the results of cycloaddition of 2 and 3 with DMAD without a catalyst in

which we isolated the cyclobutene (8).

. R-Me , Ind-3-N-methylindole

Refluxing a solution of 3 and DMAD in acetonitrile for 12 h afforded 9,10-bis(ethoxycarbony1)-7,8-bis(methoxycarbony1)-5,10-dihydro-5-methy1-6-(N-methy1-3-indoly1)cyclohept [b]indole $(5)^{7}$ as orange-red needles, mp 202-203°C, in 64.5% yield; $C_{33}H_{32}N_2O_8$: m/z 584 (M⁺); IR \vee KBr cm⁻¹ 1730, 1720, 1620; UV \wedge max nm (log ε) 250 (sh), 270 (3.97), 290 (3.84), 450 (3.88); ¹H-NMR (DMSO-d₆) \wedge 0.65 and 1.15 (each 3H, each t, J=7 Hz, 2 × $CO_2CH_2CH_3$), 2.95, 3.40, 3.87, 3.93 (each 3H, each s, 2 × CO_2CH_3 and 2 × NCH₃), 4.05 (1H, s, C_{10} -H), 3.50-4.20 (4H, m, 2 × CO_2CH_2 CH₃), 6.50-7.70 (8H, m, Ar-H), 7.30 (1H, s, C_2 -H of indole ring). Cyclohept [b] indole, which is an aza-analog of benz [b]azulene, has been prepared by vapor-phase dehydrogenation with 5% palladium-charcoal on manganese oxide 8) or iodine oxidation 9) of 5,6,7,8,9,10-hexahydrocyclopent [b]indole. However, dihydrocyclopent [b] idole was hitherto unknown.

On the other hand, heating 3 and DMAD in benzene for 12 h gave, after silica gel column chromatography, pale yellow needles (§), mp $142-145^{\circ}\mathrm{C}$, in 67% yield; $\mathrm{C}_{33}\mathrm{H}_{34}\mathrm{N}_{2}\mathrm{O}_{9}$: m/z 602 (M⁺), 583 as base peak (M⁺-H₂O); IR $^{\vee}$ KBr $_{\mathrm{max}}$ cm⁻¹ 3500, 1745, 1720, 1600; $^{1}\mathrm{H}$ -NMR (DMSO-d $_{6}$) δ 0.65 and 0.90 (each 3H, each t, J=7 Hz, 2 \times CO $_{2}\mathrm{CH}_{2}$ C $_{13}\mathrm{H}_{3}$), 2.53 and 3.60 (each 3H, each s, 2 \times NCH $_{3}$), 3.73 and 3.83 (each 3H, each s, 2 \times CO $_{2}\mathrm{CH}_{3}$), 3.15 (1H, s, C $_{1}$ -H), 5.05 (1H, s, vinyl-H), 5.50 (1H, s, OH, exchangeable with D $_{2}\mathrm{O}$), 6.45-7.80 (8H, m, Ar-H), 6.79 (1H, s, C $_{2}$ -H of indole ring).

Reaction of 3 with DMAD in benzene followed by treatment with ethanol gave the 3-ethoxy derivative (7), mp 157-160°C, in low yield. On the basis of these results, the structure of 6 was presumed to be dimethyl 1,2-bis(ethoxycarbonyl)-3-hydroxy-4-methyl-3-(N-methyl-3-indolyl)-1,2,3,4-tetrahydro-2-(cyclopent [b] indole) maleate (or fumarate). Abnormal high-field olefinic proton (6 5.05) of 6 in 1 H-NMR spectrum, which is not comparable to those of diethyl fumarate (6 6.83) and diethyl maleate (6 6.28), is supposed to result from the anisotropic effect of the C_3 -indole ring. However, the stereochemistry of 6 and 7 was not determined at this stage.

 $E=CO_2Et$, Ind=3-N-methylindole

Next, attempts were made to isolate the cyclobutene adduct which might be a precursor of 5. The residual oil, which was obtained by treatment of 3 with DMAD in dry benzene followed by evaporation of the solvent, was heated at $80\,^{\circ}\text{C}$ for 3 h in vacuo, and then subjected to silica gel column chromatography. The fraction of less polar component eluted with benzene gave a dark-brown solid 8 (6.3% yield), together with 6 (14%) and an unidentified crystalline compound. The product 8showed the change of color to orange-red at around 125°C and melted at 202-203 °C when heated on a hot plate. The IR spectrum of the product obtained by heating at 120-125°C was completely identical with that of 5. Thus, 8 was assigned as the 1, la,3a,4-tetrahydrocyclobut[2,3]cyclopent[b]indole. When & was heated in ethanol under reflux, it was converted to ξ in good yield. Similarly, the reaction of ξ with methyl propiolate in toluene for 12 h under reflux afforded $\, {\it g} \,$ as orange needles, mp 260-263°C, in 10.1% yield ; $C_{31}H_{30}N_{2}O_{6}$: m/z 526 (M+) ; IR $_{max}$ KBr cm $^{-1}$ 1740-1720; $^{1}\text{H-NMR}$ (CDC1₂) δ 0.74 and 1.21 (each 3H, each t, $\underline{\text{J=7 Hz}}$, $2 \times \text{CO}_{2}\text{CH}_{2}$ $\mathrm{CH_3}$), 2.92 (3H, s, NCH₃), 3.45 and 3.80 (each 3H, each s, $\mathrm{CO_2CH_3}$ and/or NCH₃), 3.88 (1H, d, \underline{J} =2.5 Hz, C_1 -H), 3.50-3.80 (2H, m, $CO_2C\underline{H}_2CH_3$), 4.15 (2H, q, \underline{J} =7 Hz, $CO_2CH_2CH_3$), 6.40-7.50 (8H, m, Ar-H), 6.82 (1H, s, C_2 -H of indole ring), 7.85 (1H, d, J=2.5 Hz, C_3-H , collapsed to singlet by irradiation of C_1-H). The UV spectrum was very similar to that of ξ . In contrast to ξ , compound ξ reacted with an excess of DMAD in benzene under reflux to give a complex mixture from which 1,la-bis(ethoxycarbonyl)-6-methyl-5a-(N-methyl-3-indolyl)-2,3,4,5-tetrakis(methoxycarbonyl)-1,la,5a,6-tetrahydrocyclohex[2,3]cyclopent[b]indole (10) was isolated as dark-red prisms, mp 205-207 °C, in 17.3% yield ; $C_{37}H_{34}N_{2}O_{12}$: m/z 698 (M) ; IR $^{\lor}$ max cm 3360, 1720; UV λ EtOH nm (log ϵ) 240 (4.40), 293 (4.07), 405 (3.68); H-NMR (DMSO-d) δ 0.65 and 1.17 (each 3H, each t, <u>J</u>=7 Hz, 2 \times CO₂CH₂CH₃), 3.23, 3.80, 3.90, 4.07 (each 3H, each s, $4 \times CO_2CH_3$), 6.39 (1H, s, C_2 -H of indole ring), 6.73 and 10.35 (each 1H, each s, $2 \times NH$), 6.85-7.70 (8H, m, Ar-H).

Ind=3-N-methylindole

Ind=3-indole

These experiments revealed that the 1,4-dihydrocyclopent[b]indoles gave [4 + 2] cycloadducts with activated olefins, while [2 + 2] cycloadducts with DMAD.

REFERENCES AND NOTES

- 1) T. Kurihara, K. Nasu, S. Haginaga, and K. Mihara, Chem. Pharm. Bull., in press.
- 2) T. Kurihara, K. Nasu, M. Inoue, and T. Ishida, ibid., 30, 383 (1982).
- R.M. Achenson and N.F. Elmore, Adv. Heterocyclic Chem., 23, 263 (1978).
- 4) P.D. Davis and D.C. Neckers, <u>J. Org. Chem.</u>, 45, 462 (1980).
- F. Fried, J.B. Taylor, and R. Westwood, <u>J. Chem. Soc.</u>, D, 1226 (1971).
- J.A.R. Rodorigues and L.I. Verardo, J. Heterocycl. Chem., 20, 1263 (1983). 6)
- 7) The possibility of 5,6-dihydrocyclohept[b]indole structure remains unsolved.
- A.G. Anderson, Jr. and J. Tazuma, <u>J. Am. Chem. Soc.</u>, 74, 3455 (1952). 8)
- V.W. Treibs, Ann., 576, 110 (1952). 9)
- 10) Varian High Resolution NMR Spectra Catalog, Spectra Nos. 212 and 213, Varian Associates, California, 1962.
- 11) $\frac{8}{\gamma}$: IR ν $\frac{\text{KBr}}{\text{max}}$ cm⁻¹ 1720-1700; ¹H-NMR (DMSO-d₆) δ 0.70 and 1.13 (each 3H, each t, $\underline{J}=7 \text{ Hz}$, $2 \times \text{CO}_2\text{CH}_2\text{C}\underline{\text{H}}_3$), 3.20, 3.23, 3.80, 3.93 (each 3H, each s, $2 \times \text{NCH}_3$ and $2 \times CO_2CH_3$), 3.55 (1H, s, C_1-H), 5.97 (1H, s, C_2-H of indole ring), 6.55 -7.60 (8H, m, Ar-H).

(Received April 14, 1984)